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Abstract
Diffusion processes in networks are increasingly
used to model dynamic phenomena such as the
spread of information, wildlife, or social influence.
Our work addresses the problem of learning the un-
derlying parameters that govern such a diffusion
process by observing the time at which nodes be-
come active. A key advantage of our approach is
that, unlike previous work, it can tolerate missing
observations for some nodes in the diffusion pro-
cess. Having incomplete observations is character-
istic of offline networks used to model the spread of
wildlife. We develop an EM algorithm to address
parameter learning in such settings. Since both the
E and M steps are computationally challenging, we
employ a number of optimization methods such as
nonlinear and difference-of-convex programming
to address these challenges. Evaluation of the ap-
proach on the Red-cockaded Woodpecker conser-
vation problem shows that it is highly robust and
accurately learns parameters in various settings,
even with more than 80% missing data.

1 Introduction
Dynamic phenomena such as the spread of information,
ideas, and opinions [Domingos and Richardson, 2001;
Kempe et al., 2003; Leskovec et al., 2007], and infectious dis-
ease propagation among humans [Anderson and May, 2002]
can be described as a diffusion process or cascade over an
underlying network. Similar diffusion processes have also
been used for metapopulation modeling in the ecology litera-
ture to describe how wildlife spreads over a fragmented land-
scape [Hanski, 1999]. Such models are crucial for several
decision problems in spatial conservation planning such as
how to allocate resources to maximize the population spread
of an endangered species over a period of time [Sheldon et
al., 2010; Ahmadizadeh et al., 2010; Golovin et al., 2011;
Kumar et al., 2012].

A fundamental problem in using diffusion-based models
for spatial conservation planning is the estimation of the
parameters that govern the spread of a species using lim-
ited observed data. This problem shares some similarities
with recent work in social network structure learning, in

which the goal is to learn which edges are present in a so-
cial network as well as their transmission probabilities [My-
ers and Leskovec, 2010; Gomez-Rodriguez et al., 2012;
Netrapalli and Sanghavi, 2012; Wang et al., 2012]. My-
ers and Leskovec [2010] formulate the problem of structure
learning as a separable convex program. Gomez-Rodriguez et
al. [2012] address the problem using submodular optimiza-
tion. Netrapalli and Sanghavi [2012] address the comple-
mentary question of how many observed cascades are nec-
essary to correctly learn the structure of a network. Wang et
al. [2012] enrich the structure learning problem using addi-
tional features from Twitter data.

An implicit common assumption in structure learning ap-
proaches is that the status of each node is observed. That
is, one observes exactly which nodes in the network are
infected and the time of their infection. However, how
they are infected—which edge is responsible for infection
transmission—is not observed. Furthermore, the transmis-
sion probabilities that govern the spread of infection through
the network are treated as being separate parameters to be
learned for each edge. Our problem setting differs substan-
tially in these aspects, making direct application of previous
approaches infeasible.

In offline networks, such as the ones used for metapop-
ulation modeling, it is not realistic to observe the status of
each node in the cascade due to the sheer amount of instru-
mentation/manual effort involved. One may only hope to ob-
serve the status of a fraction of the nodes in the network as to
whether they are infected or not. Furthermore, such networks
are often geospatial in nature and therefore the connectivity
structure of the network is known, in contrast to the social
network setting in which the presence or absence of particu-
lar edges is not known in advance. Metapopulation models
are typically parameterized so that the transmission proba-
bilities between pairs of nodes are determined by a few key
physical properties that describe the biological phenomenon,
such as the distance between nodes, the amount of habitat
present, and the quality of habitat [Hanski, 1994]. This has
the effect of coupling the transmission probabilities of the
network edges to depend on common parameters, in contrast
with social network models which attempt to learn a sepa-
rate parameter for each edge. Our work addresses all these
unique characteristics of metapopulation modeling and more
broadly, computational sustainability.
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We formulate the parameter learning problem as a maxi-
mum likelihood problem with hidden variables. We use the
EM algorithm to maximize the likelihood [Dempster et al.,
1977]. However, both the E and M steps are challenging.
To overcome the intractability of the exact E-step, we use
the Monte Carlo version of EM (MCEM) [Wei and Tanner,
1990]. The M-step entails solving a non-convex optimiza-
tion problem. We present a number of techniques from the
optimization literature such as nonlinear programming and
difference-of-convex functions (DC) programming to address
this. We apply our approach to the Red-cockaded Wood-
pecker conservation problem over the coast of North Car-
olina [Ahmadizadeh et al., 2010]. The results show that our
approach is highly robust to different EM initializations and
can reliably learn parameters with varying numbers of cas-
cades. Most notably, our approach accurately learns parame-
ters even with more than 80% missing data.

