107 research outputs found

    Real-Time Multi-Fisheye Camera Self-Localization and Egomotion Estimation in Complex Indoor Environments

    Get PDF
    In this work a real-time capable multi-fisheye camera self-localization and egomotion estimation framework is developed. The thesis covers all aspects ranging from omnidirectional camera calibration to the development of a complete multi-fisheye camera SLAM system based on a generic multi-camera bundle adjustment method

    Omnidirectional DSO: Direct Sparse Odometry with Fisheye Cameras

    Full text link
    We propose a novel real-time direct monocular visual odometry for omnidirectional cameras. Our method extends direct sparse odometry (DSO) by using the unified omnidirectional model as a projection function, which can be applied to fisheye cameras with a field-of-view (FoV) well above 180 degrees. This formulation allows for using the full area of the input image even with strong distortion, while most existing visual odometry methods can only use a rectified and cropped part of it. Model parameters within an active keyframe window are jointly optimized, including the intrinsic/extrinsic camera parameters, 3D position of points, and affine brightness parameters. Thanks to the wide FoV, image overlap between frames becomes bigger and points are more spatially distributed. Our results demonstrate that our method provides increased accuracy and robustness over state-of-the-art visual odometry algorithms.Comment: Accepted by IEEE Robotics and Automation Letters (RA-L), 2018 and IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 201

    Semantic Instance Annotation of Street Scenes by 3D to 2D Label Transfer

    Full text link
    Semantic annotations are vital for training models for object recognition, semantic segmentation or scene understanding. Unfortunately, pixelwise annotation of images at very large scale is labor-intensive and only little labeled data is available, particularly at instance level and for street scenes. In this paper, we propose to tackle this problem by lifting the semantic instance labeling task from 2D into 3D. Given reconstructions from stereo or laser data, we annotate static 3D scene elements with rough bounding primitives and develop a model which transfers this information into the image domain. We leverage our method to obtain 2D labels for a novel suburban video dataset which we have collected, resulting in 400k semantic and instance image annotations. A comparison of our method to state-of-the-art label transfer baselines reveals that 3D information enables more efficient annotation while at the same time resulting in improved accuracy and time-coherent labels.Comment: 10 pages in Conference on Computer Vision and Pattern Recognition (CVPR), 201

