67,577 research outputs found

    Probabilistic Constraint Logic Programming

    Full text link
    This paper addresses two central problems for probabilistic processing models: parameter estimation from incomplete data and efficient retrieval of most probable analyses. These questions have been answered satisfactorily only for probabilistic regular and context-free models. We address these problems for a more expressive probabilistic constraint logic programming model. We present a log-linear probability model for probabilistic constraint logic programming. On top of this model we define an algorithm to estimate the parameters and to select the properties of log-linear models from incomplete data. This algorithm is an extension of the improved iterative scaling algorithm of Della-Pietra, Della-Pietra, and Lafferty (1995). Our algorithm applies to log-linear models in general and is accompanied with suitable approximation methods when applied to large data spaces. Furthermore, we present an approach for searching for most probable analyses of the probabilistic constraint logic programming model. This method can be applied to the ambiguity resolution problem in natural language processing applications.Comment: 35 pages, uses sfbart.cl

    Precise n-gram Probabilities from Stochastic Context-free Grammars

    Full text link
    We present an algorithm for computing n-gram probabilities from stochastic context-free grammars, a procedure that can alleviate some of the standard problems associated with n-grams (estimation from sparse data, lack of linguistic structure, among others). The method operates via the computation of substring expectations, which in turn is accomplished by solving systems of linear equations derived from the grammar. We discuss efficient implementation of the algorithm and report our practical experience with it.Comment: 12 pages, to appear in ACL-9

    Stochastic Attribute-Value Grammars

    Full text link
    Probabilistic analogues of regular and context-free grammars are well-known in computational linguistics, and currently the subject of intensive research. To date, however, no satisfactory probabilistic analogue of attribute-value grammars has been proposed: previous attempts have failed to define a correct parameter-estimation algorithm. In the present paper, I define stochastic attribute-value grammars and give a correct algorithm for estimating their parameters. The estimation algorithm is adapted from Della Pietra, Della Pietra, and Lafferty (1995). To estimate model parameters, it is necessary to compute the expectations of certain functions under random fields. In the application discussed by Della Pietra, Della Pietra, and Lafferty (representing English orthographic constraints), Gibbs sampling can be used to estimate the needed expectations. The fact that attribute-value grammars generate constrained languages makes Gibbs sampling inapplicable, but I show how a variant of Gibbs sampling, the Metropolis-Hastings algorithm, can be used instead.Comment: 23 pages, 21 Postscript figures, uses rotate.st

    Constrained Optimization for a Subset of the Gaussian Parsimonious Clustering Models

    Full text link
    The expectation-maximization (EM) algorithm is an iterative method for finding maximum likelihood estimates when data are incomplete or are treated as being incomplete. The EM algorithm and its variants are commonly used for parameter estimation in applications of mixture models for clustering and classification. This despite the fact that even the Gaussian mixture model likelihood surface contains many local maxima and is singularity riddled. Previous work has focused on circumventing this problem by constraining the smallest eigenvalue of the component covariance matrices. In this paper, we consider constraining the smallest eigenvalue, the largest eigenvalue, and both the smallest and largest within the family setting. Specifically, a subset of the GPCM family is considered for model-based clustering, where we use a re-parameterized version of the famous eigenvalue decomposition of the component covariance matrices. Our approach is illustrated using various experiments with simulated and real data

    A robust approach to model-based classification based on trimming and constraints

    Full text link
    In a standard classification framework a set of trustworthy learning data are employed to build a decision rule, with the final aim of classifying unlabelled units belonging to the test set. Therefore, unreliable labelled observations, namely outliers and data with incorrect labels, can strongly undermine the classifier performance, especially if the training size is small. The present work introduces a robust modification to the Model-Based Classification framework, employing impartial trimming and constraints on the ratio between the maximum and the minimum eigenvalue of the group scatter matrices. The proposed method effectively handles noise presence in both response and exploratory variables, providing reliable classification even when dealing with contaminated datasets. A robust information criterion is proposed for model selection. Experiments on real and simulated data, artificially adulterated, are provided to underline the benefits of the proposed method
    corecore