2,342 research outputs found

    Do optimization methods in deep learning applications matter?

    Get PDF
    With advances in deep learning, exponential data growth and increasing model complexity, developing efficient optimization methods are attracting much research attention. Several implementations favor the use of Conjugate Gradient (CG) and Stochastic Gradient Descent (SGD) as being practical and elegant solutions to achieve quick convergence, however, these optimization processes also present many limitations in learning across deep learning applications. Recent research is exploring higher-order optimization functions as better approaches, but these present very complex computational challenges for practical use. Comparing first and higher-order optimization functions, in this paper, our experiments reveal that Levemberg-Marquardt (LM) significantly supersedes optimal convergence but suffers from very large processing time increasing the training complexity of both, classification and reinforcement learning problems. Our experiments compare off-the-shelf optimization functions(CG, SGD, LM and L-BFGS) in standard CIFAR, MNIST, CartPole and FlappyBird experiments.The paper presents arguments on which optimization functions to use and further, which functions would benefit from parallelization efforts to improve pretraining time and learning rate convergence

    Parallel MATALAB Techniques

    Get PDF
    In this chapter, we show why parallel MATLAB is useful, provide a comparison of the different parallel MATLAB choices, and describe a number of applications in Signal and Image Processing: Audio Signal Processing, Synthetic Aperture Radar (SAR) Processing and Superconducting Quantum Interference Filters (SQIFs). Each of these applications have been parallelized using different methods (Task parallel and Data parallel techniques). The applications presented may be considered representative of type of problems faced by signal and image processing researchers. This chapter will also strive to serve as a guide to new signal and image processing parallel programmers, by suggesting a parallelization strategy that can be employed when developing a general parallel algorithm. The objective of this chapter is to help signal and image processing algorithm developers understand the advantages of using parallel MATLAB to tackle larger problems while staying within the powerful environment of MATLAB

    A system for routing arbitrary directed graphs on SIMD architectures

    Get PDF
    There are many problems which can be described in terms of directed graphs that contain a large number of vertices where simple computations occur using data from connecting vertices. A method is given for parallelizing such problems on an SIMD machine model that is bit-serial and uses only nearest neighbor connections for communication. Each vertex of the graph will be assigned to a processor in the machine. Algorithms are given that will be used to implement movement of data along the arcs of the graph. This architecture and algorithms define a system that is relatively simple to build and can do graph processing. All arcs can be transversed in parallel in time O(T), where T is empirically proportional to the diameter of the interconnection network times the average degree of the graph. Modifying or adding a new arc takes the same time as parallel traversal
    corecore