28,417 research outputs found

    Parameter Learning for Latent Network Diffusion

    Get PDF
    Diffusion processes in networks are increasingly used to model dynamic phenomena such as the spread of information, wildlife, or social influence. Our work addresses the problem of learning the underlying parameters that govern such a diffusion process by observing the time at which nodes become active. A key advantage of our approach is that, unlike previous work, it can tolerate missing observations for some nodes in the diffusion process. Having incomplete observations is characteristic of offline networks used to model the spread of wildlife. We develop an EM algorithm to address parameter learning in such settings. Since both the E and M steps are computationally challenging, we employ a number of optimization methods such as nonlinear and difference-of-convex programming to address these challenges. Evaluation of the approach on the Red-cockaded Woodpecker conservation problem shows that it is highly robust and accurately learns parameters in various settings, even with more than 80 % missing data.

    LATTE: Application Oriented Social Network Embedding

    Full text link
    In recent years, many research works propose to embed the network structured data into a low-dimensional feature space, where each node is represented as a feature vector. However, due to the detachment of embedding process with external tasks, the learned embedding results by most existing embedding models can be ineffective for application tasks with specific objectives, e.g., community detection or information diffusion. In this paper, we propose study the application oriented heterogeneous social network embedding problem. Significantly different from the existing works, besides the network structure preservation, the problem should also incorporate the objectives of external applications in the objective function. To resolve the problem, in this paper, we propose a novel network embedding framework, namely the "appLicAtion orienTed neTwork Embedding" (Latte) model. In Latte, the heterogeneous network structure can be applied to compute the node "diffusive proximity" scores, which capture both local and global network structures. Based on these computed scores, Latte learns the network representation feature vectors by extending the autoencoder model model to the heterogeneous network scenario, which can also effectively unite the objectives of network embedding and external application tasks. Extensive experiments have been done on real-world heterogeneous social network datasets, and the experimental results have demonstrated the outstanding performance of Latte in learning the representation vectors for specific application tasks.Comment: 11 Pages, 12 Figures, 1 Tabl

    Correlated Cascades: Compete or Cooperate

    Full text link
    In real world social networks, there are multiple cascades which are rarely independent. They usually compete or cooperate with each other. Motivated by the reinforcement theory in sociology we leverage the fact that adoption of a user to any behavior is modeled by the aggregation of behaviors of its neighbors. We use a multidimensional marked Hawkes process to model users product adoption and consequently spread of cascades in social networks. The resulting inference problem is proved to be convex and is solved in parallel by using the barrier method. The advantage of the proposed model is twofold; it models correlated cascades and also learns the latent diffusion network. Experimental results on synthetic and two real datasets gathered from Twitter, URL shortening and music streaming services, illustrate the superior performance of the proposed model over the alternatives

    Learning user-specific latent influence and susceptibility from information cascades

    Full text link
    Predicting cascade dynamics has important implications for understanding information propagation and launching viral marketing. Previous works mainly adopt a pair-wise manner, modeling the propagation probability between pairs of users using n^2 independent parameters for n users. Consequently, these models suffer from severe overfitting problem, specially for pairs of users without direct interactions, limiting their prediction accuracy. Here we propose to model the cascade dynamics by learning two low-dimensional user-specific vectors from observed cascades, capturing their influence and susceptibility respectively. This model requires much less parameters and thus could combat overfitting problem. Moreover, this model could naturally model context-dependent factors like cumulative effect in information propagation. Extensive experiments on synthetic dataset and a large-scale microblogging dataset demonstrate that this model outperforms the existing pair-wise models at predicting cascade dynamics, cascade size, and "who will be retweeted".Comment: from The 29th AAAI Conference on Artificial Intelligence (AAAI-2015

    High-Order Stochastic Gradient Thermostats for Bayesian Learning of Deep Models

    Full text link
    Learning in deep models using Bayesian methods has generated significant attention recently. This is largely because of the feasibility of modern Bayesian methods to yield scalable learning and inference, while maintaining a measure of uncertainty in the model parameters. Stochastic gradient MCMC algorithms (SG-MCMC) are a family of diffusion-based sampling methods for large-scale Bayesian learning. In SG-MCMC, multivariate stochastic gradient thermostats (mSGNHT) augment each parameter of interest, with a momentum and a thermostat variable to maintain stationary distributions as target posterior distributions. As the number of variables in a continuous-time diffusion increases, its numerical approximation error becomes a practical bottleneck, so better use of a numerical integrator is desirable. To this end, we propose use of an efficient symmetric splitting integrator in mSGNHT, instead of the traditional Euler integrator. We demonstrate that the proposed scheme is more accurate, robust, and converges faster. These properties are demonstrated to be desirable in Bayesian deep learning. Extensive experiments on two canonical models and their deep extensions demonstrate that the proposed scheme improves general Bayesian posterior sampling, particularly for deep models.Comment: AAAI 201

    Diffusion Variational Autoencoders

    Full text link
    A standard Variational Autoencoder, with a Euclidean latent space, is structurally incapable of capturing topological properties of certain datasets. To remove topological obstructions, we introduce Diffusion Variational Autoencoders with arbitrary manifolds as a latent space. A Diffusion Variational Autoencoder uses transition kernels of Brownian motion on the manifold. In particular, it uses properties of the Brownian motion to implement the reparametrization trick and fast approximations to the KL divergence. We show that the Diffusion Variational Autoencoder is capable of capturing topological properties of synthetic datasets. Additionally, we train MNIST on spheres, tori, projective spaces, SO(3), and a torus embedded in R3. Although a natural dataset like MNIST does not have latent variables with a clear-cut topological structure, training it on a manifold can still highlight topological and geometrical properties.Comment: 10 pages, 8 figures Added an appendix with derivation of asymptotic expansion of KL divergence for heat kernel on arbitrary Riemannian manifolds, and an appendix with new experiments on binarized MNIST. Added a previously missing factor in the asymptotic expansion of the heat kernel and corrected a coefficient in asymptotic expansion KL divergence; further minor edit

    On the Convexity of Latent Social Network Inference

    Full text link
    In many real-world scenarios, it is nearly impossible to collect explicit social network data. In such cases, whole networks must be inferred from underlying observations. Here, we formulate the problem of inferring latent social networks based on network diffusion or disease propagation data. We consider contagions propagating over the edges of an unobserved social network, where we only observe the times when nodes became infected, but not who infected them. Given such node infection times, we then identify the optimal network that best explains the observed data. We present a maximum likelihood approach based on convex programming with a l1-like penalty term that encourages sparsity. Experiments on real and synthetic data reveal that our method near-perfectly recovers the underlying network structure as well as the parameters of the contagion propagation model. Moreover, our approach scales well as it can infer optimal networks of thousands of nodes in a matter of minutes.Comment: NIPS, 201
    • …
    corecore