67 research outputs found

    Practical Minimum Cut Algorithms

    Full text link
    The minimum cut problem for an undirected edge-weighted graph asks us to divide its set of nodes into two blocks while minimizing the weight sum of the cut edges. Here, we introduce a linear-time algorithm to compute near-minimum cuts. Our algorithm is based on cluster contraction using label propagation and Padberg and Rinaldi's contraction heuristics [SIAM Review, 1991]. We give both sequential and shared-memory parallel implementations of our algorithm. Extensive experiments on both real-world and generated instances show that our algorithm finds the optimal cut on nearly all instances significantly faster than other state-of-the-art algorithms while our error rate is lower than that of other heuristic algorithms. In addition, our parallel algorithm shows good scalability

    A parallel Heap-Cell Method for Eikonal equations

    Full text link
    Numerous applications of Eikonal equations prompted the development of many efficient numerical algorithms. The Heap-Cell Method (HCM) is a recent serial two-scale technique that has been shown to have advantages over other serial state-of-the-art solvers for a wide range of problems. This paper presents a parallelization of HCM for a shared memory architecture. The numerical experiments in R3R^3 show that the parallel HCM exhibits good algorithmic behavior and scales well, resulting in a very fast and practical solver. We further explore the influence on performance and scaling of data precision, early termination criteria, and the hardware architecture. A shorter version of this manuscript (omitting these more detailed tests) has been submitted to SIAM Journal on Scientific Computing in 2012.Comment: (a minor update to address the reviewers' comments) 31 pages; 15 figures; this is an expanded version of a paper accepted by SIAM Journal on Scientific Computin

    Parallelization of Modular Algorithms

    Get PDF
    In this paper we investigate the parallelization of two modular algorithms. In fact, we consider the modular computation of Gr\"obner bases (resp. standard bases) and the modular computation of the associated primes of a zero-dimensional ideal and describe their parallel implementation in SINGULAR. Our modular algorithms to solve problems over Q mainly consist of three parts, solving the problem modulo p for several primes p, lifting the result to Q by applying Chinese remainder resp. rational reconstruction, and a part of verification. Arnold proved using the Hilbert function that the verification part in the modular algorithm to compute Gr\"obner bases can be simplified for homogeneous ideals (cf. \cite{A03}). The idea of the proof could easily be adapted to the local case, i.e. for local orderings and not necessarily homogeneous ideals, using the Hilbert-Samuel function (cf. \cite{Pf07}). In this paper we prove the corresponding theorem for non-homogeneous ideals in case of a global ordering.Comment: 16 page

    Black-Box Parallelization for Machine Learning

    Get PDF
    The landscape of machine learning applications is changing rapidly: large centralized datasets are replaced by high volume, high velocity data streams generated by a vast number of geographically distributed, loosely connected devices, such as mobile phones, smart sensors, autonomous vehicles or industrial machines. Current learning approaches centralize the data and process it in parallel in a cluster or computing center. This has three major disadvantages: (i) it does not scale well with the number of data-generating devices since their growth exceeds that of computing centers, (ii) the communication costs for centralizing the data are prohibitive in many applications, and (iii) it requires sharing potentially privacy-sensitive data. Pushing computation towards the data-generating devices alleviates these problems and allows to employ their otherwise unused computing power. However, current parallel learning approaches are designed for tightly integrated systems with low latency and high bandwidth, not for loosely connected distributed devices. Therefore, I propose a new paradigm for parallelization that treats the learning algorithm as a black box, training local models on distributed devices and aggregating them into a single strong one. Since this requires only exchanging models instead of actual data, the approach is highly scalable, communication-efficient, and privacy-preserving. Following this paradigm, this thesis develops black-box parallelizations for two broad classes of learning algorithms. One approach can be applied to incremental learning algorithms, i.e., those that improve a model in iterations. Based on the utility of aggregations it schedules communication dynamically, adapting it to the hardness of the learning problem. In practice, this leads to a reduction in communication by orders of magnitude. It is analyzed for (i) online learning, in particular in the context of in-stream learning, which allows to guarantee optimal regret and for (ii) batch learning based on empirical risk minimization where optimal convergence can be guaranteed. The other approach is applicable to non-incremental algorithms as well. It uses a novel aggregation method based on the Radon point that allows to achieve provably high model quality with only a single aggregation. This is achieved in polylogarithmic runtime on quasi-polynomially many processors. This relates parallel machine learning to Nick's class of parallel decision problems and is a step towards answering a fundamental open problem about the abilities and limitations of efficient parallel learning algorithms. An empirical study on real distributed systems confirms the potential of the approaches in realistic application scenarios

    Concepts and Methods from Artificial Intelligence in Modern Information Systems – Contributions to Data-driven Decision-making and Business Processes

    Get PDF
    Today, organizations are facing a variety of challenging, technology-driven developments, three of the most notable ones being the surge in uncertain data, the emergence of unstructured data and a complex, dynamically changing environment. These developments require organizations to transform in order to stay competitive. Artificial Intelligence with its fields decision-making under uncertainty, natural language processing and planning offers valuable concepts and methods to address the developments. The dissertation at hand utilizes and furthers these contributions in three focal points to address research gaps in existing literature and to provide concrete concepts and methods for the support of organizations in the transformation and improvement of data-driven decision-making, business processes and business process management. In particular, the focal points are the assessment of data quality, the analysis of textual data and the automated planning of process models. In regard to data quality assessment, probability-based approaches for measuring consistency and identifying duplicates as well as requirements for data quality metrics are suggested. With respect to analysis of textual data, the dissertation proposes a topic modeling procedure to gain knowledge from CVs as well as a model based on sentiment analysis to explain ratings from customer reviews. Regarding automated planning of process models, concepts and algorithms for an automated construction of parallelizations in process models, an automated adaptation of process models and an automated construction of multi-actor process models are provided

    New Algebraic Formulation of Density Functional Calculation

    Full text link
    This article addresses a fundamental problem faced by the ab initio community: the lack of an effective formalism for the rapid exploration and exchange of new methods. To rectify this, we introduce a novel, basis-set independent, matrix-based formulation of generalized density functional theories which reduces the development, implementation, and dissemination of new ab initio techniques to the derivation and transcription of a few lines of algebra. This new framework enables us to concisely demystify the inner workings of fully functional, highly efficient modern ab initio codes and to give complete instructions for the construction of such for calculations employing arbitrary basis sets. Within this framework, we also discuss in full detail a variety of leading-edge ab initio techniques, minimization algorithms, and highly efficient computational kernels for use with scalar as well as shared and distributed-memory supercomputer architectures
    • …
    corecore