    Combining Features and Semantics for Low-level Computer Vision

    Get PDF
    Visual perception of depth and motion plays a significant role in understanding and navigating the environment. Reconstructing outdoor scenes in 3D and estimating the motion from video cameras are of utmost importance for applications like autonomous driving. The corresponding problems in computer vision have witnessed tremendous progress over the last decades, yet some aspects still remain challenging today. Striking examples are reflecting and textureless surfaces or large motions which cannot be easily recovered using traditional local methods. Further challenges include occlusions, large distortions and difficult lighting conditions. In this thesis, we propose to overcome these challenges by modeling non-local interactions leveraging semantics and contextual information. Firstly, for binocular stereo estimation, we propose to regularize over larger areas on the image using object-category specific disparity proposals which we sample using inverse graphics techniques based on a sparse disparity estimate and a semantic segmentation of the image. The disparity proposals encode the fact that objects of certain categories are not arbitrarily shaped but typically exhibit regular structures. We integrate them as non-local regularizer for the challenging object class 'car' into a superpixel-based graphical model and demonstrate its benefits especially in reflective regions. Secondly, for 3D reconstruction, we leverage the fact that the larger the reconstructed area, the more likely objects of similar type and shape will occur in the scene. This is particularly true for outdoor scenes where buildings and vehicles often suffer from missing texture or reflections, but share similarity in 3D shape. We take advantage of this shape similarity by localizing objects using detectors and jointly reconstructing them while learning a volumetric model of their shape. This allows to reduce noise while completing missing surfaces as objects of similar shape benefit from all observations for the respective category. Evaluations with respect to LIDAR ground-truth on a novel challenging suburban dataset show the advantages of modeling structural dependencies between objects. Finally, motivated by the success of deep learning techniques in matching problems, we present a method for learning context-aware features for solving optical flow using discrete optimization. Towards this goal, we present an efficient way of training a context network with a large receptive field size on top of a local network using dilated convolutions on patches. We perform feature matching by comparing each pixel in the reference image to every pixel in the target image, utilizing fast GPU matrix multiplication. The matching cost volume from the network's output forms the data term for discrete MAP inference in a pairwise Markov random field. Extensive evaluations reveal the importance of context for feature matching.Die visuelle Wahrnehmung von Tiefe und Bewegung spielt eine wichtige Rolle bei dem VerstĂ€ndnis und der Navigation in unserer Umwelt. Die 3D Rekonstruktion von Szenen im Freien und die SchĂ€tzung der Bewegung von Videokameras sind von grĂ¶ĂŸter Bedeutung fĂŒr Anwendungen, wie das autonome Fahren. Die Erforschung der entsprechenden Probleme des maschinellen Sehens hat in den letzten Jahrzehnten enorme Fortschritte gemacht, jedoch bleiben einige Aspekte heute noch ungelöst. Beispiele hierfĂŒr sind reflektierende und texturlose OberflĂ€chen oder große Bewegungen, bei denen herkömmliche lokale Methoden hĂ€ufig scheitern. Weitere Herausforderungen sind niedrige Bildraten, Verdeckungen, große Verzerrungen und schwierige LichtverhĂ€ltnisse. In dieser Arbeit schlagen wir vor nicht-lokale Interaktionen zu modellieren, die semantische und kontextbezogene Informationen nutzen, um diese Herausforderungen zu meistern. FĂŒr die binokulare Stereo SchĂ€tzung schlagen wir zuallererst vor zusammenhĂ€ngende Bereiche mit objektklassen-spezifischen DisparitĂ€ts VorschlĂ€gen zu regularisieren, die wir mit inversen Grafik Techniken auf der Grundlage einer spĂ€rlichen DisparitĂ€tsschĂ€tzung und semantischen Segmentierung des Bildes erhalten. Die DisparitĂ€ts VorschlĂ€ge kodieren die Tatsache, dass die GegenstĂ€nde bestimmter Kategorien nicht willkĂŒrlich geformt sind, sondern typischerweise regelmĂ€ĂŸige Strukturen aufweisen. Wir integrieren sie fĂŒr die komplexe Objektklasse 'Auto' in Form eines nicht-lokalen Regularisierungsterm in ein Superpixel-basiertes grafisches Modell und zeigen die Vorteile vor allem in reflektierenden Bereichen. Zweitens nutzen wir fĂŒr die 3D-Rekonstruktion die Tatsache, dass mit der GrĂ¶ĂŸe der rekonstruierten FlĂ€che auch die Wahrscheinlichkeit steigt, Objekte von Ă€hnlicher Art und Form in der Szene zu enthalten. Dies gilt besonders fĂŒr Szenen im Freien, in denen GebĂ€ude und Fahrzeuge oft vorkommen, die unter fehlender Textur oder Reflexionen leiden aber Ă€hnlichkeit in der Form aufweisen. Wir nutzen diese Ă€hnlichkeiten zur Lokalisierung von Objekten mit Detektoren und zur gemeinsamen Rekonstruktion indem ein volumetrisches Modell ihrer Form erlernt wird. Dies ermöglicht auftretendes Rauschen zu reduzieren, wĂ€hrend fehlende FlĂ€chen vervollstĂ€ndigt werden, da Objekte Ă€hnlicher Form von allen Beobachtungen der jeweiligen Kategorie profitieren. Die Evaluierung auf einem neuen, herausfordernden vorstĂ€dtischen Datensatz in Anbetracht von LIDAR-Entfernungsdaten zeigt die Vorteile der Modellierung von strukturellen AbhĂ€ngigkeiten zwischen Objekten. Zuletzt, motiviert durch den Erfolg von Deep Learning Techniken bei der Mustererkennung, prĂ€sentieren wir eine Methode zum Erlernen von kontextbezogenen Merkmalen zur Lösung des optischen Flusses mittels diskreter Optimierung. Dazu stellen wir eine effiziente Methode vor um zusĂ€tzlich zu einem Lokalen Netzwerk ein Kontext-Netzwerk zu erlernen, das mit Hilfe von erweiterter Faltung auf Patches ein großes rezeptives Feld besitzt. FĂŒr das Feature Matching vergleichen wir mit schnellen GPU-Matrixmultiplikation jedes Pixel im Referenzbild mit jedem Pixel im Zielbild. Das aus dem Netzwerk resultierende Matching Kostenvolumen bildet den Datenterm fĂŒr eine diskrete MAP Inferenz in einem paarweisen Markov Random Field. Eine umfangreiche Evaluierung zeigt die Relevanz des Kontextes fĂŒr das Feature Matching

