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a b s t r a c t

In this paper we investigate the parallelization of two modular
algorithms. In fact, we consider the modular computation of
Gröbner bases (resp. standard bases) and themodular computation
of the associated primes of a zero-dimensional ideal and describe
their parallel implementation in Singular. Ourmodular algorithms
for solving problems over Q mainly consist of three parts: solving
the problem modulo p for several primes p, lifting the result to
Q by applying the Chinese remainder algorithm (resp. rational
reconstruction), and verification. Arnold proved using the Hilbert
function that the verification part in the modular algorithm for
computing Gröbner bases can be simplified for homogeneous
ideals (cf. Arnold, 2003). The idea of the proof could easily be
adapted to the local case, i.e. for local orderings and not necessarily
homogeneous ideals, using theHilbert–Samuel function (cf. Pfister,
2007). In this paper we prove the corresponding theorem for non-
homogeneous ideals in the case of a global ordering.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

We consider an ideal in a polynomial ring over the rationals. In Section 2 we describe a parallel
modular implementation of the Gröbner basis (resp. standard basis) algorithm. Afterwardswe restrict
ourselves to the case of a zero-dimensional ideal and introduce a parallel modular implementation of
the algorithm for computing the associated primes in Section 3. Finally we give a couple of examples
with corresponding timings and some conclusions in Section 4. Both algorithms are implemented in
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Singular. The Gröbner basis (resp. standard basis) algorithm can be found in the library modstd.lib
and the algorithm for computing the associated primes in assprimeszerodim.lib. They are
included in the release Singular 3-1-2.

The task of computing a Gröbner basis G of an ideal I using modular methods consists of three
steps. In the first step, we compute the Gröbner basis modulo p for sufficiently many primes p and, in
the second step, use the Chinese remainder algorithm and rational reconstruction to obtain a result
over Q. In the third step, we have to verify that the result obtained in this way is correct, i.e. to verify
that I = ⟨G⟩ and G is a Gröbner basis of ⟨G⟩. If this fails we go back to the first step. The third step is
usually at least as time-consuming as the first step. Omitting the third step would produce a Gröbner
basis only with high probability and the result could be wrong in extreme situations. It is known that
some of the commercial computer algebra systems have problems in this direction.2

Arnold proved using the Hilbert function that the verification part in the modular algorithm for
computing Gröbner bases can be simplified for homogeneous ideals (cf. Arnold, 2003): Let I ⊆

Q[x1, . . . , xn] be a homogeneous ideal, > a global monomial ordering and G ⊆ Q[x1, . . . , xn] be a
set of polynomials such that I ⊆ ⟨G⟩, G is a Gröbner basis of ⟨G⟩ and LM(G) = LM(IFp[x1, . . . , xn])
for some prime number p where LM(G) denotes the set of leading monomials of G w.r.t. >; then G
is a Gröbner basis of I . The idea of the proof could easily be adapted to the local case, i.e. for local
orderings and I not necessarily homogeneous, using the Hilbert–Samuel function (cf. Pfister, 2007). In
this paper we prove the corresponding theorem for non-homogeneous ideals in the case of a global
ordering. Two important assumptions of the theorem are the facts that I ⊆ ⟨G⟩ and G is a Gröbner
basis of ⟨G⟩. This verification can be very time-consuming in a negative case. Hence, we use a so-
called pTestSBwhich is one of the new ideas for our algorithm. Thereforewe randomly choose a prime
number pwhich has not been used in the previous computations and perform the verificationmodulo
p. Only if pTestSB is positive do we perform the verification over Q, and the last required condition
that LM(G) = LM(IFp[x1, . . . , xn]) is then automatically fulfilled.

The implementation of our algorithm as in the Singular library implies that we did not change
the kernel routines of Singular. We plan to implement the algorithm in the kernel of Singular in
the future. For this purpose we can apply the ideas of Gräbe (cf. Gräbe, 1993) – using multimodular
coefficients – and Traverso (cf. Traverso, 1989) — using the trace algorithm. The trace algorithm
would speed up the computations in positive characteristic a lot. We compute a Gröbner basis of
an ideal I ⊆ Q[x1, . . . , xn] over Fp[x1, . . . , xn] for a random prime p and keep in mind the zero-
reductions of the s-polynomials such that we do not perform these reductions in any other Gröbner
basis computation over Fq[x1, . . . , xn] for primes q ≠ p. We do not need this information, i.e. the
guarantee that we really obtain a Gröbner basis over Fq[x1, . . . , xn], since we have the verification
step – that the lifted result over Q[x1, . . . , xn] is a Gröbner basis of I – at the end anyway.

Our idea regarding the primary decomposition of a zero-dimensional ideal I ⊆ Q[X] is to compute
the associated primes M1, . . . ,Ms of I and use separators σ1, . . . , σs3 such that the saturation I : σ∞

i
of I w.r.t. σi is the primary ideal corresponding to Mi (cf. Shimoyama and Yokoyama, 1996). The
computation of the associated primes is based on the so-called shape lemma (Proposition 3.1(2)).
Here, one new idea is to choose a generic linear form r = a1x1+· · ·+an−1xn−1+xn with a1, . . . , an−1 ∈

Z and a randomprime p to test whether dimFp(Fp[X]/IFp[X]) = dimFp


Fp[xn]/(ψ(I)Fp[X]∩Fp[xn])


,

i.e. ψ(I)Fp[X] = ⟨x1 − g1(xn), . . . , xn−1 − gn−1(xn), F(xn)⟩ where ψ denotes the linear map defined
by ψ(xi) = xi for i = 1, . . . , n − 1 and ψ(xn) = 2xn − r . If this test called pTestRad is positive,
then the ideal I in Q[X] has the same property with high probability. If the test is negative then
we compute the radical of I using the idea of Krick and Logar (Proposition 3.3(1)) combined with
modular methods, and replace I by

