75 research outputs found

    Parameter Estimation for Personalization of Liver Tumor Radiofrequency Ablation

    Get PDF
    International audienceMathematical modeling has the potential to assist radiofrequency ablation (RFA) of tumors as it enables prediction of the extent of ablation. However, the accuracy of the simulation is challenged by the material properties since they are patient-specific, temperature and space dependent. In this paper, we present a framework for patient specific radiofrequency ablation modeling of multiple lesions in the case of metastatic diseases. The proposed forward model is based upon a computational model of heat diffusion, cellular necrosis and blood flow through vessels and liver which relies on patient images. We estimate the most sensitive material parameters, those need to be personalized from the available clinical imaging and data. The selected parameters are then estimated using inverse modeling such that the point to-mesh distance between the computed necrotic area and observed lesions is minimized. Based on the personalized parameters, the ablation of the remaining lesions are predicted. The framework is applied to a dataset of seven lesions from three patients including pre- and post-operative CT images. In each case, the parameters were estimated on one tumor and RFA is simulated on the other tumor(s) using these personalized parameters, assuming the parameters to be spatially invariant within the same patient. Results showed significantly good correlation between predicted and actual ablation extent (average point-to-mesh errors of 4.03 mm)

    Modélisation de l’ablation radiofréquence pour la planification de la résection de tumeurs abdominales

    Get PDF
    The outcome of radiofrequency ablation (RFA) of abdominal tumors is challenged by the presence of blood vessels and time-varying thermal conductivity, which make patient-specific planning extremely difficult. By providing predictive tools, biophysical models may help clinicians to plan and guide the procedure for an effective treatment. We introduce a detailed computational model of the biophysical mechanisms involved in RFA of hepatic tumors such as heat diffusion and cellular necrosis. It simulates the extent of ablated tissue based on medical images, from which patient-specific models of the liver, visible vessels and tumors are segmented. In this thesis, a new approach for solving these partial differential equations based on the Lattice Boltzmann Method is introduced. The model is first evaluated against clinical data of patients who underwent RFA of liver tumors. Then, a comprehensive pre-clinical experiment that combines multi-modal, pre- and post-operative anatomical and functional images, as well as the interventional monitoring of the temperature and delivered power is presented. This enables an end-to-end validation framework that considers the most comprehensive data set for model validation. Then, we automatically estimate patient-specific parameters to better predict the ablated tissue. This personalization strategy has been validated on 7 ablations from 3 clinical cases. From the pre-clinical study, we can go further in the personalization by comparing the simulated temperature and delivered power with the actual measurements during the procedure. These contributions have led to promising results, and open new perspectives in RFA guidance and planning.L'ablation par radiofréquence (ARF) de tumeurs abdominales est rendue difficile par l’influence des vaisseaux sanguins et les variations de la conductivité thermique, compliquant la planification spécifique à un patient donné. En fournissant des outils prédictifs, les modèles biophysiques pourraient aider les cliniciens à planifier et guider efficacement la procédure. Nous introduisons un modèle mathématique détaillé des mécanismes impliqués dans l’ARF des tumeurs du foie comme la diffusion de la chaleur et la nécrose cellulaire. Il simule l’étendue de l’ablation à partir d’images médicales, d’après lesquelles des modèles personnalisés du foie, des vaisseaux visibles et des tumeurs sont segmentés. Dans cette thèse, une nouvelle approche pour résoudre ces équations basée sur la méthode de Lattice Boltzmann est introduite. Le modèle est d’abord évalué sur des données de patients qui ont subi une ARF de tumeurs du foie. Ensuite, un protocole expérimental combinant des images multi-modales, anatomiques et fonctionnelles pré- et post-opératoires, ainsi que le suivi de la température et de la puissance délivrée pendant l'intervention est présenté. Il permet une validation totale du modèle qui considère des données les plus complètes possibles. Enfin, nous estimons automatiquement des paramètres personnalisés pour mieux prédire l'étendu de l’ablation. Cette stratégie a été validée sur 7 ablations dans 3 cas cliniques. A partir de l'étude préclinique, la personnalisation est améliorée en comparant les simulations avec les mesures faites durant la procédure. Ces contributions ont abouti à des résultats prometteurs, et ouvrent de nouvelles perspectives pour planifier et guider l’ARF

    Challenges to Validate Multi-physics Model of Liver Tumor Radiofrequency Ablation from Pre-clinical Data

