
,,* ,,>,._ ._
f - , /, .-,

• * , r Z_#_w

Ngi)-e3oo

PARALLEL AND VECTOR COMPUTATION FOR STOCHASTIC

OPTIMAL CONTROL APPLICATIONS

F. B. HANSON

Department of Mathematics, Statistics, and Computer Science

University of Illinois at Chicago

P. O. Box 4348; M/C 249

Chicago, IL 60680
3rd CA CC

Abstract. A general method for parallel and vector numerical solutions of stochastic

dynamic programming problems is described for optimal control of general nonlinear, con-

tinuous time, multibody dynamical systems, perturbed by Poisson as well as Gaussian ran-

dom white noise. Possible applications include lumped flight dynamics models for uncertain

environments, such as large scale and background random atmospheric fluctuations. The

numerical formulation is highly suitable for a vector multiprocessor or vectorizing super-

computer, and results exhibit high processor efficiency and numerical stability. Advanced

computing techniques, data structures, and hardware help alleviate Bellman's curse of di-

mensionality in dynamic programming computations.

1. Introduction. The primary motivation for this research is to provide a provide

a general computational treatment of stochastic optimal control applications in continuous

time. In addition, fast and efficient methods are being developed by the optimization of

stochastic dynamic programming algorithms for larger multibody problems. The optimiza-

tion will help alleviate Bellman's curse o] dimensionality, in that the computational problem

greatly increases as the dimension of the state space increases. Optimization consists of par-

allelization and vectorization techniques to enhance performance on advanced computers,

such as parallel processors and vectorizing supercomputers. General Markov random noise

in continuous time consists of two kinds, Gaussian and Poisson. Gaussian white noise, being

continuous but nonsmooth, is used to model background random fluctuations, such as tur-

bulence and external field variations. Poisson white noise (its frequency spectrum is also flat

like 'Gaussian noise), being discontinuous, is useful for modeling large random fluctuations,

such as shocks, collisions, unexpected external events and large environmental changes. Our

general feedback control approach combines the treatment of both linear and nonlinear (i.e.,

singular and nonsingular) control through the use of small and non-small quadratic costs.

The methods also handle deterministic and stochastic control in the same code, making it

convenient for checking the effects of stochasticity on the application. Some actual appli-

cations are models of resources in an uncertain environment [15], [11], [8]. Some potential

applications are flight dynamics under random wind conditions [2] and other resource models

[12].

The Markov, multibody dynamical system is illustrated in Figure 1 and is governed by

the stochastic differential equation (SDE):

dy(s) = F(y,s,u)ds + G(y,s)dW(s) + H(y,s)dP(s), (1.1)

https://ntrs.nasa.gov/search.jsp?R=19900013691 2020-03-19T22:05:39+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42823590?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CLOC_ P E I P E 2 P E 3
0

LD:

5 481 i

lO

15

20

25

45

5O

55
35R

60 IIR

Fig, 8 Execut ion

_6 Si

image
codes on O_:AR.

PE4

LD8

4

WAIT

......... °

"_Pi_

FCI

_4R

_17

3R

_! I

of

PE5

L03

18R

LD7

17

I./)3

FC4

14R

C!

:25

machine

Measured processing tlma

........ Simulated processing time

(9 clock data transfer)
t

10(; _ -- Simulated processing time

r_, 80 , Before task fusion

t...J

m After task fusion

_ 60
C

cz 40 2

= ""--_ 35.2

28.8
n

2O

0
Number of processors

Fig.9 Parallel processing time

measured on OSCAR and simulated

parallel processing time.

183

" CONTROLS I

[UI(Y, 8)]rex1

STATES _

ENVIRONMENT

[Fi(Y, V,s)]m×l Nonlinearities

[W/(s)]r×l Gaussian Noise

[Pi(s)]q×a Poisson Noise

Feedback in time dt /2

Figure 1: The multibody dynamical system.

y(t) = z; 0 < t < s < tf; y(s) E _D_; u E Z)=,

• where y(s) is the m × 1 multibody state vector at time s starting at time t, u = u(y, s) is

the n × 1 feedback control vector, W is the r-dimensional normalized Gaussian white noise

vector, P is the independent q-dimensional Poisson white noise vector with jump rate vector

[Ai]qxl, F is the m × 1 deterministic nonlinearity vector, G is an m × r diffusion coefficient

array, and H is an m × q Poisson amplitude coefficient array.

