research

Stochastic Attribute-Value Grammars

Abstract

Probabilistic analogues of regular and context-free grammars are well-known in computational linguistics, and currently the subject of intensive research. To date, however, no satisfactory probabilistic analogue of attribute-value grammars has been proposed: previous attempts have failed to define a correct parameter-estimation algorithm. In the present paper, I define stochastic attribute-value grammars and give a correct algorithm for estimating their parameters. The estimation algorithm is adapted from Della Pietra, Della Pietra, and Lafferty (1995). To estimate model parameters, it is necessary to compute the expectations of certain functions under random fields. In the application discussed by Della Pietra, Della Pietra, and Lafferty (representing English orthographic constraints), Gibbs sampling can be used to estimate the needed expectations. The fact that attribute-value grammars generate constrained languages makes Gibbs sampling inapplicable, but I show how a variant of Gibbs sampling, the Metropolis-Hastings algorithm, can be used instead.Comment: 23 pages, 21 Postscript figures, uses rotate.st

    Similar works

    Full text

    thumbnail-image

    Available Versions