In the ecology literature, Moilanen [1999] fit a metapopula-
tion model that was similar to ours by maximum likelihood.
He did not use the EM algorithm, but instead used Monte
Carlo sampling of missing values to approximately compute
the likelihood, which was then optimized numerically. Com-
pared with our work, Moilanen uses a weak sampler, and one
that only works when entire years are either missing or ob-
served, so it is much less flexible with respect to the pattern
of missing data. Ter Braak and Etienne [2003] used a much
more efficient Gibbs sampling procedure to resample missing
values, which is similar to our E step. One main difference
between their work and ours is that they took a Bayesian ap-
proach, while we have developed an EM algorithm to maxi-
mize likelihood.

In addition, a key contribution that distinguishes our work
from that of both Moilanen and ter Braak and Etienne is the
fact that we have considerably increased the flexibility of the
models used in those papers by moving from a rigid parame-
terization that depends on just a few environmental variables
(distance between habitat nodes and habitat patch size) to a
logistic regression parameterization that can model the ef-
fect of an arbitrary number of environmental variables on the
transmission probabilities. To the best of our knowledge, ours
is the first method in either the social network or ecology lit-
erature that addresses both the generality and missing data
issues. Thus our work is a significant improvement over pre-
vious approaches.

2 The Metapopulation Modeling Problem
In metapopulation modeling, the goal is to describe the occu-
pancy pattern of habitat patches for a certain species in a frag-
mented landscape over a period of time. Each habitat patch
can be thought of as a node in a geospatial network. Edges
connect two different habitat patches, intuitively representing
the fact that species such as birds can migrate from one habi-
tat patch to another. We say that a node is active or infected
if the species in question is present within the node. Initially,
a certain number of nodes are infected. The infection spreads
from these initially active nodes in discrete time steps using
the well-known independent cascade model [Kempe et al.,
2003; Sheldon et al., 2010].

Figure 1: A layered graph for three nodes u, v and w

In the independent cascade model, once a node u becomes
infected, it will attempt (only once) to infect each of its neigh-
bors v independently using the transmission probability puv:

puv=P (node v gets infected by u | node u is infected) (1)

For ease of exposition, we present the problem using the
Susceptible–Infected (SI) model in which an infected node
remains infected forever; each newly infected node is given
only a single chance to infect its neighbors. As we will see
in Section 3, it is easy to fold the species extinction and re-
population in a habitat patch over time within the SI model
by using a layered time indexed graph [Kempe et al., 2003;
Sheldon et al., 2010]. Unlike social networks, we assume that
the transmission probability is parameterized using a logistic
regression model:

puv=
1

1 + exp
(
〈θ, φuv〉

) (2)

where φuv denote the features associated with the edge (u, v)
and θ denotes the parameter vector that governs the under-
lying species spread. The features, for example, can include
the geographical distance between the nodes u and v, and a
measure of habitat suitability of node v. This is a very flex-
ible approach that is capable of capturing models very simi-
lar to those widely used in metapopulation modeling [Hanski,
1994], as well as extending those models to depend on a much
richer set of features. In our work, the goal is to estimate the
unknown parameters θ using limited observations about patch
occupancy, as described below.