The control criterion is the optimal expected cost performance,

V*(x,t) = min [MEANp,w [V[y,s,u,P,W]ly(t) = x]] (1.2)
U

over some specified optimal control set :Du, where the total cost is

V[y,t,u,P,W] = "Jr" ds C(y(s),s,u(y(s),s)) ,

on the time horizon (t, tl). In (1.3),the instantaneous cost function C

assumed to be a quadratic function of the control,

(1.3)

= C(x,t,u) is

1 T
C(x,t,u) = C0(x,t) + cr(x,t)u + _u C2(x,t)u. (1.4)

The unit cost of the control increases with u when C2 is positive definite. For example, the

cost criterion could be minimal fuel consumption, minimum distance to target or minimum

time to target. No final salvage value is assumed at final time, so V is zero at t = t f.

In addition, the deterministic, nonlinear dynamics in (1.1) are assumed to be linear in

the controls,

F(x,t,u) = F0(x,t) + Fl(x,t)u, (1.5)

185

but nonlinear in the multibody state variable x.

For numerical purposes, it is more convenient to convert equations (1.1)-(1.2) to an

effectively deterministic partial differential equation using Bellman's of optimality as illus-

U*trated in the optimization step from optimal control vector to optimM expected costs

V* in Fig. 2. The Bellman functional PDE of stochastic dynamic programming,

OPTIMAL
CONTROLS

[v;(x,t)]mx1

OPTIMAL
EXPECTED

COST

y'(x,0

Figure 2: The optimization step from controls to costs.

0 = Vt* + L[V*]- Vt* + FoTVV * + {GGT(x,t)'vvTv *

q

+ _ At" [V*(x+ Hl(x,t),t)- V*(x,t)] (1.6)
/=1

+ Co + U" ,

follows from the generalized It5 chain rule for Markov SDEs as in [7] and [15], where U* is

the optimal feedback control computed by constraining the unconstrained or regular control,

UR(X,_) -- -021(C1 + F1Tvv*), (1.7)

to the control set Z)u. In general, the Bellman equation (1.6) is nonlinear with discontinu-

ous coefficients due to the last term, (½U* - uR)Tc2u *, in (1.6) and due to the compact

relationship between the constrained, optimal control and the unconstrained, regular control,

u, (x,0 = V.,,(x,t)]], (1.8)

for i = 1 to n controls, where U_ is the minimum control constraint vector and U_x

is the maximum. As the constraints are attained, the optimal control U*, changes from

the regular control, Ua, to the single bang control values, Umi,, or U,_z, which in general

are functions of state and time. In (1.6), the symbol (:) denotes the scalar matrix product

A : B = _=1 _.j_=l AoBIJ, assuming B is symmetric. It is important to note that the

principal equation, the Bellman equation (1.6), is an exact equation for the optimal expected

value V, and does not involve any sampling approximations such as the use of random number

generators in simulations.

185

Since there is no final salvage value and since (1.6) is a backward equation (unlike the

usual diffusion equation, which is a forward equation), the final condition is that V (z,tt) =

0 using (1.2) and (1.3). On the other hand, boundary conditions for the PDE of stochastic

dynamic programming (1.6) are not as simple or as straightforward to state. This is because

the boundary conditions vary significantly with the form the deterministic linearity function

F, the Gaussian noise W, and the Poisson noise P. Thus for treatment of general boundary

conditions, it is most practical to directly integrate (1.6) for the special values of z, or to use

the objective functional directly as defined in (1.2) and (1.3). The problem with boundary

conditions is also present in stochastic application in continuous time, even when there is no

control variable or optimization in the problem.

As the number of multibody state variables, m, increases, the spatial dimension rises,

and computational difficulties are present that can compare to those of three-dimensional

fluid dynamics computations. This is the famous Bellman's curse of dimenaionality [3]. Thus

there is a great need to make use of advanced-architecture computers, to use parallelization

as well as vectorization. The Panel on Future Directions in Control Theory [6] stresses the

importance of making gains in such areas as nonlinear control, stochastic control, optimal

feedback control and computational methods for control. This paper is a preliminary report

on our efforts to treat all of the above mentioned areas combined from the computational

point of view.