    Get PDF
    International audienceThe planning and interventional guidance of liver tumor ra-diofrequency ablation (RFA) is difficult due to the cooling effect of large vessels and the large variability of tissue parameters. Subject-specific modeling of RFA is challenging as it requires the knowledge of model geometry and hemodynamics as well as the simulation of heat transfer and cell death mechanisms. In this paper, we propose to validate such a model from pre-operative multi-modal images and intra-operative signals (temperature and power) measured by the ablation device itself. In particular , the RFA computation becomes subject-specific after three levels of personalization: anatomical, heat transfer and a novel cellular necro-sis model. We propose an end-to-end pre-clinical validation framework that considers the most comprehensive dataset for model validation. This framework can also be used for parameter estimation and we evaluate its predictive power in order to fully assess the possibility to personalize our model in the future. Such a framework would therefore not require any necrosis information, thus better suited for clinical applications. We evaluated our approach on seven ablations from three healthy pigs. The predictive power of the model was tested: a mean point to mesh error between predicted and actual ablation extent of 3.5 mm was achieved

    Comprehensive Pre-Clinical Evaluation of a Multi-physics Model of Liver Tumor Radiofrequency Ablation

    Get PDF
    International audiencePurpose: We aim at developing a framework for the validation of a subject-specific multi-physics model of liver tumor radiofrequency ablation (RFA). Methods: The RFA computation becomes subject-specific after several levels of personalization: geometrical and biophysical (hemodynamics, heat transfer and an extended cellular necrosis model). We present a comprehensive experimental setup combining multi-modal, pre-and post-operative anatomical and functional images, as well as the interventional monitoring of intra-operative signals: the temperature and delivered power. Results: To exploit this data set, an efficient processing pipeline is introduced, which copes with image noise, variable resolution and anisotropy. The validation study includes twelve ablations from five healthy pig livers: a mean point-to-mesh error between predicted and actual ablation extent of 5.3 ± 3.6 mm is achieved. Conclusion: This enables an end-to-end pre-clinical validation framework that considers the available data set

    RFA Guardian: Comprehensive Simulation of Radiofrequency Ablation Treatment of Liver Tumors

    Get PDF
    The RFA Guardian is a comprehensive application for high-performance patient-specific simulation of radiofrequency ablation of liver tumors. We address a wide range of usage scenarios. These include pre-interventional planning, sampling of the parameter space for uncertainty estimation, treatment evaluation and, in the worst case, failure analysis. The RFA Guardian is the first of its kind that exhibits sufficient performance for simulating treatment outcomes during the intervention. We achieve this by combining a large number of high-performance image processing, biomechanical simulation and visualization techniques into a generalized technical workflow. Further, we wrap the feature set into a single, integrated application, which exploits all available resources of standard consumer hardware, including massively parallel computing on graphics processing units. This allows us to predict or reproduce treatment outcomes on a single personal computer with high computational performance and high accuracy. The resulting low demand for infrastructure enables easy and cost-efficient integration into the clinical routine. We present a number of evaluation cases from the clinical practice where users performed the whole technical workflow from patient-specific modeling to final validation and highlight the opportunities arising from our fast, accurate prediction techniques

    Preoperative trajectory planning for percutaneous procedures in deformable environments

    Get PDF
    International audienceIn image-guided percutaneous interventions, a precise planning of the needle path is a key factor to a successful intervention. In this paper we propose a novel method for computing a patient-specific optimal path for such interventions, accounting for both the deformation of the needle and soft tissues due to the insertion of the needle in the body. To achieve this objective, we propose an optimization method for estimating preoperatively a curved trajectory allowing to reach a target even in the case of tissue motion and needle bending. Needle insertions are simulated and regarded as evaluations of the objective function by the iterative planning process. In order to test the planning algorithm, it is coupled with a fast needle insertion simulation involving a flexible needle model and soft tissue finite element modeling, and experimented on the use-case of thermal ablation of liver tumors. Our algorithm has been successfully tested on twelve datasets of patient-specific geometries. Fast convergence to the actual optimal solution has been shown. This method is designed to be adapted to a wide range of percutaneous interventions

    A 3-Dimensional In Silico Test Bed for Radiofrequency Ablation Catheter Design Evaluation and Optimization

