23,249 research outputs found

    Dynamic scheduling in a multi-product manufacturing system

    Get PDF
    To remain competitive in global marketplace, manufacturing companies need to improve their operational practices. One of the methods to increase competitiveness in manufacturing is by implementing proper scheduling system. This is important to enable job orders to be completed on time, minimize waiting time and maximize utilization of equipment and machineries. The dynamics of real manufacturing system are very complex in nature. Schedules developed based on deterministic algorithms are unable to effectively deal with uncertainties in demand and capacity. Significant differences can be found between planned schedules and actual schedule implementation. This study attempted to develop a scheduling system that is able to react quickly and reliably for accommodating changes in product demand and manufacturing capacity. A case study, 6 by 6 job shop scheduling problem was adapted with uncertainty elements added to the data sets. A simulation model was designed and implemented using ARENA simulation package to generate various job shop scheduling scenarios. Their performances were evaluated using scheduling rules, namely, first-in-first-out (FIFO), earliest due date (EDD), and shortest processing time (SPT). An artificial neural network (ANN) model was developed and trained using various scheduling scenarios generated by ARENA simulation. The experimental results suggest that the ANN scheduling model can provided moderately reliable prediction results for limited scenarios when predicting the number completed jobs, maximum flowtime, average machine utilization, and average length of queue. This study has provided better understanding on the effects of changes in demand and capacity on the job shop schedules. Areas for further study includes: (i) Fine tune the proposed ANN scheduling model (ii) Consider more variety of job shop environment (iii) Incorporate an expert system for interpretation of results. The theoretical framework proposed in this study can be used as a basis for further investigation

    How the structure of precedence constraints may change the complexity class of scheduling problems

    Full text link
    This survey aims at demonstrating that the structure of precedence constraints plays a tremendous role on the complexity of scheduling problems. Indeed many problems can be NP-hard when considering general precedence constraints, while they become polynomially solvable for particular precedence constraints. We also show that there still are many very exciting challenges in this research area

    Machine Scheduling with Resource Dependent Processing Times

    Get PDF
    We consider several parallel machine scheduling settings with the objective to minimize the schedule makespan. The most general of these settings is unrelated parallel machine scheduling. We assume that, in addition to its machine dependence, the processing time of any job is dependent on the usage of a scarce renewable resource. A given amount of that resource, e.g. workers, can be distributed over the jobs in process at any time, and the more of that resource is allocated to a job, the smaller is its processing time. This model generalizes classical machine scheduling problems, adding a time-resource tradeoff. It is also a natural variant of a generalized assignment problem studied previously by Shmoys and Tardos. On the basis of integer programming formulations for relaxations of the respective problems, we use LP rounding techniques to allocate resources to jobs, and to assign jobs to machines. Combined with Graham''s list scheduling, we thus prove the existence of constant factor approximation algorithms. Our performance guarantee is 6.83 for the most general case of unrelated parallel machine scheduling. We improve this bound for two special cases, namely to 5.83 whenever the jobs are assigned to machines beforehand, and to (5+e), e>0, whenever the processing times do not depend on the machine. Moreover, we discuss tightness of the relaxations, and derive inapproximability results.operations research and management science;

    Energy Efficient Scheduling via Partial Shutdown

    Get PDF
    Motivated by issues of saving energy in data centers we define a collection of new problems referred to as "machine activation" problems. The central framework we introduce considers a collection of mm machines (unrelated or related) with each machine ii having an {\em activation cost} of aia_i. There is also a collection of nn jobs that need to be performed, and pi,jp_{i,j} is the processing time of job jj on machine ii. We assume that there is an activation cost budget of AA -- we would like to {\em select} a subset SS of the machines to activate with total cost a(S)Aa(S) \le A and {\em find} a schedule for the nn jobs on the machines in SS minimizing the makespan (or any other metric). For the general unrelated machine activation problem, our main results are that if there is a schedule with makespan TT and activation cost AA then we can obtain a schedule with makespan \makespanconstant T and activation cost \costconstant A, for any ϵ>0\epsilon >0. We also consider assignment costs for jobs as in the generalized assignment problem, and using our framework, provide algorithms that minimize the machine activation and the assignment cost simultaneously. In addition, we present a greedy algorithm which only works for the basic version and yields a makespan of 2T2T and an activation cost A(1+lnn)A (1+\ln n). For the uniformly related parallel machine scheduling problem, we develop a polynomial time approximation scheme that outputs a schedule with the property that the activation cost of the subset of machines is at most AA and the makespan is at most (1+ϵ)T(1+\epsilon) T for any ϵ>0\epsilon >0

    Local search performance guarantees for restricted related parallel machine scheduling

    Get PDF
    We consider the problem of minimizing the makespan on restricted related parallel machines. In restricted machine scheduling each job is only allowed to be scheduled on a subset of machines. We study the worst-case behavior of local search algorithms. In particular, we analyze the quality of local optima with respect to the jump, swap, push and lexicographical jump neighborhood.operations research and management science;
    corecore