2. Numerical Methods. The integration of the Bellman equation (1.6) is backward

in time, because V* is specified finally at the final time t = t! , rather than at the initial

time. A summary of the discretization in state and backward time is given below:

x --_ Xj = [X0,],_×I = [Xil + (ji - 1)-DXi]mxl,

j = [ji]_×l, wherejl = ltoMi, fori = 1tom;

t -----, Tk = t! - (k - 1).DT, fork = ltoK;

V (Xj, Tk) --_ _,k ; L[V](Xj,TL+I_)__• ----* Ljj:+_ ;

(2.1)

where DXi is the mesh size for state i and DT is the step size in backward time.

The numerical algorithm is a modification of the predictor corrector, Crank Nicolson

methods for nonlinear parabolic PDEs in [5]. Modifications axe made for the switch term

and delay term calculations. Derivatives are approximated with an accuracy that is second

order in the local truncation error, at all interior and boundary points. The Poisson induced

functional or delay term, V*(x + Hi, t), changes the local attribute of the usual PDE to a

global attribute, such that the value at a node IX + Hllj will in general not be a node. Linear

interpolation, with special handing of point near the boundaries, maintains the numerical

integrity compatible with the numerical accuracy of the derivative approximations. Even

though the Bellman equation (1.6) is a single PDE, the process of solving it not only produces

the optimal expected value V*, but also the optimal expected control law U*. This is

because the PDE is a functional PDE, in which the computation of the regular control is fed

back into the optimal value and the optimal value feeds bark into regulax control through

its gradient. The nonstandard part of the algorithm is to decompose this tightly coupled

analytical feedback so that both the value and the control can be calculated by successive

187

iterations, such that each successive approximation of one improves the next approximation

of the other. While our procedure may look superficially like a standard application of finite

differences, it is not due to the nonstandard features mentioned above. For these reasons,

we are not aware of any other successful stochastic dynamic programming code that treats

anywhere near the generality of applications that we treat. Variations of this algorithm have

been successfully utihzed in [15] and [8].

Prior to calculating the values, l_,k+l, at the new (k+ 1) "t time step for k = 1 to K - 1,

the old values, _,k and Vj,k-x, are assumed to be known, with _0 = P]I. The algorithm

begins with an extrapolator (x) start:

v (xl , = }(3. vj, - (2.2)
j ,k+_

which are then used to compute updated values of the gradient of V*, the second order

derivatives, Poisson functional terms (V* at (x + H)), regular controls UR, optimal controls

U , and finally the new value of the Bellman equation spatial functional Lj,k+0.s. The

extrapolation step greatly speeds up the convergence of the corrector step, except at the

initial step. These evaluations are used in the extrapolated predictor (xp) step:

v(xP) I •"j,k+x = Vj,k + DT. _-L(x) (2.3)
2 j,k+_

which are then used in the predictor evaluation (xpe) step:

v(xpe) !¢ V.,(xp)
,k+} = ,, +

(2.4)

an approximation which preserves numerical accuracy and which is used to evaluate all terms

comprising Lj,k+0.s. The evaluated predictions are used in the corvector (xpec) step:

_(xpec, 7 + 1)
q,k+l -- Vj,k + DT " _.r(xpe'7)l

j,k+_
(2.5)

for 7 = 0 to 7,_.x while stopping criterion unmet, with corrector evaluation (zpece) step:

v(xpece,7 + 1) ![t_.(xpec,7 + 1)
"k 1 = 2,'j,k+, + Vj,k). (2.6)
J, +_

The predicted value is taken as the zeroth correction. The stopping criterion for the correc-

tions is a heuristically motivated comparison to a predictor corrector convergence criterion

for a linearized, constant coefficient PDE [13]. The stopping criterion is computed with

a robust mesh selection method, so that only a few corrections are necessary. The selec-

tion of the mesh ratio, the ratio of the time step DT to the norm of the space or state

step DX, guarantees that the corrections will converge whether the Bellman equation (1.6)

is parabolic-like (with Gaussian noise) or hyperbolic-like (without Gaussian), according to

whether or not an explicit second derivative is in the equation.