Observation model: A cascade c over such a network starts
with a set of initially active nodes at time t=1. As the cas-
cade progresses in discrete time steps, we observe the in-
fection time of nodes as they subsequently become infected;
for nodes u that are never infected, we set the infection time
τ cu=∞. Let V denote the set of all nodes. Instead of observ-
ing the infection time of all the nodes u∈V , we assume that
this observation is available only for a subset of nodes Vc⊆V .
The nodes in the set V\Vc can be infected or uninfected, repre-
senting hidden data. Furthermore, for the observed nodes, we
do not observe how they got infected. That is, we do not know
which node activated them. This particular setting is relevant
for offline networks used in metapopulation modeling, where
collecting information about the infection status requires sig-
nificant instrumentation. Thus, our goal is to learn diffusion
parameters based on such incomplete observations.



3 Our Approach
In our approach, to fold the metapopulation model within the
SI model, we use a time indexed graph. If v ∈ V denotes a
node in the original geospatial network, then a node in the
time indexed graph is denoted vt ∈ VT := V × {1, . . . , T},
where T denotes the total length of a cascade. There is an
edge (ut, vt+1), if there exists an edge (u, v) in the original
graph. Figure 1 shows an example for a three node com-
plete graph and 3 time steps. Note that the probability puv for
u 6= v represents colonization of habitat patch v by individ-
uals from patch u, while pvv represents “self-colonization”,
i.e., it is the probability that a population in a given habitat
patch does not go extinct in a given time step. Let Xc

u,t be a
binary random variable such that Xc

u,t = 1 denotes that node
ut is infected in cascade c, and 0 indicates otherwise.

Our strategy is to use the EM algorithm to fill in the values
Xc
u,t for unobserved nodes. We first provide a brief overview

of the EM algorithm and a description of the E and M-steps.
Let X = (Xc

u,t) be the complete vector of random variables,
and let Y and Z be the subvectors of variables corresponding
to the observed and unobserved nodes, respectively. The EM
algorithm iteratively finds parameters θ? that maximize the
following expected log-likelihood:

Q(θ?, θ) =
∑
Z

P (Z|Y ; θ) logP (Z, Y ; θ?) (3)

where θ? denotes the parameters to optimize and θ denotes
the previous iteration’s parameters. In the E-step, we need
to calculate Q(θ?, θ), which is an expected value with re-
spect to the distribution P (Z|Y ; θ). However, often the pos-
terior probability P (Z|Y ; θ) is considered hard or intractable
to calculate as in our case. In the Monte Carlo variant of
EM (MCEM), we generate a certain number of samples of
Z, say n, following the posterior probability P (Z|Y ; θ) us-
ing techniques such as Gibbs sampling. The modified M-step
maximizes the following approximate likelihood w.r.t. θ?:

Q(θ?, θ)=EZ
[
logP (Z, Y ; θ?)

]
≈ 1

n

∑
i=1:n

logP (Zi, Y ; θ?) (4)

where Zi denotes the ith sample generated from P (Z|Y ; θ).

Complete Data Likelihood: For any fixed setting of the
complete random vector X , let Ic(t) denote the set of nodes
ut that were infected (Xc

u,t = 1) at time step t, and let Uc(t)
denote the set of nodes that were not infected at time step t.
Also, let Xc

·,t denote the complete set of variables from time
slice t, and let Xc

−u,t denote all variables other than Xc
u,t at

time t. Because of the Markov structure of the cascade pro-
cess, the conditional distribution of Xc

u,t given all predeces-
sors depends only on Xc

·,t−1:

P
(
Xc
u,t=1 | Xc

·,t−1; θ
)

= 1−
∏

vt−1∈Ic(t−1)

1

1 + e−〈θ,φ(v,u)〉
(5)