√
I . Afterwards we compute ⟨F⟩ = ⟨I, T − r⟩Q[X,T ] ∩ Q[T ],

2 Let N be the product of all primes smaller than 232 and I = ⟨v + w + x + y + z, vw + wx + xy + yz + vz, vwx + wxy +

xyz + vyz + vwz, vwxy+wxyz + vxyz + vwyz + vwxz, vwxyz +N⟩ ⊆ Q[v,w, x, y, z]. ThenMagma V2.16–11 (64-bit version)
computes an incorrect Gröbner basis; in particular it computes the Gröbner basis of the ideal J = ⟨v + w + x + y + z, vw +

wx + xy + yz + vz, vwx +wxy + xyz + vyz + vwz, vwxy +wxyz + vxyz + vwyz + vwxz, vwxyz⟩ ⊆ Q[v,w, x, y, z] which
obviously differs from I .
3 We call σi a separator w.r.t.Mi if σi /∈ Mi and σi ∈ Mj for j ≠ i.
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again using modular methods, i.e. we compute F (p) such that ⟨F (p)⟩ = ⟨I, T − r⟩Fp[X,T ] ∩ Fp[T ]

and deg(F (p)) = dimQ(Q[X]/I) for sufficiently many primes p, and we use the Chinese remainder
algorithm and rational reconstruction to obtain F ∈ Q[T ]. The verification is the test of whether
F(r) ∈ I and no proper factor of F(r) is in I . If F = F ν11 · · · F νss is the factorization of F in Q[T ] into
irreducible factors then M1 = ⟨I, F1(r)⟩, . . . ,Ms = ⟨I, Fs(r)⟩ are the associated primes of I . The
new ideas in this approach are pTestRad described above and the fact that we do not compute the
associatedprimes in positive characteristic but instead one special generator of the radical, F(r), which
is much easier to control.4

We use the following notation. Let X = {x1, . . . , xn} be a set of variables. We denote by Mon(X)
the set ofmonomials, and byQ[X] the polynomial ring overQ in these n indeterminates. Let S ⊆ Q[X]

be a set of polynomials; then LM(S) := {LM(f ) | f ∈ S} is the set of leading monomials of S.
Given an ideal I ⊆ Q[X] we can always choose a finite set of polynomials FI such that I = ⟨FI⟩. If
I = ⟨f1, . . . , fr⟩ ⊆ Q[X] and p is a prime number which does not divide any denominator of the
coefficients of f1, . . . , fr we will write Ip := ⟨f1 mod p, . . . , fr mod p⟩ ⊆ Fp[X].

2. Computing Gröbner bases using modular methods

In the following we consider an ideal I = ⟨f1, . . . , fr⟩ ⊆ Q[X] together with a monomial ordering
> and set FI = {f1, . . . , fr}. We assume that> is either global or local. Within this section we describe
an algorithm for computing a Gröbner basis resp. a standard basis5 G ⊆ Q[X] of I by using modular
methods.

The basic idea of the algorithm is as follows. Choose a set P of prime numbers, compute standard
bases Gp of Ip ⊆ Fp[X], for every p ∈ P , and finally lift these modular standard bases to a standard
basis G ⊆ Q[X] of I . The lifting process consists of two steps. Firstly, the set GP := {Gp | p ∈ P}

is lifted to GN ⊆ Z/NZ[X] with N :=
∏

p∈P p by applying the Chinese remainder algorithm to the
coefficients of the polynomials occurring in GP . Since GN is uniquely determined modulo N , theory
requires N to be larger than the moduli of all coefficients occurring in a standard basis of I over Q.
This issue is not resolvable a priori and will be discussed later in this section. Secondly, we obtain
G ⊆ Q[X] by pulling back the modular coefficients occurring in GN to rational coefficients via the
Farey rational map.6 This map is guaranteed to be bijective provided that

√
N/2 is larger than the

moduli of all coefficients in G.7 The latter condition on N concerning the Farey rational map obviously
implies the former condition concerning the Chinese remainder algorithm. We consequently define
two corresponding notions that are essential regarding the algorithm.

Definition 2.1. Let G be a standard basis of I .

(1) If Gp is a standard basis of Ip, then the prime number p is called lucky for I if and only if LM(G) =

LM(Gp). Otherwise p is called unlucky for I .
(2) A set P of lucky primes for I is called sufficiently large for I if and only if

∏
p∈P p ≥ max{2 · |c|2 |

c coefficient occurring in G}.

Now we can make the theoretical idea of the algorithm concrete. Consider a sufficiently large set
P of lucky primes for I such that none of these primes divides any coefficient occurring in FI , compute
the set GP , and lift this result to a rational standard basis G of I as mentioned above. More details can
be found in Arnold (2003).

4 The computation of the associated primes in positive characteristic would create similar problems to the factorization
of polynomials: different behaviours of the splitting in different characteristics. Therefore it is easier and faster to compute
F ∈ Q[T ] and factorize this polynomial.
5 For definitions and properties, cf. Greuel and Pfister (2007).
6 Farey fractions refer to rational reconstruction. A definition of Farey fractions and the Farey rational map can be found in

Arnold (2003), Kornerup and Gregory (1983) and Pfister (2007); for remarks concerning the computation, cf. Kornerup and
Gregory (1983).
7 Remarks on the required bound on the coefficients are given in Kornerup and Gregory (1983).
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In practice, we have to handle two difficulties, since naturally the standard basis G of I is a priori
unknown. In fact, it is necessary to ensure that every prime number used is lucky for I , and to decide
whether the chosen set of primes is sufficiently large for I .