Parallelization and vectorization of the algorithm was done by what might be called the

"Machine Computational Model Method," i.e., tuning the code to optimizable constructs

188

that are automatically recognised by the compiler, with the Alliant FX/8 vector multi-

processor [1] in mind. All inner double loops were reordered to fit the Alliant concurrent

outer - vector inner (COV]) model. All non-short single loops were made vector-concurrent

Short loops became scalar-concurrent only. Multiple nested loops were reordered with the

two largest loops innermost. A total of 37 out of 39 loops was optimised. Detailed results

for a two-state and two-control model with Poisson noise are reported in [9]. Very similar

techniques work for the vectorizing Cray supercomputers, except that only inner loops are

vectorized. Vectorizing and parallelising techniques are very similar, because vectorization

is really a primitive kind of parallelization and because both are inhibited by many of the

same types of data dependencies.

The relative performance of column oriented versus row oriented code is discussed in

[10]. Dongarra, Gustavson, and Karp [4] have demonstrated that loop reordering gives

vector or supervector performance for standard linear algebra loops on a Cray 1 type column

oriented FORTRAN environment with vector registers. However, for the stochastic dynamic

programming application, the dominant loops are non-standard linear algebra loops, so that

the preference for column oriented loops is not a rule, as demonstrated on the Alliant vector

multiprocessor [10].

Current efforts are concentrated on implementing the code on the Cray X-MP/48 and

Cray 2 for more general multi-state and multi-control applications. In order to implement

the code for arbitrary state space dimension, a more flexible data structure is needed for the

problem arrays, F, G and H, as well as for the solution arrays, V along with its derivatives

and the control U. In the straight-forward, original data structure, an array like the non-

linearity vector requires one index, j,(i,), to denote a numerical node for each state variable
i8:

F(is,js(1),js(2),...,js(m)) (2.7)

for each. state equation, is = 1 to m. It is assumed that there are a common number

M = M1 = ... = M,,, of nodes per state, so that is(is) = 1 to M for is = 1 to m states.

As a consequence, the typically dominant loops containing the nonlinearity function F, the

solution gradient DV or similarly sized array are nested to a depth of at least rn + 1. A

typical loop has the form

dO 1 i= I,m

do 1 jl = 1, M

do 1 jm= 1, M

F(i,jl,j2,..-,jm) =

This state size dependent loop nest depth level of m + 1 inhibits the development of general

mnltibody algorithms, especially when the state size m is incremented and the number of

loops in each nest have to be changed. Also, vectorization is inhibited for compilers that

vectorize only the most inner loop. Parallel and vector optimization is important, due to the

size of the work load, which is O(m. M"), for the dominant loop illustrated above. As the

189

number of states grows the computational load will grow like some multiple of

m • M TM = m • emln(M)_

i.e., the load grows exponentially in the number of states m. This exponential growth is

merely a quantitative expression of Bellman's curse of dirnensionalify.

One way around this inhibiting structure (2.7) is to use a vector data structure:

FV(is,jv) (2.8)

for the nonlinearity vector as an example, such that all the numerical nodes are collected

into a single vector indexed by the global state index jr, where jv = 1 to M TM over all state

nodes. Assuming that the number of nodes per state are fixed at M, then for a fixed set of

state node indices {js(1),js(2),... ,js(m)}, the global state vector index is computed from

the direct mapping formula

jv = _-_(js(i)- 1)-M '-t + 1, (2.9)
/=1

in the case of fixed state mesh size, Mi = M for all states i.

Both the direct mapping from the original data structure to the vector data structure

and the inverse mapping are needed to compute the amplitude functions, F, G and H, as

well as the derivatives of V , because these quantities depend on the original formulation.

The pseudo-inverse of the vector index in (2.9) can be shown to permit the recovery of the

individual state indices by way of integer arithmetic:

js(is;jv) = 1 + [jv- 1 -

trn

(js(i;jv)- 1). N+-']/N '*-1, (2.10)
i=is+l

recursively, for i8 = rn to 1, by back substitution, with _" i=,,+1 al - 0. The vector data

structure of (2.8) to (2.10) results in major do loop nests of the order of 1 to 2, rather than

order of m + 1. A typical vector data structure loop has the form

do 2 i= 1, m ! parallelloop.

do 2 jv= 1, M**m ! vectorloop.

2 FV(i,jv) =

resulting in a reduction of the loop nest depth from m + 1 to 2, independent of the number

of states m. Preliminary implementation of the vector data structure is available on the

Alliant multiprocessor and on the Cray X-MP/48.