The above expression is analogous to saying that the proba-
bility of a node ut being infected is one minus the probability
that this node is never infected. Furthermore, each variable at
time t is conditionally independent all other variables in the
same time slice givenXc

·,t−1. Using this conditional indepen-
dence structure, we can write the joint distribution of a single

complete sample, Xc = (Xc
u,t) for a particular cascade c as:

P (Xc; θ) =

T∏
t=2

[ ∏
ut∈Ic(t)

P
(
Xc
u,t=1 | Xc

·,t−1; θ
)

∏
ut∈Uc(t)

P
(
Xc
u,t=0 | Xc

·,t−1; θ
)]

=

T∏
t=2

[ ∏
ut∈Ic(t)

(
1 −

∏
vt−1∈Ic(t−1)

1

1 + e−〈θ,φ(v,u)〉

)
∏

ut∈Uc(t)

∏
vt−1∈Ic(t−1)

1

1 + e−〈θ,φ(v,u)〉

]
(6)

In the above expression, we are assuming the complete ob-
servability of seed nodes that are infected at time step 1.

3.1 E-Step
Our strategy is to use Gibbs sampling to generate complete
samplesX1, . . . , Xn of the random vectorX by filling in the
values of the hidden variables Z with samples Zi ∼ P (Z |
Y ; θ). The Gibbs sampling works by initializing the hidden
variables to arbitrary values and then stochastically changing
their values one by one in some order. The new value for a
variable Xc

u,t is sampled from the conditional distribution of
that variable given all the other variables. Once the values of
all the variables are recomputed, one iteration of the Gibbs
algorithm is finished. Usually, we collect samples only after
a certain number of iterations, which guarantees the distri-
bution that samples are drawn from is independent from the
initial values of variables. We now derive the conditional dis-
tribution used by Gibbs sampling for our case and show that
it is computationally tractable even for larger networks.

The conditional probability used in Gibbs sampling must
consider not only predecessors but also variables from
subsequent time steps. It can be computed by considering
the Markov blanket of the variable Xc

u,t, as shown below:

P
(
Xc
u,t

Xc
·,t−1, X

c
−u,t, X

c
·,t+1; θ

)
∝

P
(
Xc
u,t

Xc
·,t−1; θ

)
P
(
Xc
·,t+1

Xc
·,t; θ

)
The first factor in the RHS of the above equation is given in
Eq. (5). The second factor is given in the expression below, in
which the set Ic(t) is updated to reflect the particular setting
of Xc

u,t to either 0 or 1:

P
(
Xc
·,t+1

Xc
·,t; θ

)
=

∏
wt+1∈Uc(t+1)

∏
vt∈Ic(t)

1

1 + e−〈θ,φ(v,w)〉

∏
wt+1∈Ic(t+1)

(
1 −

∏
vt∈Ic(t)

1

1 + e−〈θ,φ(v,w)〉

)
(7)

Notice that the complexity of computing the above expression
increases linearly with respect to the number of edges in the
time indexed graph.



3.2 M-Step
Taking the log of the complete joint distribution in Eq. (6),
we get:

P (Xc; θ)=

T∑
t=2

∑
ut∈Ic(t)

log

(
1 −

∏
vt−1∈Ic(t−1)

1

1 + e−〈θ,φ(v,u)〉

)

−
T∑
t=2

∑
ut∈Uc(t)

∑
vt−1∈Ic(t−1)

log(1 + e−〈θ,φ(v,u)〉) (8)

In order to maximize the log-likelihood in Eq. (4), we sum
over different samples for each cascade c. If there are m par-
tially observed cascades with n complete samples obtained
using Gibbs sampling per cascade, then we require mn total
summations of the type in Eq. (8) for the log-likelihood of
Eq. (4). We omit the two outermost summations for brevity.