Therefore, we fix a natural number s and an arbitrary set of primes P of cardinality s. After having
computed the set of standard bases GP := {Gp | p ∈ P} we delete the unlucky primes in the following
way.

deleteUnluckyPrimesSB: We define an equivalence relation on (GP, P) by (Gp, p) ∼ (Gq, q) :⇐⇒

LM(Gp) = LM(Gq). Then the equivalence class of largest cardinality is stored in (GP, P); the others are
deleted.

With the aid of this method we are able to choose a set of lucky primes with high probability. A
faulty decision will be compensated by subsequent tests.

Since we cannot predict whether a given set of primes P is sufficiently large for I , we have to
proceed by trial and error. Hence,we lift the setGP toG ⊆ Q[X], as per the description at the beginning
of this section, and test whether G is already a standard basis of I . Otherwise we enlarge the set P by
adding s new prime numbers and continue analogously until the test is positive. The test in particular
verifies whether G is a standard basis of ⟨G⟩, but this computation in Q[X] can be very expensive if P
is far away from being sufficiently large for I . Hence, we pre-fix a test in positive characteristic that is
a sufficient criterion if P is not sufficiently large for I .

pTestSB: We randomly choose a prime number p /∈ P such that p does not divide the numerator and
denominator of any coefficient occurring in FI . The test is positive if and only if (G mod p) is a standard
basis of Ip. We explicitly test whether (fi mod p) ∈ ⟨G mod p⟩ for i = 1, . . . , r and (Gmod p) ⊆ std(Ip).8

This test in positive characteristic accelerates the algorithm enormously. It is much faster than that
in characteristic zero since the standard basis computation in pTestSB is as expensive as in any other
positive characteristic, i.e., as any other standard basis computation within the algorithm.

If the pTestSB is negative, then P is not sufficiently large for I , that is, G cannot be a standard basis
of I over Q. Contrariwise, if the pTestSB is positive, then G is most probably a standard basis of I .

Algorithm 1 shows the modular standard basis algorithm.9

Algorithm 1 modStd
Assume that> is either a global or a local monomial ordering.
Input: I ⊆ Q[X].
Output: G ⊆ Q[X], the standard basis of I .

choose P , a list of random primes;
GP = ∅;
loop
for p ∈ P do

compute a standard basis Gp of Ip;
GP = GP ∪ {Gp};

(GP, P) = deleteUnluckyPrimesSB(GP, P);
lift (GP, P) to G ⊆ Q[X] by applying the Chinese remainder algorithm and Farey rational map;
if pTestSB(I,G, P) then

if I ⊆ ⟨G⟩ then
if G is a standard basis of ⟨G⟩ then

return G;
enlarge P;

Remark 2.2. The version of the algorithm presented is just pseudo-code, whereas its implementation
in Singular is optimized. For example, the standard basesGp of Ip ⊆ Fp[X] for p ∈ P are not computed
repeatedly, but stored and reused in further iteration steps.

8 The procedure std is implemented in Singular and computes a Gröbner basis resp. standard basis of the input.
9 The corresponding procedures are implemented in Singular in the library modstd.lib.
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Remark 2.3. Algorithm 1 can easily be parallelized in the following way:

(1) Compute the standard bases Gp in parallel.
(2) Parallelize the final tests:

• Check whether I ⊆ ⟨G⟩ by checking whether f ∈ ⟨G⟩ for all f ∈ FI .
• Check whether G is a standard basis of ⟨G⟩ by checking whether every s-polynomial not

excluded by well-known criteria vanishes by reduction w.r.t. G.

Algorithm1 terminates by construction, and its correctness is guaranteed by the following theorem
which is proven in Arnold (2003) in the case where I is homogeneous, or in Pfister (2007) in the
case where the ordering is local. The case where the ordering is global follows by using weighted
homogenization as in Theorem 7.5.1 of Greuel and Pfister (2007).

Theorem 2.4. Let G ⊆ Q[X] be a set of polynomials such that LM(G) = LM(Gp) where Gp is a standard
basis of Ip for some prime number p, G is a standard basis of ⟨G⟩ and I ⊆ ⟨G⟩. Then I = ⟨G⟩.

Note that the first condition follows from a positive result of pTestSBwhereas the second and third
condition are verified explicitly at the end of the algorithm.

Proof of Theorem 2.4. Weassume that> is a globalmonomial ordering. Theproof for a local ordering
is similar. Let FI = {f1, . . . , fr} ⊆ Q[X] such that I = ⟨FI⟩ and G = {g1, . . . , gs} ⊆ Q[X]. Since G is a
standard basis of ⟨G⟩ w.r.t. > and I ⊆ ⟨G⟩, there exist for each i = 1, . . . , r polynomials ξij ∈ Q[X]

such that

fi =

s−
j=1

ξijgj satisfying LM>(fi) ≥ LM>(ξijgj) for all j = 1, . . . , s.

Due to Corollary 1.7.9 of Greuel and Pfister (2007) there exists a finite set M ⊆ Mon(X) with the
following property: Let >′ be any monomial ordering on Mon(X) coinciding with > on M; then
LM>(G) = LM>′(G) and G is also a standard basis of ⟨G⟩ w.r.t.>′.

Moreover, due to Lemma 1.2.11 resp. Exercise 1.7.17 of Greuel and Pfister (2007) we possibly
enlarge the set M and choose some w = (w1, . . . , wn) ∈ Zn

>0 such that>=>w on M , i.e. LM>(G) =

LM>w (G) (resp. G is a standard basis of ⟨G⟩ w.r.t.>w), and10

w-deg

LM>w (fi)


> w-deg


LM>w (tail(fi))


,

w-deg

LM>w (gj)


> w-deg


LM>w (tail(gj))


,

w-deg

LM>w (ξijgj)


> w-deg


LM>w (tail(ξijgj))


,

for all i = 1, . . . , r and j = 1, . . . , s.
We consider on Q[X, t] the weighted degree ordering with weight vector (w1, . . . , wn, 1) refined

by>w onQ[X] and denote it also by>w . For f ∈ Q[X] let f h = tw-deg(f )
·f (x1/tw1 , . . . , xn/twn) be the

weighted homogenization of f w.r.t. t . We set F I :=

f h1 , . . . , f

h
r


, I :=


F I


and G :=


gh
1 , . . . , g

h
s


.