    Real-time Visual Flow Algorithms for Robotic Applications

    Get PDF
    Vision offers important sensor cues to modern robotic platforms. Applications such as control of aerial vehicles, visual servoing, simultaneous localization and mapping, navigation and more recently, learning, are examples where visual information is fundamental to accomplish tasks. However, the use of computer vision algorithms carries the computational cost of extracting useful information from the stream of raw pixel data. The most sophisticated algorithms use complex mathematical formulations leading typically to computationally expensive, and consequently, slow implementations. Even with modern computing resources, high-speed and high-resolution video feed can only be used for basic image processing operations. For a vision algorithm to be integrated on a robotic system, the output of the algorithm should be provided in real time, that is, at least at the same frequency as the control logic of the robot. With robotic vehicles becoming more dynamic and ubiquitous, this places higher requirements to the vision processing pipeline. This thesis addresses the problem of estimating dense visual flow information in real time. The contributions of this work are threefold. First, it introduces a new filtering algorithm for the estimation of dense optical flow at frame rates as fast as 800 Hz for 640x480 image resolution. The algorithm follows a update-prediction architecture to estimate dense optical flow fields incrementally over time. A fundamental component of the algorithm is the modeling of the spatio-temporal evolution of the optical flow field by means of partial differential equations. Numerical predictors can implement such PDEs to propagate current estimation of flow forward in time. Experimental validation of the algorithm is provided using high-speed ground truth image dataset as well as real-life video data at 300 Hz. The second contribution is a new type of visual flow named structure flow. Mathematically, structure flow is the three-dimensional scene flow scaled by the inverse depth at each pixel in the image. Intuitively, it is the complete velocity field associated with image motion, including both optical flow and scale-change or apparent divergence of the image. Analogously to optic flow, structure flow provides a robotic vehicle with perception of the motion of the environment as seen by the camera. However, structure flow encodes the full 3D image motion of the scene whereas optic flow only encodes the component on the image plane. An algorithm to estimate structure flow from image and depth measurements is proposed based on the same filtering idea used to estimate optical flow. The final contribution is the spherepix data structure for processing spherical images. This data structure is the numerical back-end used for the real-time implementation of the structure flow filter. It consists of a set of overlapping patches covering the surface of the sphere. Each individual patch approximately holds properties such as orthogonality and equidistance of points, thus allowing efficient implementations of low-level classical 2D convolution based image processing routines such as Gaussian filters and numerical derivatives. These algorithms are implemented on GPU hardware and can be integrated to future Robotic Embedded Vision systems to provide fast visual information to robotic vehicles

    MegaParallax: Casual 360° Panoramas with Motion Parallax

    Get PDF
    The ubiquity of smart mobile devices, such as phones and tablets, enables users to casually capture 360° panoramas with a single camera sweep to share and relive experiences. However, panoramas lack motion parallax as they do not provide different views for different viewpoints. The motion parallax induced by translational head motion is a crucial depth cue in daily life. Alternatives, such as omnidirectional stereo panoramas, provide different views for each eye (binocular disparity), but they also lack motion parallax as the left and right eye panoramas are stitched statically. Methods based on explicit scene geometry reconstruct textured 3D geometry, which provides motion parallax, but suffers from visible reconstruction artefacts. The core of our method is a novel multi-perspective panorama representation, which can be casually captured and rendered with motion parallax for each eye on the fly. This provides a more realistic perception of panoramic environments which is particularly useful for virtual reality applications. Our approach uses a single consumer video camera to acquire 200–400 views of a real 360° environment with a single sweep. By using novel-view synthesis with flow-based blending, we show how to turn these input views into an enriched 360° panoramic experience that can be explored in real time, without relying on potentially unreliable reconstruction of scene geometry. We compare our results with existing omnidirectional stereo and image-based rendering methods to demonstrate the benefit of our approach, which is the first to enable casual consumers to capture and view high-quality 360° panoramas with motion parallax.This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie SkƂodowska-Curie grant agreement No 66599

    Casual 3D photography

    Get PDF
    We present an algorithm that enables casual 3D photography. Given a set of input photos captured with a hand-held cell phone or DSLR camera, our algorithm reconstructs a 3D photo, a central panoramic, textured, normal mapped, multi-layered geometric mesh representation. 3D photos can be stored compactly and are optimized for being rendered from viewpoints that are near the capture viewpoints. They can be rendered using a standard rasterization pipeline to produce perspective views with motion parallax. When viewed in VR, 3D photos provide geometrically consistent views for both eyes. Our geometric representation also allows interacting with the scene using 3D geometry-aware effects, such as adding new objects to the scene and artistic lighting effects. Our 3D photo reconstruction algorithm starts with a standard structure from motion and multi-view stereo reconstruction of the scene. The dense stereo reconstruction is made robust to the imperfect capture conditions using a novel near envelope cost volume prior that discards erroneous near depth hypotheses. We propose a novel parallax-tolerant stitching algorithm that warps the depth maps into the central panorama and stitches two color-and-depth panoramas for the front and back scene surfaces. The two panoramas are fused into a single non-redundant, well-connected geometric mesh. We provide videos demonstrating users interactively viewing and manipulating our 3D photos
    • 

    corecore