Nonlinear programming based optimization
Once we represent the log-likelihood as in Eq. (8), we can
maximize it with respect to the parameters θ by using an off-
the-shelf nonlinear programming (NLP) solver. Notice that
this optimization problem is not convex in θ. Therefore, an
NLP solver may increase the log-likelihood with respect to
the previous iteration of EM, but may not maximize it. This
is a common setting for EM, also known as the generalized
EM (GEM) algorithm. Most of the properties of the EM algo-
rithm, such as convergence to a stationary point, are preserved
by the GEM algorithm [Neal and Hinton, 1998].

A disadvantage of the above technique is that while NLP
solvers can work well for moderately sized optimization
problems, their performance degrades significantly when the
parameter space is large or there are additional constraints on
the parameters θ. In contrast, convex optimization solvers are
much more scalable and well understood. Even though the
optimization problem of Eq. (8) is not convex in θ, we show
that it can be reformulated as a difference-of-convex func-
tions (DC) program. The main advantage of DC program-
ming is that we can solve a DC program iteratively using a se-
quence of convex programs. Therefore, this reformulation al-
lows us to use highly efficient convex optimization solvers for
this non-convex problem. Another attractive property of iter-
atively solving a DC program is that the objective improves
monotonically with each iteration, thus fitting well within the
GEM framework.

DC programming based optimization
We now briefly describe DC programming and the concave-
convex procedure (CCCP) used to solve DC programs. Con-
sider the optimization problem: min{g(x) : x ∈ Ω}, where
g(x) = h(x) − f(x) is an arbitrary function with h, f be-
ing real-valued, differentiable convex functions and Ω being
a constraint set. The CCCP method provides an iterative pro-
cedure that generates a sequence of points xl by solving the
following convex program:

xl+1 = arg min{h(x)− xT∇f(xl) : x ∈ Ω} (9)

Each iteration of CCCP monotonically decreases the objec-
tive function g(x) for any Ω [Sriperumbudur and Lanckriet,
2009]. CCCP was originally proposed for Ω that is described

by linear equality constraints, but Sriperumbudur and Lanck-
riet [2009] showed the same idea extends to any constraint
set including non-convex constraints that may themselves be
represented as a DC function. Furthermore, it is guaranteed to
converge to a stationary point where the Karush-Kuhn-Tucker
(KKT) conditions are satisfied [Sriperumbudur and Lanck-
riet, 2009]. Note that the objective g(x) may be non-convex,
which makes CCCP a general approach for non-linear op-
timization. For ease of exposition, we show how the ob-
jective in Eq. (8) fits into a DC programming framework.
The analogous result applies to the log-likelihood function
of Eq. (4) which has the same structure as Eq. (8). For a node
ut ∈ Ic(t), let us use the following substitution:

γ(ut) = 1 −
∏

vt−1∈Ic(t−1)

1

1 + e−〈θ,φ(v,u)〉
(10)

We can write the problem of maximizing (8) for a single com-
plete cascade as following:

min
θ,{γ(ut)}

−
T∑
t=2

∑
ut∈Ic(t)

log γ(ut)

+

T∑
t=2

∑
ut∈Uc(t)

∑
vt−1∈Ic(t−1)

log(1 + e−〈θ,φ(v,u)〉)

Subject to: γ(ut) ≤ 1−
∏

vt−1∈Ic(t−1)

1

1 + e−〈θ,φ(v,u)〉

∀ut ∈ Ic(t),∀t = 2 : T (11)
0 ≤ γ(ut) ≤ 1 ∀ut ∈ Ic(t),∀t = 2 : T (12)

In the above optimization problem, the objective function is
convex. Furthermore, the inequality constraint will become
equality as the objective function is a decreasing function of γ
and the product term, thus satisfying equality constraint (10).
Notice that the constraint function (11) is not convex. Our
strategy is to represent the constraint as a difference of two
convex functions. We manipulate this constraint as following:∏
vt−1∈Ic(t−1)

1

1 + e−〈θ,φ(v,u)〉
≤ 1− γ(ut) (13)

