120,112 research outputs found

    Squeezing stationary distributions of stochastic chemical reaction systems

    Full text link
    Stochastic modeling of chemical reaction systems based on master equations has been an indispensable tool in physical sciences. In the long-time limit, the properties of these systems are characterized by stationary distributions of chemical master equations. In this paper, we describe a novel method for computing stationary distributions analytically, based on a parallel formalism between stochastic chemical reaction systems and second quantization. Anderson, Craciun, and Kurtz showed that, when the rate equation for a reaction network admits a complex-balanced steady-state solution, the corresponding stochastic reaction system has a stationary distribution of a product form of Poisson distributions. In a formulation of stochastic reaction systems using the language of second quantization initiated by Doi, product-form Poisson distributions correspond to coherent states. Pursuing this analogy further, we study the counterpart of squeezed states in stochastic reaction systems. Under the action of a squeeze operator, the time-evolution operator of the chemical master equation is transformed, and the resulting system describes a different reaction network, which does not admit a complex-balanced steady state. A squeezed coherent state gives the stationary distribution of the transformed network, for which analytic expression is obtained.Comment: 19 pages, 5 figure

    Adaptive finite element method assisted by stochastic simulation of chemical systems

    Get PDF
    Stochastic models of chemical systems are often analysed by solving the corresponding\ud Fokker-Planck equation which is a drift-diffusion partial differential equation for the probability\ud distribution function. Efficient numerical solution of the Fokker-Planck equation requires adaptive mesh refinements. In this paper, we present a mesh refinement approach which makes use of a stochastic simulation of the underlying chemical system. By observing the stochastic trajectory for a relatively short amount of time, the areas of the state space with non-negligible probability density are identified. By refining the finite element mesh in these areas, and coarsening elsewhere, a suitable mesh is constructed and used for the computation of the probability density

    Meson Thermalization in Various Dimensions

    Full text link
    In gauge/gravity duality framework the thermalization of mesons in strongly coupled (p+1)-dimensional gauge theories is studied for a general Dp-Dq system, q>=p, using the flavour Dq-brane as a probe. Thermalization corresponds to the horizon formation on the flavour Dq-brane. We calculate the thermalization time-scale due to a time-dependent change in the baryon number chemical potential, baryon injection in the field theory. We observe that for such a general system it has a universal behaviour depending only on the t'Hooft coupling constant and the two parameters which describe how we inject baryons into the system. We show that this universal behaviour is independent of the details of the theory whether it is conformal and/or supersymmetric.Comment: 26 pages, 2 figure

    Local error estimates for adaptive simulation of the Reaction-Diffusion Master Equation via operator splitting

    Full text link
    The efficiency of exact simulation methods for the reaction-diffusion master equation (RDME) is severely limited by the large number of diffusion events if the mesh is fine or if diffusion constants are large. Furthermore, inherent properties of exact kinetic-Monte Carlo simulation methods limit the efficiency of parallel implementations. Several approximate and hybrid methods have appeared that enable more efficient simulation of the RDME. A common feature to most of them is that they rely on splitting the system into its reaction and diffusion parts and updating them sequentially over a discrete timestep. This use of operator splitting enables more efficient simulation but it comes at the price of a temporal discretization error that depends on the size of the timestep. So far, existing methods have not attempted to estimate or control this error in a systematic manner. This makes the solvers hard to use for practitioners since they must guess an appropriate timestep. It also makes the solvers potentially less efficient than if the timesteps are adapted to control the error. Here, we derive estimates of the local error and propose a strategy to adaptively select the timestep when the RDME is simulated via a first order operator splitting. While the strategy is general and applicable to a wide range of approximate and hybrid methods, we exemplify it here by extending a previously published approximate method, the Diffusive Finite-State Projection (DFSP) method, to incorporate temporal adaptivity

    Momentum analyticity of the holographic electric polarizability in 2+1 dimensions

    Full text link
    The static electric polarization of a holographic field theory dual to the Einstein-Maxwell theory in the background of AdS4AdS_4 with a Reissner-Nordst\"{o}m (AdS-RN) black hole is investigated. We prove that the holographic polarization is a meromorphic functions in complex momentum plane and locate analytically the asymptotic distribution of the poles along two straight lines parallel to the imaginary axis for a large momentum magnitude. The results are compared with the numerical result on Friedel-like poles of the same holographic model reported in the literature and with the momentum singularities of the one-loop polarization in weak-coupling spinor QED3_3 and scalar QED3_3 with the similarities and differences discussed.Comment: 31 pages, 2 figure

    Effective simulation techniques for biological systems

    Get PDF
    In this paper we give an overview of some very recent work on the stochastic simulation of systems involving chemical reactions. In many biological systems (such as genetic regulation and cellular dynamics) there is a mix between small numbers of key regulatory proteins, and medium and large numbers of molecules. In addition, it is important to be able to follow the trajectories of individual molecules by taking proper account of the randomness inherent in such a system. We describe different types of simulation techniques (including the stochastic simulation algorithm, Poisson Runge-Kutta methods and the Balanced Euler method) for treating simulations in the three different reaction regimes: slow, medium and fast. We then review some recent techniques on the treatment of coupled slow and fast reactions for stochastic chemical kinetics and discuss how novel computing implementations can enhance the performance of these simulations

    A Constrained Approach to Multiscale Stochastic Simulation of\ud Chemically Reacting Systems

    Get PDF
    Stochastic simulation of coupled chemical reactions is often computationally intensive, especially if a chemical system contains reactions occurring on different time scales. In this paper we introduce a multiscale methodology suitable to address this problem. It is based on the Conditional Stochastic Simulation Algorithm (CSSA) which samples from the conditional distribution of the suitably defined fast variables, given values for the slow variables. In the Constrained Multiscale Algorithm (CMA) a single realization of the CSSA is then used for each value of the slow variable to approximate the effective drift and diffusion terms, in a similar manner to the constrained mean-force computations in other applications such as molecular dynamics. We then show how using the ensuing Stochastic Differential Equation (SDE) approximation, we can in turn approximate average switching times in stochastic chemical systems

    Order Reduction of the Chemical Master Equation via Balanced Realisation

    Full text link
    We consider a Markov process in continuous time with a finite number of discrete states. The time-dependent probabilities of being in any state of the Markov chain are governed by a set of ordinary differential equations, whose dimension might be large even for trivial systems. Here, we derive a reduced ODE set that accurately approximates the probabilities of subspaces of interest with a known error bound. Our methodology is based on model reduction by balanced truncation and can be considerably more computationally efficient than the Finite State Projection Algorithm (FSP) when used for obtaining transient responses. We show the applicability of our method by analysing stochastic chemical reactions. First, we obtain a reduced order model for the infinitesimal generator of a Markov chain that models a reversible, monomolecular reaction. In such an example, we obtain an approximation of the output of a model with 301 states by a reduced model with 10 states. Later, we obtain a reduced order model for a catalytic conversion of substrate to a product; and compare its dynamics with a stochastic Michaelis-Menten representation. For this example, we highlight the savings on the computational load obtained by means of the reduced-order model. Finally, we revisit the substrate catalytic conversion by obtaining a lower-order model that approximates the probability of having predefined ranges of product molecules.Comment: 12 pages, 6 figure
    • …
    corecore