Then Proposition 7.5.3 of Greuel and Pfister (2007) guarantees that G is a standard basis of

G


and

since LM>w (G) = LM>w (Gp) it also holds by construction that LM>w (G) = LM>w (Gp). Now let
i ∈ {1, . . . , r}; then fi =

∑s
j=1 ξijgj, satisfying LM>w (fi) ≥w LM>w (ξijgj) for all j = 1, . . . , s. This

implies w-deg(fi) ≥ w-deg(ξijgj) for all j = 1, . . . , s by the choice ofw ∈ Zn
>0. Consequently we have

tw-deg(fi)f
 x1
tw1

, . . . ,
xn
twn


=

s−
j=1

tw-deg(fi)ξij
 x1
tw1

, . . . ,
xn
twn


gj

 x1
tw1

, . . . ,
xn
twn


∈


G


,

and thus f hi ∈

G


or I ⊆


G


, since i ∈ {1, . . . , r} was arbitrarily chosen.

10 For a polynomial f ∈ Q[X], we define by tail(f ) := f − LM(f ) the tail of f ; cf. Greuel and Pfister (2007).
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It remains to prove that I =

G


. Let n ∈ N. We know that Ip =


Gp


due to the fact that

LM>w (G) = LM>w (Gp), so in particular it holds that HF Ip(n) = HF⟨Gp⟩(n) = HF⟨G ⟩(n) for the
corresponding Hilbert functions. On the other hand we have

HF I(n) ≤ HF Ip = HF⟨G ⟩(n) ≤ HF I(n) < ∞,

where the second inequality is true since I ⊆

G


. The first inequality follows from the fact that

dimQ(I[n]) ≥ dimFp(Ip[n]), where I[n] resp. Ip[n]denotes the vector space generated by all (weighted)
homogeneous polynomials of degree n. Namely we can find a Q-basis of I[n] of polynomials in
Z[X, t] ∩ I which induces generators of Ip[n]. �

Remark 2.5. Algorithm 1 is also applicable without applying the final tests, i.e. skipping the verifi-
cation that I ⊆ ⟨G⟩ and G is a standard basis of ⟨G⟩. In this case the algorithm is probabilistic, i.e.
the output G is a standard basis of the input I , only with high probability. This usually accelerates the
algorithm enormously. Note that the probabilistic algorithm works for any ordering, i.e. also for the
so-calledmixed ordering. In the case of amixed ordering one could homogenize the ideal I , compute a
standard basis usingmodStd and dehomogenize afterwards. Experiments showed that this is usually
not efficient since the standard basis of the homogenized input often has many more elements than
the standard basis of the ideal that we started with.

3. A modular approach to primary decomposition

In the following let I ⊆ Q[X] be a zero-dimensional ideal and d := dimQ(Q[X]/I). Within this
section we describe an algorithm for computing the associated primes of I using modular methods. In
conclusion, we make remarks on how to achieve the corresponding primary ideals starting from the
associated primes of I .

The followingwell-known proposition (cf. Gianni et al., 1988 or Greuel and Pfister, 2007) describes
how to compute the associated prime ideals of a radical ideal over Q. Note that these results are also
valid for perfect infinite fields.

Proposition 3.1. Let I ⊆ Q[X] be a radical ideal.

(1) Let ⟨F⟩ = I ∩ Q[xn] and assume deg(F) = dimQ(Q[X]/I). Let F = F1 · · · Fs be the factorization of F
into irreducible factors over Q. Then I =

s
i=1⟨I, Fi⟩ and ⟨I, Fi⟩ is prime for i = 1, . . . , s.

(2) There exists a non-empty Zariski open subset U ⊆ Qn−1 such that for all a = (a1, . . . , an−1) ∈ U the
linear coordinate change ϕa defined by ϕa(xi) = xi for i = 1, . . . , n−1 and ϕa(xn) = xn +

∑n−1
i=1 aixi

satisfies

dimQ

Q[X]/ϕa(I)


= dimQ


Q[xn]/(ϕa(I) ∩ Q[xn])


.

Corollary 3.2. Let F ∈ Q[T ], T a variable, be square-free and r = xn +
∑n−1

i=1 aixi with a1, . . . , an−1 ∈ Z
such that deg(F) = dimQ(Q[X]/I), and F(r) ∈ I but no proper factor of F(r) is in I; then I is a radical
ideal. Let F = F1 · · · Fs be the factorization of F into irreducible factors over Q. Then I =

s
i=1⟨I, Fi(r)⟩

and ⟨I, Fi(r)⟩ is prime for i = 1, . . . , s.