− log(1− γ(ut))−
∑

vt−1∈Ic(t−1)

log(1 + e−〈θ,φ(v,u)〉) ≤ 0 (14)

The last inequality resulted by taking the log of both sides of
the previous inequality. The constraint (14) is a DC constraint
as the first term is convex in γ(ut) and the second term is also
convex due to the log-sum-exp function being convex. Thus,
we now have a DC program with convex objective function
and DC constraints. Each iteration of CCCP entails solving
the following convex program:

min
θ,{γ(ut)}

−
T∑
t=2

∑
ut∈Ic(t)

log γ(ut)

+

T∑
t=2

∑
ut∈Uc(t)

∑
vt−1∈Ic(t−1)

log(1 + e−〈θ,φ(v,u)〉) (15)
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Figure 2: Territories plotted based on their GIS coordinates,
with color showing habitat suitability score, according to
color bar.

The constraint set for the above program is described as
follows:

Subject to:− log(1− γ(ut))−
{
fut

(θl)

+ (θ − θl) · ∇fut
(θl)

}
≤ 0 ∀ut ∈ Ic(t),∀t = 2 : T (16)

0 ≤ γ(ut) ≤ 1 ∀ut ∈ Ic(t),∀t = 2 : T (17)

where θl denotes the previous CCCP iteration’s parameters,
∇fut

(·) is the gradient of the function:

fut(θ) =
∑

vt−1∈Ic(t−1)

log(1 + e−〈θ,φ(v,u)〉) (18)

The convex program (15) can be solved using highly efficient
off-the-shelf solvers such as KNITRO [Byrd et al., 2006].
The optimization program of (15) includes additional vari-
ables γ(·). For efficiency purpose, we can in fact eliminate
these variables using constraint (16). The resulting optimiza-
tion program has θ as the only variables to optimize and is
much more compact. Details are omitted for brevity.

4 Experiments
We used a publicly available conservation planning bench-
mark which represents a geographical region on the coast of
North Carolina [Ahmadizadeh et al., 2010]. The conservation
target species is the Red-cockaded Woodpecker. The graph
consists of 411 territories or habitat patches. We assume that
the species can move between any two nodes. We simulate
the cascades for 10 time steps, so the resulting time indexed
graph has 4110 nodes and 842550 edges.

For each territory in the network, the GIS coordinates and
the habitat suitability scores are provided. Figure 2 shows
all the territories and their habitat suitability scores in color.
With this information, the features φ(v, u) are defined as
〈1, dist(v, u), suit(u)〉, where dist(v, u) is the distance be-
tween territories v and u, and suit(u) is the suitability score
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Figure 3: Relative estimated parameter errors for 411 territo-
ries with different amounts of missing data, using 10 cascades
and 10 samples per cascade.

of territory u. Therefore, there are three parameters in θ =
〈θ1, θ2, θ3〉, one per feature. To generate the observations, we
choose a value for θ and simulate the diffusion process for
10 time steps. The signs of the individual parameters in θ
are chosen to realistically model the problem at hand, so the
colonization probability between two patches increases as the
suitability of the target patch increases, and decreases as the
distance between patches increases. Furthermore, we make
sure that the resulting probabilities are distributed between 0
and 1 so that there is sufficient stochasticity in the edge trans-
mission probabilities to make the problem challenging. The
M-step optimization was done using nonlinear programming,
unless stated otherwise.

Each simulation phase generates one complete cascade us-
ing the true parameters θ. Depending on how much missing
data is desired, we randomly choose the appropriate number
of observations from each complete cascade and make them
available for learning. We evaluate our algorithm by trying
to learn the correct parameters under different settings, using
the observed data and starting from a random initialization of
parameters θ. With a limit of 20 iterations, EM converged
in almost every case. The relative parameter estimate error
shown in different plots is computed as follows:

1

3

3∑
i=1

∣∣∣∣θestimatei − θtruei

θtruei

∣∣∣∣.
We describe below different sets of experiments, designed to
assess the characteristics of our algorithm.