One major disadvantage of the vector data structure given in (2.10) is that the largest

degree of parallelism available to a parallel processor or mnltiprocessor in the most outer

or state number loop is m, the number of states. This task load can be better scheduled

on parallel processors by block decomposition or strip mining of the vector data structure

loop in the index iv, so that the single inner loop is split into two evenly balanced loops (cf.,

Polychronopoulos [14]). Thus, dividing the vector data structure into blocks can enhance

190

parallelism. Let MBLK be the number of state nodes in each block and then the total

number of blocks will be

NBLK = Mm/MBLK,

assumed to be an integer for simplicity. Consequently, the blocked version of the typically

dominant loop will have the form

do3i= 1, m

do 3 jblk = 1, MBLK ! parallel loop.

jvl = 1 + MBLK,(jblk - 1)

jv2 = MBLK,jblk

do 3 jv = jvl, iv2 [vector loop.

3 FV(i,jv) =

This form should result in better parallel optimization when there are more than m available

parallel processors.

The advantages of the algorithm is that it 1) permits the treatment of general continuous

time Markov noise or deterministic problems without noise in the same code, 2) maintains

feedback control, 3) permits the cheap control limit to linear singular control to be found

from the same quadratic cost code, 4) stable mesh selection can be used to control the

number of corrector steps, and 5) produces very vectorizable and parallelizable code whose

performance is described in the next section.

3. Results and Discussion. The stochastic dynamic programming code arose from

renewable resource modeling problems of Hanson and co-worker Ryan, with various one-state,

one-control models treated in [15] and [11]. Two-state, two-control models were treated

by Hanson [8]. In the two-state model [S], the two controls represent removals from the

system by respective commercial and recreational users of the system. Poisson noise is

used to represent natural catastrophic events. Applications to aerospace problems only

entails modification of the dynamical system and performance criteria input by appropriate

aerospace input functions and parameters.

The dynamic programming code has been optimized for parallelization and vectoriza-

tion [9] using Hanson's two-state model [8] as a test example, and the Alliant FX/8 vector

multiprocessor as the advanced hardware. The AUiant FX/8 at the Advanced Computing

Research Facility (ACRF) at Argonne National Laboratory was used for benchmarking the

code. This Alliant FX/8 has eight vector computing elements (CEs). Each of the CEs has

eight vector registers whose length is 32 eight-byte elements, and the CEs are connected

to a 128 KB cache. Some automatic parallelization and vectorization is performed, but

significant increases are still attainable by the removal of optimization hindering data de-

pendencies. Benchmark performance was measured for many mesh sizes and on all processor

configurations. Almost all loops were of the highly optimized parallel and vector type for the

Alliant. Over 65% efficiency was achieved over a wide range of tests [9]. The temporal mesh

was chosen to be about four times more refined than the spatial mesh, K = 4. (M - 1) + 1,

for a fixed number of spatial nodes M and for constant numerical stability conditions. In

191

addition, vector stride effects (resonanceeffects related to multiples of the vector register

length of 32 on the FX/8) were found with non-standard performance in both column and

row referencing environments [10].

The present results have been obtained for a three-state, three-control modification

of Hanson's two-state resource model [8] and by implementing the vector data structure

mentioned above. The present application contains a new interacting state with competition.

The present code is in a form where it is much more convenient to change the application,

the advanced computer intrinsics, and the number of states.

Table 1 compares the performance of the code on the ACRF Alliant FX/8 vector multi-

processor at Argonne National Laboratory, the NCSA Cray X-MP/48 vector supercomputer

at Urbana, and the University of Illinois at Chicago IBM3081K as a scalar uniprocessor

reference. The Cray X-MP/48 is a four processor pipelined vector multiprocessor, but the

use of the X-MP is much more costly to use in parallel than the Alliant and so only single

processor results are reported here for the X-MP. The Cray executing on one vector processor

outperforms the Alliant using either one vector processor or the full eight vector processors,

due to the more powerful pipelined processing unit on the Cray. The advantages of block de-

composition with MBLK = 32 for eight Alliant processors are illustrated in the table, where

the eight processor time has been reduced from about 52 to 33 seconds when M = 16, while

the one processor time has increased dramatically for the block method. The IBM3081K

scular uniprocessor is much slower when M = 8 unblocked spatial nodes than any of the

Alliant or Cray values at M = 8. However, as the spatial mesh size is refined to M = 16

spatial points, with a corresponding increase in work load, the IBM3081K performs between

the one and eight processor Alliant, but still significantly below the CRAY performance.