Proof. Using a linear change of variables we may assume that r = xn. Since no proper factor
of F(r) is in I we obtain ⟨F(xn)⟩ = I ∩ Q[xn]. Since deg(F) = dimQ(Q[X]/I) we have I =

⟨x1 − h1(xn), . . . , xn−1 − hn−1(xn), F(xn)⟩ for suitable h1, . . . , hn−1 ∈ Q[xn]. Thus, I is radical because
F is square-free. The rest is an immediate consequence of Proposition 3.1(1). �

Consequently, for the computation of the primary decomposition, we first have to establish
whether I is already radical. Therefore we choose a generic linear form r = a1x1 +· · ·+an−1xn−1 + xn
with a1, . . . , an−1 ∈ Z, and use a test in positive characteristic, similarly to Section 2.

pTestRad:We randomly choose a prime number p such that dimFp(Fp[X]/Ip) = d. Let ϕ : Fp[T ] −→

Fp[X] be defined byϕ(T ) = r mod p (cf. Lemma3.6(1)) and

Fp


:= ϕ−1(Ip).We testwhetherdeg(Fp) = d.
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In the case of a negative result of the test there is a high probability that the ideal is not radical
(cf. Proposition 3.1(2)) and we compute the radical using modular methods. The computation of
the radical is usually much more time-consuming than that of pTestRad even if the ideal is already
radical. The following proposition (cf. Krick and Logar, 1991; Greuel and Pfister, 2007) is the basis for
computing the radical of a zero-dimensional ideal.

Proposition 3.3. Let I ⊆ Q[X] be a zero-dimensional ideal and ⟨fi⟩ = I ∩ Q[xi] for i = 1, . . . , n.
Moreover, let gi be the square-free part of fi. Then the following hold.

(1)
√
I = I + ⟨g1, . . . , gn⟩.

(2) If deg(fn) = dimQ(Q[X]/I) then
√
I = ⟨I, gn⟩.

Proof. Part (1) of the proposition is proved in Krick and Logar (1991). For part (2) we notice that if
deg(fn) = dimQ(Q[X]/I) then there exist h1, . . . , hn−1 ∈ Q[xn] such that {x1−h1, . . . , xn−1−hn−1, fn}
is a Gröbner basis of I w.r.t. the lexicographical ordering x1 > · · · > xn. Thus, we have

√
I =

⟨x1 − h1, . . . , xn−1 − hn−1, gn⟩. �

With considerations analogous to those in Section 2, the essential idea of the algorithm for com-
puting the radical of I is as follows. Choose a set P of prime numbers, compute, for every p ∈ P , monic
polynomials f (p)1 , . . . , f (p)n satisfying ⟨f (p)i ⟩ = Ip∩Fp[xi] for i = 1, . . . , n and finally lift these polynomi-
als via the Chinese remainder algorithm and Farey rational map to (f1, . . . , fn) ∈ Q[x1] × · · · × Q[xn].

Definition 3.4. Let (f1, . . . , fn) ∈ Q[x1] × . . .× Q[xn] satisfy ⟨fi⟩ = I ∩ Q[xi] for i = 1, . . . , n.11

(1) If (f (p)1 , . . . , f (p)n ) ∈ Fp[x1] × . . . × Fp[xn] satisfies ⟨f (p)i ⟩ = Ip ∩ Fp[xi] for i = 1, . . . , n, then the
prime number p is called lucky for I if and only if deg(fi) = deg(f (p)i ) for i = 1, . . . , n. Otherwise p
is called unlucky for I .

(2) A set P of lucky primes for I is called sufficiently large for I if and only if
∏

p∈P p ≥ max{2 · |c|2 |

c coefficient occurring in f1, . . . , fn}.

After having computed the set FP := {(f (p)1 , . . . , f (p)n ) | p ∈ P} we delete the unlucky primes in the
following way.

deleteUnluckyPrimesRad: We define an equivalence relation on (FP, P) by (F (p), p) ∼ (F (q), q) :

⇐⇒ deg(f (p)i ) = deg(f (q)i ) for i = 1, . . . , n. Then the equivalence class of largest cardinality is stored in
(FP, P); the others are deleted.

With the aid of this method we are able to choose a set of lucky primes with high probability. A
faulty decision will be compensated by the subsequent test of whether fi ∈ I for i = 1, . . . , n.

Since we cannot predict whether a given set of primes P is sufficiently large for I , we have to
proceed by trial and error, as already described in Section 2.

Algorithm 2 computes the radical of I .12
If the pTestRad is positive then, with high probability, after a generic coordinate change, it holds

that dimQ(Q[xn]/(I ∩ Q[xn])) = d. In this case it is not necessary to compute the radical of I and we
rely on the following corollary.

Corollary 3.5. Let I ⊆ Q[X] be a zero-dimensional ideal and r = xn +
∑n−1

i=1 aixi with a1, . . . , an−1 ∈ Z.
Let F ∈ Q[T ], T a variable, such that deg(F) = dimQ(Q[X]/I) and F(r) ∈ I but no proper factor of F(r)
is in I. Moreover, let H be the square-free part of F . Then

√
I = ⟨I,H(r)⟩.

Proof. The proof is a consequence of Proposition 3.3(2) and Corollary 3.2. �

Consequently we need to obtain a polynomial F ∈ Q[T ] satisfying the required properties of
Corollary 3.2 or Corollary 3.5. The following lemma is helpful in this direction.

11 By abuse of the notation we use the same terminology as in Definition 2.1 since it is always clear from the context which
definition we are referring to.
12 The corresponding procedure is implemented in Singular in the library assprimeszerodim.lib.
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Algorithm 2 zeroRadical
Input: I = ⟨GI⟩ ⊆ Q[X], a zero-dimensional ideal generated by a Gröbner basis GI w.r.t. some global

ordering.
Output: G ⊆ Q[X], a Gröbner basis of the radical of I w.r.t. a degree ordering.

choose P , a list of random primes;
FP = ∅;
loop
for p ∈ P do

compute monic polynomials f (p)i such that

f (p)i


= Ip ∩ Fp[xi] for i = 1, . . . , n;

FP = FP ∪ {(f (p)1 , . . . , f (p)n )};
(FP, P) = deleteUnluckyPrimesRad(FP, P);
lift (FP, P) to (f1, . . . , fn) ∈ Q[x1]× . . .×Q[xn] by applying the Chinese remainder algorithm and
Farey rational map;
use GI to test if fi ∈ I for i = 1, . . . , n;
if fi ∈ I for all i = 1, . . . , n then

exit loop;
enlarge P;

for i = 1, . . . , n do
compute gi, the square-free part of fi;