How much missing data can the algorithm tolerate?
We first test our algorithm on the complete 411-node graph.
For this set of experiments, we vary the percentage of miss-
ing data and test its effects on the accuracy of the MCEM
algorithm. Figure 3 shows the relative estimated parameter
errors for the 411 node network with respect to varying miss-
ing data percentage. It is encouraging to see that with up to
80% missing data, implying 329 unobservable nodes out of
411 per time step, our method is still able to learn the true pa-
rameters accurately. It is also interesting to see that the esti-
mation becomes arbitrary with 90% missing data and MCEM



1 2 3 4 5 6 7 8 9 10
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

200 Territories
↓

100 Territories →R
e
la
t
iv
e
P
a
r
a
m
e
t
e
r
E
s
t
im

a
t
e
E
r
r
o
r

Number of Cascades

Figure 4: Relative estimated parameter errors for different
number of cascades, using 10 samples per cascade with 70%
missing data.
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Figure 5: Relative estimated parameter errors for different
initial parameters, using 10 cascades, 10 samples per cascade
with 50% missing data. Each line represents a different ini-
tialization.

fails to converge to a good setting within the fixed number of
iterations.

How much data is needed to yield a good estimate?
This set of experiments is designed to test the number of (par-
tially) observed cascades needed to accurately estimate the
parameters. An underlying observation is that a single cas-
cade may not provide enough information, therefore, multi-
ple cascades are needed. Netrapalli and Sanghavi [2012] pro-
vide information-theoretic bounds on the number of cascades
needed to learn a social network accurately. While their re-
sults are not directly applicable to our setting, we still empir-
ically test the number of cascades required for reliable learn-
ing. To make the problem challenging, we randomly extract
100- and 200-node networks from the original network and
simulate the diffusion on these smaller sized networks. The
intuition is that the effect of the number of cascades will be
more pronounced on a smaller network, where fewer obser-
vations are available for learning than the complete 411 node
network. We used a fixed setting of 70% missing data in these
experiments. Figure 4 plots the relative estimation error with
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Figure 6: Runtime for different number of cascades, using 10
samples per cascade with 50% missing data.

respect to the number of cascades. Each data point is an av-
erage of 10 trials in order to decrease the noise. The results
show that learning is generally more accurate with more cas-
cades. As the number of cascades increases, the accuracy also
increases, albeit slowly after the first few cascades and with
some fluctuation.

How robust is MCEM to initializations?
A critical factor for the MCEM algorithm is the initial param-
eter setting. In this set of experiments, we test the robustness
of MCEM in this respect. Figure 5 plots the relative esti-
mation errors for each MCEM iteration for different random
initial parameters (a total of 18 settings) for 100 territories
and 200 territories. In both the cases, the relative error uni-
formly converges to 0.05 after around 6 iterations. The results
show that our technique is able to robustly recover the actual
parameter starting with different arbitrary initializations.

How does MCEM scale with respect to runtime?
In this set of experiments, we test the execution time of the
MCEM algorithm. Figure 6 plots the runtime with respect
to different number of cascades for 100- and 200-node net-
works. For both of these network sizes, the total runtime in-
creases linearly with the number of cascades. The larger 200-
node network requires more runtime as the number of edges
and the sampling complexity increase quadratically with the
number of nodes. Moreover, the size of the optimization
problem also increases, leading to higher runtime in that case.

Table 1 shows the runtime of MCEM for the largest 441-
node network with different amounts of missing data. We
show the time required for the E and M steps separately. In-
terestingly, while the time of the E step increases linearly
with the amount of missing data, the time for the M step re-
mains nearly constant. This is expected, because the number
of Gibbs iterations is proportional to the number of unob-
served nodes, while the size of the optimization problem in
the M step is proportional the total number of variables. Nev-
ertheless, it is very useful to note that when the percentage
of missing data is more than 40%, the E-step dominates the
runtime. Therefore, for larger networks, developing efficient
techniques for performing the E-step is going to be the key
for scalability.



