308 research outputs found

    CSWA: Aggregation-Free Spatial-Temporal Community Sensing

    Full text link
    In this paper, we present a novel community sensing paradigm -- {C}ommunity {S}ensing {W}ithout {A}ggregation}. CSWA is designed to obtain the environment information (e.g., air pollution or temperature) in each subarea of the target area, without aggregating sensor and location data collected by community members. CSWA operates on top of a secured peer-to-peer network over the community members and proposes a novel \emph{Decentralized Spatial-Temporal Compressive Sensing} framework based on \emph{Parallelized Stochastic Gradient Descent}. Through learning the \emph{low-rank structure} via distributed optimization, CSWA approximates the value of the sensor data in each subarea (both covered and uncovered) for each sensing cycle using the sensor data locally stored in each member's mobile device. Simulation experiments based on real-world datasets demonstrate that CSWA exhibits low approximation error (i.e., less than 0.2∘0.2 ^\circC in city-wide temperature sensing task and 1010 units of PM2.5 index in urban air pollution sensing) and performs comparably to (sometimes better than) state-of-the-art algorithms based on the data aggregation and centralized computation.Comment: This paper has been accepted by AAAI 2018. First two authors are equally contribute

    EdgeSense: Edge-Mediated Spatial-Temporal Crowdsensing

    Get PDF
    Edge computing recently is increasingly popular due to the growth of data size and the need of sensing with the reduced center. Based on Edge computing architecture, we propose a novel crowdsensing framework called Edge-Mediated Spatial-Temporal Crowdsensing. This algorithm targets on receiving the environment information such as air pollution, temperature, and traffic flow in some parts of the goal area, and does not aggregate sensor data with its location information. Specifically, EdgeSense works on top of a secured peer-To-peer network consisted of participants and propose a novel Decentralized Spatial-Temporal Crowdsensing framework based on Parallelized Stochastic Gradient Descent. To approximate the sensing data in each part of the target area in each sensing cycle, EdgeSense uses the local sensor data in participants\u27 mobile devices to learn the low-rank characteristic and then recovers the sensing data from it. We evaluate the EdgeSense on the real-world data sets (temperature [1] and PM2.5 [2] data sets), where our algorithm can achieve low error in approximation and also can compete with the baseline algorithm which is designed using centralized and aggregated mechanism

    Accelerating recurrent neural network training using sequence bucketing and multi-GPU data parallelization

    Full text link
    An efficient algorithm for recurrent neural network training is presented. The approach increases the training speed for tasks where a length of the input sequence may vary significantly. The proposed approach is based on the optimal batch bucketing by input sequence length and data parallelization on multiple graphical processing units. The baseline training performance without sequence bucketing is compared with the proposed solution for a different number of buckets. An example is given for the online handwriting recognition task using an LSTM recurrent neural network. The evaluation is performed in terms of the wall clock time, number of epochs, and validation loss value.Comment: 4 pages, 5 figures, Comments, 2016 IEEE First International Conference on Data Stream Mining & Processing (DSMP), Lviv, 201

    Balancing the Communication Load of Asynchronously Parallelized Machine Learning Algorithms

    Full text link
    Stochastic Gradient Descent (SGD) is the standard numerical method used to solve the core optimization problem for the vast majority of machine learning (ML) algorithms. In the context of large scale learning, as utilized by many Big Data applications, efficient parallelization of SGD is in the focus of active research. Recently, we were able to show that the asynchronous communication paradigm can be applied to achieve a fast and scalable parallelization of SGD. Asynchronous Stochastic Gradient Descent (ASGD) outperforms other, mostly MapReduce based, parallel algorithms solving large scale machine learning problems. In this paper, we investigate the impact of asynchronous communication frequency and message size on the performance of ASGD applied to large scale ML on HTC cluster and cloud environments. We introduce a novel algorithm for the automatic balancing of the asynchronous communication load, which allows to adapt ASGD to changing network bandwidths and latencies.Comment: arXiv admin note: substantial text overlap with arXiv:1505.0495
    • …
    corecore