Table 1: Comparative Performance of IBM 3081K, Alliant and Cray,
for three state model.

Nodes

state time

M K

8 29

16 61

8 29

16 61

Method IBM 3081K

vs fortran, opt(3)

p=l

Alliant FX/8

fortran -O

p=l p=8

8.653 2.980

147.391 51.619

13.693 1.998

223.426 32.729

Cray X-MP
cft77

p=l

unblocked 38.513 0.144

unblocked 85.377 2.058

blocked --

blocked --

The performance of the stochastic programming code under parallel and vector oper-

ation is investigated in more detail on the ACRF AUiant FX/8, which has better parallel

capability than the Cray X-MP/48. The Cray X-MP/48 is also a vector multiprocessor, but

the multiprocessing features are not as easily accessed as on the Alliant, where paralleliza-

tion is more transparent. In Figure 3, the blocked and unblocked code is compared on the

Alliant FX/8 with time T(p) plotted against the number of processors p. The unblocked

code runs faster as the number of processors increases from one, but then ceases to run any

192

faster beyond p = 3 processors due to the fact that the maximum parallelism available is

the three iterations in the three-state outer loop. The blocked code, using a block size of

MBLK = 32 (the vector register length on the Alliant) runs faster the more processors used

out of the eight vector processors. However, the unblocked code is faster for p < 5, but

slower for p > 5. The trade-off point between the blocked and unblocked code is p = 5, with

the block overhead slowing down the code for p < 5, but the benefit of parallehsm is found

for p > 5.

Figure 4 shows the speedup, S(p) = T(1)/T(p), versus the number of processors p.

The unblocked code clearly exhibits a speedup plateau for p > 3 and the unblocked code

exhibits nearly ideal speedup, S(p) __ p for all p. However, this figure illustrates the danger

of comparing speedups, because the unblocked case is better for p < 5 as demonstrated in

Figure 3. In Figure 5, the efficiency, E(p) = S(p)/p or speedup per processor, versus the

number of processors p is shown. Again, the blocked efficiency is much higher than the

unblocked efficiency, independent of the actual performance.

4. CONCLUSIONS. Stochastic dynamic programming algorithm can be optimized to

permit numerical solution of larger state space problems using vector multiprocessors. In

order to handle a large number of state variables, a large number of parallel processors

would be desirable, but Bellman's curse of dimensionality appears to very much weakened.

Parallelization, vectorization, and general supercomputing are important in the solution

of the larger problems. Robust mesh selection techniques are necessary to achieve stable

algorithms. These techniques are generally applicable to other vector and parallel computers.

The general code is valid for general Markov noise in continuous time, feedback control,

nonlinear dynamics, nonlinear control and the cheap control limit.

Future directions include applications to aerospace problems, improved development of

general code for an arbitrary number of state variables, enhanced code portability, exten-

sions to Kalman filtering for imperfect observations, and optimization for other advanced
architectures.

Acknowledgements. Work was supported, in part, by several Faculty Research Partici-

pantships, a Faculty Research Leave at Argonne National Laboratory Advanced Computing

Research Facility, and by the Applied Mathematical Sciences subprogram of the Office of

Energy Research, U. S. Department of Energy, Under Contracts W-31-109-38 and DE-AC05-

84-R21400; the National Science Foundation Grant DMS-8806099; the National Center for

Supercomputing Applications in Urbana. The author wishes to acknowledge the work of

C.-W. Leung for the advanced analysis of the vector data structure and for investigations of

applications of Cray multitasking to the problem, and to S.-L. Chung for continued devel-

opment of optimizations for the algorithm.

REFERENCES

[1] Alliant, FX/FORTRAN Programmer's Handbook, Alliant Computer Systems

Corporation, Acton, Mass., 1985.

[2] M. Athans, D. Castanon, K. P. Dunn, C. S. Greene, W. H. Lee, N. R. Sandell, Jr.,

193

[3]

[4]

[5]

[6]

and A. S. Willsky, The stochastic control of the F-8C aircraft using a multiple model

adaptive control (MMAC) method- Part I: Equilibrium flight, IEEE Trans. Autom.