I = I + ⟨g1, . . . , gn⟩;
compute G ⊆ Z[X], a Q[X]-Gröbner basis of I w.r.t. a degree ordering;13
return G;

Lemma 3.6. Let K be a field,14 and F ∈ K [T ], T a variable, be monic and square-free, and let r =

xn +
∑n−1

i=1 aixi, a1, . . . , an−1 ∈ K, such that deg(F) = dimK (K [X]/I) and F(r) ∈ I but no proper
factor of F(r) is in I.
(1) Let ϕ : K [T ] → K [X] be defined by ϕ(T ) = r. Then ϕ−1(I) = ⟨F⟩.
(2) Let ψ : K [X] → K [X] be defined by ψ(xi) = xi for i = 1, . . . , n − 1 and ψ(xn) = 2xn − r. Then

ψ(I) ∩ K [xn] = ⟨F(xn)⟩.
(3) Let λ : K [X]/I → K [X]/I be the map defined by the multiplication with r, λ(g + I) = r · g + I . Then

F is the characteristic polynomial of λ.
Proof. (1) Since ϕ(F) = F(r) ∈ I we obtain F ∈ ϕ−1(I). Thus we have ⟨F⟩ = ϕ−1(I) because no

proper factor of F(r) is in I .
(2) It holds that F(xn) = ψ(F(r)) ∈ ψ(I) by definition of ψ . The assumption implies that no proper

factor of F(xn) is in ψ(I), i.e. ⟨F(xn)⟩ = ψ(I) ∩ K [xn].
(3) Using the map ψ of (2) we may assume that r = xn. As in the proof of Corollary 3.2 we

obtain I = ⟨x1 − h1, . . . , xn−1 − hn−1, F(xn)⟩ for suitable h1, . . . , hn−1 ∈ K [xn] since deg(F) =

dimK (K [X]/I) = d. Hence, wemay choose {1, xn, . . . , xd−1
n } as a basis of K [X]/I ∼= K [xn]/ ⟨F(xn)⟩,

and obtain the polynomial F to be the characteristic polynomial of the multiplication with xn. �

Lemma 3.6 shows that the approach of Eisenbud, Hunecke, and Vasconcelos (cf. Eisenbud et al.,
1992) using (1) of the lemma, the approach of Gianni, Trager, and Zacharias (cf. Gianni et al., 1988)
using (2) of the lemma and the approach of Monico (cf. Monico, 2002) using (3) of the remark are
in principle the same. The computations for (1) or (2) require Gröbner bases with respect to suitable
block orderings, whereas in (3) we do not need a special ordering for the Gröbner basis but we have
to compute a determinant. All three algorithms are implemented in Singular.
Remark 3.7. We can also compute the polynomial F ∈ Q[T ] usingmodularmethods. For this purpose
we compute F (p) ∈ Fp[T ], monic such that


F (p)


= ker(ϕp), where ϕp : Fp[T ] −→ Fp[X]/Ip,

13 Here we use the procedure modStd as described in Section 2.
14 We substitute Q by an arbitrary field K since we also need the results of Lemma 3.6 for finite fields.
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ϕp(T ) = r mod Ip, for several prime numbers p, and preserve just those F (p) with deg(F (p)) = d.
Afterwards we lift the results to F ∈ Q[T ] by applying the Chinese remainder algorithm and Farey
rational map.

Remark 3.8. If K = C is the field of complex numbers we can use the polynomial F of Corollary 3.2 to
compute the zeros of the ideal I . The zeros of F are the eigenvalues of themultiplicationmap λ defined
in Lemma 3.6. Let λ1, . . . , λd be the (different) eigenvalues of λ; then I =

d
i=1 ⟨I, r − λi⟩. Moreover,

⟨I, r − λi⟩ is a maximal ideal in C[X] representing a zero of I for i = 1, . . . , d.

Referring to Proposition 3.1, Corollary 3.2 and the above considerations, Algorithm 3 computes the
associated primes of I .15

Algorithm 3 assPrimes
Input: I ⊆ Q[X], a zero-dimensional ideal.
Output: L = {M1, . . . ,Ms},Mi prime and

√
I =

s
i=1 Mi.

compute G ⊆ Z[X], a Q[X]-Gröbner basis of I w.r.t. a degree ordering;16
compute d = dimQ(Q[X]/I) using G;
choose a1, . . . , an−1 ∈ Z randomly, and r = a1x1 + . . .+ an−1xn−1 + xn;
if not pTestRad(d, r,G) then

G = zeroRadical(G);
d = dimQ(Q[X]/ ⟨G⟩);

choose P , a list of random primes;
FP = ∅;
l = 0;
loop

for p ∈ P do
compute F (p) ∈ Fp[T ], monic such that


F (p)


= ker(ϕp), whereas ϕp : Fp[T ] −→ Fp[X]/Ip,

ϕp(T ) = r mod Ip;17

if deg(F (p)) = d then
FP = FP ∪ {F (p)};

if #(FP) = l then
G = zeroRadical(G);
d = dimQ(Q[X]/ ⟨G⟩);
choose a1, . . . , an−1 ∈ Z randomly, and r = a1x1 + . . .+ an−1xn−1 + xn;

else
lift (FP, P) to F ∈ Q[T ] by applying the Chinese remainder algorithm and Farey rational map;
factorize F = F ν11 · · · F νss with F1, . . . , Fs irreducible;
compute F(r) and F1(r), . . . , Fs(r);
if F(r) ∈ I then

if no proper factor of F(r) is in I then
return {⟨I, F1(r)⟩, . . . , ⟨I, Fs(r)⟩};

else
choose a non-trivial factor H of F of minimal degree such that H(r) ∈ I;
let Fi1 , . . . , Fit correspond to H;
return assPrimes(


I, Fi1(r)


) ∪ · · · ∪ assPrimes(


I, Fit (r)


);

enlarge P;
l = #(FP);

15 The corresponding procedures are implemented in Singular in the library assprimeszerodim.lib.
16 Here we use the procedure modStd as described in Section 2.
17 All approaches mentioned in Lemma 3.6 are applicable to verify this step.
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Remark 3.9. The versions of Algorithms 2 and 3 presented are just pseudo-code whereas their
implementation in Singular is optimized. For example, the polynomials f (p)i ∈ Fp[xi] and F (p) ∈ Fp[T ]

for p ∈ P are not computed repeatedly, but stored and reused in further iteration steps.