Missing Data Runtime (sec)
Rate E-step M-step Total
0.1 105 388 9877
0.2 206 378 11700
0.3 314 384 13983
0.4 417 378 15915
0.5 529 363 17854
0.6 631 360 19831
0.7 734 382 22333
0.8 823 352 23534
0.9 809 220 20610

Table 1: Runtime for 411 territories with different amounts of
missing data, using 10 cascades and 10 samples per cascade.
The runtime in the E-step and M-step columns is average run-
time per iteration.

Active Nodes Estimation Error
0− 15% 15.4%

16− 30% 3.9%
31− 45% 4.8%
46− 60% 3.6%
61− 75% 4.3%
76− 90% 6.2%

Table 2: Relative parameter estimation errors for different
types of diffusion strength, measured by percentage of active
nodes after 10 time steps.

How does the strength of diffusion affect MCEM?
We now discuss the relative error achieved by MCEM for dif-
ferent types of diffusion models. We measure the strength of
a particular cascade by measuring the number of active nodes
after 10 time steps starting with 10% seeds. We generated a
number of diffusion parameters covering a range of strengths
from weak to aggressive diffusion. We used the largest 411
node network in these experiments. For each cascade, 80%
of data was randomly chosen to be missing.

Table 2 shows a broad categorization of different cascades
from weak diffusion (0 − 15% active nodes) to aggressive
diffusion (76− 90% active nodes). The table shows the aver-
age parameter estimation error calculated based on 5 random
cases per entry. We can see clearly that MCEM performs rea-
sonably well for all the settings. For the weak diffusion set-
ting (0 − 15%), the percentage error is the highest (≈ 15%).
This is expected as for weak diffusion, there are too few ac-
tivations to provide enough data to learn the parameters reli-
ably. For the rest of the settings, the error is well below 10%.

How does DC programming scale?
Figure 7 shows the parameter estimation error for the 411-
node complete network with respect to the number of iter-
ations of CCCP. For each M-step, we use 40 iterations of
CCCP. Each blue dot in the figure denotes a point when a new
E-step starts. As expected, CCCP monotonically improves
the parameters and provides an error of only about 6% after 5
EM iterations. However, we did not see improvement in the
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Figure 7: Relative estimated parameter errors using CCCP,
with 10 cascades, 10 samples per cascade, 50% missing data.
The blue points indicate when an E-step is finished.

total runtime while using CCCP over the nonlinear program-
ming (NLP) based M-step. We believe the reason is that in
the NLP, there are only 3 variables and importantly, no con-
straints. The objective function contains many terms involv-
ing these 3 variables. Therefore, the NLP solvers are able to
efficiently handle this moderately sized program. We still be-
lieve that for problems which have richer parameter space and
additional constraints on the parameters, using convex opti-
mization solvers within CCCP is going to be advantageous
relative to NLP.

5 Conclusion
We have addressed the problem of learning the underlying
parameters that govern the diffusion process over a network.
We examined the diffusion process in the context of offline
networks used for modeling the spread of wildlife or the
metapopulation modeling. The key ingredient to learning
the underlying parameters is the availability of information
about when different nodes become active. Unlike previous
works, our technique can tolerate missing observations for
some nodes in the network. We highlighted how this setting
is particularly relevant for metapopulation modeling. We de-
veloped the EM algorithm to address learning with such miss-
ing data. To address the intractability of the E and M steps,
we used a number of techniques such as Gibbs sampling to
compute the expectations, nonlinear programming and DC
programming for optimization in the M-step.

Our results on a real-world Red-cockaded Woodpecker
conservation problem show that our technique is highly ro-
bust and accurately learns parameters in various settings, even
with more than 80% missing data. Moreover, the approach
provides consistently good results for a wide range of diffu-
sion models with different strengths of influence.
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