    Get PDF
    Atrial fibrillation (AF) is the disordered activation of the atrial myocardium, which is a major cause of stroke. Currently, the most effective, minimally traumatic treatment for AF is percutaneous catheter ablation to isolate arrhythmogenic areas from the rest of the atrium. The standard in vitro evaluation of ablation catheters through lesion studies is a resource intensive effort due to tissue variability and visual measurement methods, necessitating large sample sizes and multiple prototype builds. A computational test bed for ablation catheter evaluation was built in SolidWorks® using the morphology and dimensions of the left atrium adjacent structures. From this geometry, the physical model was built in COMSOL Multiphysics®, where a combination of the laminar fluid flow, electrical currents, and bioheat transfer was used to simulate radiofrequency (RF) tissue ablation. Simulations in simplified 3D geometries led to lesions sizes within the reported ranges from an in-vivo ablation study. However, though the ellipsoid lesion morphologies in the full atrial model were consistent with past lesion studies, perpendicularly oriented catheter tips were associated with decreases of -91.3% and -70.0% in lesion depth and maximum diameter. On the other hand, tangentially oriented catheter tips produced lesions that were only off by -28.4% and +7.9% for max depth and max diameter. Preliminary investigation into the causes of the discrepancy were performed for fluid velocities, contact area, and other factors. Finally, suggestions for further investigation are provided to aid in determining the root cause of the discrepancy, such that the test bed may be used for other ablation catheter evaluations

    Functionalized Anatomical Models for Computational Life Sciences

    Get PDF
    The advent of detailed computational anatomical models has opened new avenues for computational life sciences (CLS). To date, static models representing the anatomical environment have been used in many applications but are insufficient when the dynamics of the body prevents separation of anatomical geometrical variability from physics and physiology. Obvious examples include the assessment of thermal risks in magnetic resonance imaging and planning for radiofrequency and acoustic cancer treatment, where posture and physiology-related changes in shape (e.g., breathing) or tissue behavior (e.g., thermoregulation) affect the impact. Advanced functionalized anatomical models can overcome these limitations and dramatically broaden the applicability of CLS in basic research, the development of novel devices/therapies, and the assessment of their safety and efficacy. Various forms of functionalization are discussed in this paper: (i) shape parametrization (e.g., heartbeat, population variability), (ii) physical property distributions (e.g., image-based inhomogeneity), (iii) physiological dynamics (e.g., tissue and organ behavior), and (iv) integration of simulation/measurement data (e.g., exposure conditions, “validation evidence” supporting model tuning and validation). Although current model functionalization may only represent a small part of the physiology, it already facilitates the next level of realism by (i) driving consistency among anatomy and different functionalization layers and highlighting dependencies, (ii) enabling third-party use of validated functionalization layers as established simulation tools, and (iii) therefore facilitating their application as building blocks in network or multi-scale computational models. Integration in functionalized anatomical models thus leverages and potentiates the value of sub-models and simulation/measurement data toward ever-increasing simulation realism. In our o2S2PARC platform, we propose to expand the concept of functionalized anatomical models to establish an integration and sharing service for heterogeneous computational models, ranging from the molecular to the organ level. The objective of o2S2PARC is to integrate all models developed within the National Institutes of Health SPARC initiative in a unified anatomical and computational environment, to study the role of the peripheral nervous system in controlling organ physiology. The functionalization concept, as outlined for the o2S2PARC platform, could form the basis for many other application areas of CLS. The relationship to other ongoing initiatives, such as the Physiome Project, is also presented

    Risk Stratification of Thyroid Nodule: From Ultrasound Features to TIRADS

    Get PDF
    Since the 1990s, ultrasound (US) has played a major role in the assessment of thyroid nodules and their risk of malignancy. Over the last decade, the most eminent international societies have published US-based systems for the risk stratification of thyroid lesions, namely, Thyroid Imaging Reporting And Data Systems (TIRADSs). The introduction of TIRADSs into clinical practice has significantly increased the diagnostic power of US to a level approaching that of fine-needle aspiration cytology (FNAC). At present, we are probably approaching a new era in which US could be the primary tool to diagnose thyroid cancer. However, before using US in this new dominant role, we need further proof. This Special Issue, which includes reviews and original articles, aims to pave the way for the future in the field of thyroid US. Highly experienced thyroidologists focused on US are asked to contribute to achieve this goal

    ADAPTIVE MR-GUIDED RADIOTHERAPY: FROM CONCEPT TO ROUTINE PRACTICE

    Get PDF
    • …
    corecore