Remark 3.10. Algorithm 2 resp. Algorithm 3 can easily be parallelized by computing the polynomials
f (p)i ∈ Fp[xi] resp. F (p) ∈ Fp[T ] in parallel. Experiments indicate that the difficult and time-consuming
part of Algorithm 3 is the test of whether F(r) ∈ I and the computation of F1(r), . . . , Fs(r). These
s + 1 computations are independent from each other, such that they can also be verified separately
in parallel.

Following the idea of one of the referees, we tried to avoid the computation of F(r) by computing
a Q[X, T ]-Gröbner basis of ⟨I, T − r⟩ w.r.t. an elimination ordering (eliminating X) by using modular
methods (cf. Section 2) and the FGLM algorithm (cf. Faugère et al., 1993). In this case we directly com-
pute ⟨I, T − r⟩Q[X,T ] ∩ Q[T ] = ⟨F⟩ and may consequently omit the verification. Experiments showed
that this is as time-consuming as the method presented in Algorithm 3.

Remark 3.11. Knowing the associated primes, it is easy to compute the primary ideals using the
method of Shimoyama and Yokoyama (cf. Shimoyama and Yokoyama, 1996): Let M1, . . . ,Ms be the
associated primes of the zero-dimensional ideal I and σ1, . . . , σs a system of separators, i.e. σi /∈ Mi
and σi ∈ Mj for j ≠ i; then the saturation of I w.r.t. σi is the primary ideal corresponding to Mi. Each
σi can be chosen as

∏
j≠i mj where mj is an element of a Gröbner basis of Mj which is not in Mi. The

saturation can be computed modularly, like with modStd, and in parallel.

4. Examples, timings and conclusion

In this section we provide examples on which we time the algorithms modStd (cf. Section 2)
resp. assPrimes (cf. Section 3) and their parallelizations as opposed to the usual algorithms std
resp. minAssGTZ18 implemented in Singular. Timings are conducted by using the 32-bit version of
Singular 3-1-2 on an AMDOpteron 6174with 48 CPUs, 800MHz each, 128 GB RAMunder the Gentoo
Linux operating system. All examples are chosen from The SymbolicData Project (cf. Gräbe, 2010).

Remark 4.1. The parallelization of our modular algorithms is attained via multiple processes orga-
nized by Singular library code. Consequently a future aim is to enable parallelization in the kernel
via multiple threads.

We choose the following examples to emphasize the superiority of modular standard basis com-
putation and especially its parallelization:

Example 4.2. Characteristic: 0, ordering: dp,19 Cyclic_8.xml (cf. Björck and Fröberg, 1991).

Example 4.3. Characteristic: 0, ordering: dp, Paris.ilias13.xml (cf. Kotsireas and Lazard, 1999).

Example 4.4. Characteristic: 0, ordering: dp, homog. Cyclic_7.xml (cf. Björck and Fröberg, 1991).

Example 4.5. Characteristic: 0, ordering: ds,20 Steidel_1.xml (cf. Pfister, 2007).

Table 1 summarizes the results where modStd∗(n) denotes the parallelized version of the algo-
rithm applied on n cores. In all tables, the symbol ‘‘-’’ indicates out of memory failures. All timings are
given in seconds.

The basic algorithm std runs out of memory for Examples 4.2 and 4.5. As mentioned in Section 2,
it is possible to parallelize the computation in several parts of the algorithm modStd. In many cases

18 The procedureminAssGTZ is implemented in Singular in the libraryprimdec.lib and computes theminimal associated
prime ideals of the input.
19 Degree reverse lexicographical ordering: Let Xα, Xβ ∈ Mon(X). Xα >dp Xβ :⇐⇒ deg(Xα) > deg(Xβ ) or (deg(Xα) =

deg(Xβ ) and ∃ 1 ≤ i ≤ n : αn = βn, . . . , αi−1 = βi−1, αi < βi), where deg(Xα) = α1 + · · · + αn; cf. Greuel and Pfister (2007).
20 Negative degree reverse lexicographical ordering: Let Xα, Xβ ∈ Mon(X). Xα >ds Xβ :⇐⇒ deg(Xα) < deg(Xβ ) or
(deg(Xα) = deg(Xβ ) and ∃ 1 ≤ i ≤ n : αn = βn, . . . , αi−1 = βi−1, αi < βi), where deg(Xα) = α1 + . . . + αn; cf.
Greuel and Pfister (2007).
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Table 1
Total running times for computing a standard basis of the examples considered via
std, and modStd and its parallelized variant modStd∗(n) for n = 4, 9, 30.
Example std modStd modStd∗(4) modStd∗(9) modStd∗(30)

4.2 – 8271 4120 2927 1138
4.3 37734 1159 676 580 380
4.4 3343 3436 886 408 113
4.5 – 6 3 3 3

Table 2
Running times for modStd and modStd∗(n)with n = 4, 9, 30 without a verification test.
Example modStdw/o ver. modStd∗

w/o ver.(4) modStd∗

w/o ver.(9) modStd∗

w/o ver.(30)

