8,089 research outputs found

    Parallel ADMM for robust quadratic optimal resource allocation problems

    Full text link
    An alternating direction method of multipliers (ADMM) solver is described for optimal resource allocation problems with separable convex quadratic costs and constraints and linear coupling constraints. We describe a parallel implementation of the solver on a graphics processing unit (GPU) using a bespoke quartic function minimizer. An application to robust optimal energy management in hybrid electric vehicles is described, and the results of numerical simulations comparing the computation times of the parallel GPU implementation with those of an equivalent serial implementation are presented

    Towards parallelizable sampling-based Nonlinear Model Predictive Control

    Full text link
    This paper proposes a new sampling-based nonlinear model predictive control (MPC) algorithm, with a bound on complexity quadratic in the prediction horizon N and linear in the number of samples. The idea of the proposed algorithm is to use the sequence of predicted inputs from the previous time step as a warm start, and to iteratively update this sequence by changing its elements one by one, starting from the last predicted input and ending with the first predicted input. This strategy, which resembles the dynamic programming principle, allows for parallelization up to a certain level and yields a suboptimal nonlinear MPC algorithm with guaranteed recursive feasibility, stability and improved cost function at every iteration, which is suitable for real-time implementation. The complexity of the algorithm per each time step in the prediction horizon depends only on the horizon, the number of samples and parallel threads, and it is independent of the measured system state. Comparisons with the fmincon nonlinear optimization solver on benchmark examples indicate that as the simulation time progresses, the proposed algorithm converges rapidly to the "optimal" solution, even when using a small number of samples.Comment: 9 pages, 9 pictures, submitted to IFAC World Congress 201

    Parallel and vector computation for stochastic optimal control applications

    Get PDF
    A general method for parallel and vector numerical solutions of stochastic dynamic programming problems is described for optimal control of general nonlinear, continuous time, multibody dynamical systems, perturbed by Poisson as well as Gaussian random white noise. Possible applications include lumped flight dynamics models for uncertain environments, such as large scale and background random atmospheric fluctuations. The numerical formulation is highly suitable for a vector multiprocessor or vectorizing supercomputer, and results exhibit high processor efficiency and numerical stability. Advanced computing techniques, data structures, and hardware help alleviate Bellman's curse of dimensionality in dynamic programming computations

    Supercomputer optimizations for stochastic optimal control applications

    Get PDF
    Supercomputer optimizations for a computational method of solving stochastic, multibody, dynamic programming problems are presented. The computational method is valid for a general class of optimal control problems that are nonlinear, multibody dynamical systems, perturbed by general Markov noise in continuous time, i.e., nonsmooth Gaussian as well as jump Poisson random white noise. Optimization techniques for vector multiprocessors or vectorizing supercomputers include advanced data structures, loop restructuring, loop collapsing, blocking, and compiler directives. These advanced computing techniques and superconducting hardware help alleviate Bellman's curse of dimensionality in dynamic programming computations, by permitting the solution of large multibody problems. Possible applications include lumped flight dynamics models for uncertain environments, such as large scale and background random aerospace fluctuations
    corecore