Control, vol. AC-22, pp. 768-780, 1977.

R. E. Bellman, Adaptive Control Processes: A Guided Tour. Princeton: Prince-

ton University Press, 1961.

J. J. Dongarra, F. G. Gustavson, and A. Karp, Implementation of linear algebra algo-

rithms of dense matrices on a vector pipeline machine, SIAM Rev., vol. 26, pp. 91-112,

1984.

J. Douglas, Jr., and T. DuPont, Galerkin methods for parabolic equations, SIAM J.

Num. Anal., vol. 7, pp. 575-626, 1970.

Future Directions in Control Theory: A Mathematical Perspective, W. H.

Fleming, Chairman. Philadelphia: Society for Industrial and Applied Mathematics,

1988.

[7] I. I. Gihman and A. V. Skorohod, Controlled Stochastic Processes. New York:

Springer-Verlag, 1979.

[8] F. B. Hanson, Bioeconomic model of the Lake Michigan alewife fishery, Can. J. Fish.

Aquat. Sci., vol. 44, Suppl. II, pp. 298-305, 1987.

[9]

[10]

[11]

[12]

[13]

[14]

[15]

F. B. Hanson, Computational dynamic programming for stochastic optimal contr61 on

a vector multiprocessor, Argonne National Laboratory, Mathematics and Com-

puter Science Division Technical Memorandum ANL/MCS-TM-113, June

1988, 26 pages.

F. B. Hanson, Parallel computation for stochastic dynamic programming: Row versus

column code orientation, in Proceedings 1988 Conference on Parallel Processing,

Vol. III Algorithms and Applications, D. H. Bailey, Editor. University Park:

Pennsylvania State University Press, 1988, pp. 117-119.

F. Hanson and D. Ryan, Optimal harvesting with density dependent random effects,

Natural Resource Modeling, vol. 2, No. 3, pp. 439-455, 1988.

D. Ludwig, Optimal harvesting of a randomly fluctuating resource I: Application of

perturbation methods, SIAM J. Appl. Math., vol. 37, pp. 166-184, 1979.

K. Naimipour and F. B. Hanson, Convergence of a numerical method for the Bellman

equation of stochastic optimal control with quadratic costs, In Preparation, 1989.

C. D. Polychronopoulos, Parallel Programming and Compilers. Boston: Kluwer Aca-

demic Publishers, 1988, pp. 26-27.

D. Ryan and F. B. Hanson, Optimal harvesting of a logistic population in an environment

with stochastic jumps, J. Math. Biol., vol. 24, pp. 259-277, 1986.

194

O
o

O
Io=

O
o

O

I

Z
M

'.'8
T'°
.-.0
__o_.

a- o
_0
I--' *

O.

0
0

blk

unblk

unblk

blk

,oo foo 4:oo e'oo e:oo
P. FX/8 PROCESSORS

Figure 3: Comparison of blocked (blk) and unblocked (unblk) versions of the code.

Time T(p) is in seconds and p is the number of processors. Results are for m = 3 states,
M = 16 spatial nodes and K = 61 temporal nodes.

195

W" ideal

40 °

0

f,_ ql'

0

0
0

blk

unblk

,00 Z'.O0 4'.00 6'.00 O'.O0
P. FX/8 PROCESSORS

Figure 4: Speedups for blocked (blk) and unblocked (unblk) versions of the code.

Speedup is denoted by S(p) = T(1)/T(p) and p is the number of processors. The notation

(ideal) denotes the ideal case, S(p) = p. Results are for m = 3 states, M = 16 spatial nodes

and K = 61 temporal nodes.

196

O
O

O°

z
WO
,_w.
_-)O"
M

M.

hJ

w

• I

0

0
0

o

_.00

ideal

blk

unblk

Z:O0 dJ'.O0 6'.00 8'.00
P, FX/8 PROCESSOR8

Figure 5: Efficiency for blocked (blk) and unblocked (unblk) versions of the code.

Efficiency is denoted by E(p) = S(p)/p and p is the number of processors. The notation

(ideal) denotes the idea] case, E(p) - 1. Results are for m = 3 states, M = 16 spatial nodes

and K = 61 temporal nodes.

t97