4.2 7929 3751 2698 920
4.3 941 614 552 370
4.4 52 38 31 36
4.5 6 3 3 3

Table 3
Total running times for computing the associated prime ideals of the examples considered via
minAssGTZ, and assPrimes and its parallelized variant assPrimes∗(n) for n = 4, 9.
Example minAssGTZ assPrimes assPrimes∗(4) assPrimes∗(9)

(1) (2) (3) (1) (2) (3) (1) (2) (3)

4.6 – 1 1 0 1 1 1 1 1 1
4.7 – 169 169 188 104 98 104 95 100 105
4.8 – 129 131 230 90 87 114 76 77 103
4.9 189 4 5 5 10 8 8 8 8 8
4.10 589 35 35 35 24 23 19 25 24 25

it turns out that the final test – the verification of whether the lifted set of polynomials includes the
input and is itself a standard basis; see also Remark 2.5 – is a time-consuming part. Therefore we
extract the timings for the computation without the verification test in Table 2, again in seconds.

We consider the following examples for the computation of the associated prime ideals of a given
zero-dimensional ideal:

Example 4.6. Characteristic: 0, ordering: dp, Becker-Niermann.xml (cf. Decker et al., 1998).

Example 4.7. Characteristic: 0, ordering: dp, FourBodyProblem.xml (cf. Bini andMourrain, 2010).

Example 4.8. Characteristic: 0, ordering: dp, Reimer_5.xml (cf. Bini and Mourrain, 2010).

Example 4.9. Characteristic: 0, ordering: lp,21 ZeroDim.example_12.xml (cf. Gräbe, 2010).

Example 4.10. Characteristic: 0, ordering: dp, Cassou_1.xml (cf. Bini and Mourrain, 2010).

Using modular methods via the algorithm assPrimes we apply all three variants mentioned in
Section 3:

(1) the approach of Eisenbud, Hunecke, and Vasconcelos (cf. Eisenbud et al., 1992),
(2) the approach of Gianni, Trager, and Zacharias (cf. Gianni et al., 1988),
(3) the approach of Monico (cf. Monico, 2002).

We summarize the results of the timings in Tables 3 and 4 where assPrimes∗(n) denotes the
parallelized version of the algorithm applied on n cores.

21 Lexicographical ordering: Let Xα, Xβ ∈ Mon(X). Xα >lp Xβ :⇐⇒ ∃ 1 ≤ i ≤ n : α1 = β1, . . . , αi−1 = βi−1, αi > βi; cf.
Greuel and Pfister (2007).
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Table 4
Running times for assPrimes and assPrimes∗(n) with n = 4, 9 without a final
verification step.
Example assPrimesw/o ver. assPrimes∗

w/o ver.(4) assPrimes∗

w/o ver.(9)
(1) (2) (3) (1) (2) (3) (1) (2) (3)

4.6 1 1 0 1 0 0 1 1 1
4.7 15 14 34 7 7 13 5 5 15
4.8 41 37 139 39 38 64 30 26 55
4.9 4 5 5 9 8 8 8 8 8
4.10 7 6 7 5 5 5 5 4 6

The usual algorithm minAssGTZ runs out of memory for Examples 4.6–4.8. Like for the modular
standard basis algorithm, we also list the timings needed for assPrimes and assPrimes∗(n)
without the final verification step – the check of whether F(r) ∈ I and the computation of
F1(r), . . . , Fs(r); see also Remark 3.10 – in Table 4.

Final Remarks and Conclusion 4.11. (1) For the computation of Gröbner bases (resp. standard
bases) of ideals I ⊆ Q[X] w.r.t. global (resp. local) orderings, modStd should be used. This is
usually faster even without parallel computing.

(2) The probabilistic algorithm for computing standard bases works without any restriction on the
ordering. It is much faster than the deterministic one. It can be used to obtain ideas in algebraic
geometry and other fields by computing several examples, like in computations in positive charac-
teristic 20 years ago when computations of standard bases in characteristic zero were impossible
or too slow.

(3) A kernel implementation of modStd could speed up the modular part using the trace algorithm
of Traverso (cf. Traverso, 1989).

(4) We also implemented a variant formodular computing of Gröbner bases using p-adic lifting of the
coefficients of a Gröbner basis modulo p for a random prime p. This requires us to compute the so-
called conversionmatrixmodulo p, i.e. amatrixwhich represents the Gröbner basis in terms of the
generators of the input ideal. It turned out that this is more expensive than using several primes
and the Chinese remainder algorithm combined with rational reconstruction. In addition, we
tested the idea of Gräbe (cf. Gräbe, 1993) for computing the conversionmatrix and a syzygymatrix
for the input, replacing the Chinese remainder algorithm and rational reconstruction by a system
of linear equations with coefficients in Q whose solution gives the unique lifting of the Gröbner
basis. This turned out to be slower than our approach because the computation of the conversion
matrix takes more time than using the Chinese remainder algorithm and rational reconstruction.

(5) An increasing number of cores used during the parallel computation of standard bases or asso-
ciated primes speeds up the computation if the corresponding problem in positive characteristic
takes some time to compute. If the computations in positive characteristic are fast then an in-
creasing number of cores may slow down the computations because of too much overhead.

(6) In the current implementation the Chinese remainder algorithm and Farey fractions are not paral-
lelized. Experiments (e.g. the computation of the Gröbner basis of Cyclic_9) show that the com-
putations in positive characteristic need different amounts of time on different cores. Therefore
one should apply the Chinese remainder algorithm and Farey fractions already to partial results.
This could save about 3% computing time.

(7) For zero-dimensional primary decomposition the modular approach is very efficient. This should
be extended to higher-dimensional ideals.
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