23,096 research outputs found

    Galerkin/Runge-Kutta discretizations for parabolic equations with time dependent coefficients

    Get PDF
    A new class of fully discrete Galerkin/Runge-Kutta methods is constructed and analyzed for linear parabolic initial boundary value problems with time dependent coefficients. Unlike any classical counterpart, this class offers arbitrarily high order convergence while significantly avoiding what has been called order reduction. In support of this claim, error estimates are proved, and computational results are presented. Additionally, since the time stepping equations involve coefficient matrices changing at each time step, a preconditioned iterative technique is used to solve the linear systems only approximately. Nevertheless, the resulting algorithm is shown to preserve the original convergence rate while using only the order of work required by the base scheme applied to a linear parabolic problem with time independent coefficients. Furthermore, it is noted that special Runge-Kutta methods allow computations to be performed in parallel so that the final execution time can be reduced to that of a low order method

    Serial and Parallel Iterative Splitting Methods: Algorithms and Applications to Fractional Convection-Diffusion Equations

    Full text link
    [EN] The benefits and properties of iterative splitting methods, which are based on serial versions, have been studied in recent years, this work, we extend the iterative splitting methods to novel classes of parallel versions to solve nonlinear fractional convection-diffusion equations. For such interesting partial differential examples with higher dimensional, fractional, and nonlinear terms, we could apply the parallel iterative splitting methods, which allow for accelerating the solver methods and reduce the computational time. Here, we could apply the benefits of the higher accuracy of the iterative splitting methods. We present a novel parallel iterative splitting method, which is based on the multi-splitting methods, The flexibilisation with multisplitting methods allows for decomposing large scale operator equations. In combination with iterative splitting methods, which use characteristics of waveform-relaxation (WR) methods, we could embed the relaxation behavior and deal better with the nonlinearities of the operators. We consider the convergence results of the parallel iterative splitting methods, reformulating the underlying methods with a summation of the individual convergence results of the WR methods. We discuss the numerical convergence of the serial and parallel iterative splitting methods with respect to the synchronous and asynchronous treatments. Furthermore, we present different numerical applications of fluid and phase field problems in order to validate the benefit of the parallel versions.This research was partially supported by Ministerio de Economia y Competitividad, Spain, under grant PGC2018-095896-B-C21-C22 and German Academic Exchange Service grant number 91588469.Geiser, J.; Martínez Molada, E.; Hueso, JL. (2020). Serial and Parallel Iterative Splitting Methods: Algorithms and Applications to Fractional Convection-Diffusion Equations. Mathematics. 8(11):1-42. https://doi.org/10.3390/math8111950S142811Farago, I., & Geiser, J. (2007). Iterative operator-splitting methods for linear problems. International Journal of Computational Science and Engineering, 3(4), 255. doi:10.1504/ijcse.2007.018264Frommer, A., & Szyld, D. B. (2000). On asynchronous iterations. Journal of Computational and Applied Mathematics, 123(1-2), 201-216. doi:10.1016/s0377-0427(00)00409-xO’Leary, D. P., & White, R. E. (1985). Multi-Splittings of Matrices and Parallel Solution of Linear Systems. SIAM Journal on Algebraic Discrete Methods, 6(4), 630-640. doi:10.1137/0606062White, R. E. (1986). Parallel Algorithms for Nonlinear Problems. SIAM Journal on Algebraic Discrete Methods, 7(1), 137-149. doi:10.1137/0607017Geiser, J. (2016). Picard’s iterative method for nonlinear multicomponent transport equations. Cogent Mathematics, 3(1), 1158510. doi:10.1080/23311835.2016.1158510Miekkala, U., & Nevanlinna, O. (1987). Convergence of Dynamic Iteration Methods for Initial Value Problems. SIAM Journal on Scientific and Statistical Computing, 8(4), 459-482. doi:10.1137/0908046Miekkala, U., & Nevanlinna, O. (1996). Iterative solution of systems of linear differential equations. Acta Numerica, 5, 259-307. doi:10.1017/s096249290000266xGeiser, J. (2010). Iterative operator-splitting methods for nonlinear differential equations and applications. Numerical Methods for Partial Differential Equations, 27(5), 1026-1054. doi:10.1002/num.20568He, D., Pan, K., & Hu, H. (2020). A spatial fourth-order maximum principle preserving operator splitting scheme for the multi-dimensional fractional Allen-Cahn equation. Applied Numerical Mathematics, 151, 44-63. doi:10.1016/j.apnum.2019.12.018Giona, M., Cerbelli, S., & Roman, H. E. (1992). Fractional diffusion equation and relaxation in complex viscoelastic materials. Physica A: Statistical Mechanics and its Applications, 191(1-4), 449-453. doi:10.1016/0378-4371(92)90566-9Nigmatullin, R. R. (1986). The realization of the generalized transfer equation in a medium with fractal geometry. physica status solidi (b), 133(1), 425-430. doi:10.1002/pssb.2221330150Allen, S. M., & Cahn, J. W. (1979). A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metallurgica, 27(6), 1085-1095. doi:10.1016/0001-6160(79)90196-2Yue, P., Feng, J. J., Liu, C., & Shen, J. (2005). Diffuse-interface simulations of drop coalescence and retraction in viscoelastic fluids. Journal of Non-Newtonian Fluid Mechanics, 129(3), 163-176. doi:10.1016/j.jnnfm.2005.07.002Sommacal, L., Melchior, P., Oustaloup, A., Cabelguen, J.-M., & Ijspeert, A. J. (2008). Fractional Multi-models of the Frog Gastrocnemius Muscle. Journal of Vibration and Control, 14(9-10), 1415-1430. doi:10.1177/1077546307087440Moshrefi-Torbati, M., & Hammond, J. K. (1998). Physical and geometrical interpretation of fractional operators. Journal of the Franklin Institute, 335(6), 1077-1086. doi:10.1016/s0016-0032(97)00048-3El-Nabulsi, R. A. (2009). Fractional Dirac operators and deformed field theory on Clifford algebra. Chaos, Solitons & Fractals, 42(5), 2614-2622. doi:10.1016/j.chaos.2009.04.002Kanney, J. F., Miller, C. T., & Kelley, C. T. (2003). Convergence of iterative split-operator approaches for approximating nonlinear reactive transport problems. Advances in Water Resources, 26(3), 247-261. doi:10.1016/s0309-1708(02)00162-8Geiser, J., Hueso, J. L., & Martínez, E. (2020). Adaptive Iterative Splitting Methods for Convection-Diffusion-Reaction Equations. Mathematics, 8(3), 302. doi:10.3390/math8030302Meerschaert, M. M., Scheffler, H.-P., & Tadjeran, C. (2006). Finite difference methods for two-dimensional fractional dispersion equation. Journal of Computational Physics, 211(1), 249-261. doi:10.1016/j.jcp.2005.05.017Irreversibility, Least Action Principle and Causality. Preprint, HAL, 2008 https://hal.archives-ouvertes.fr/hal-00348123v1Cresson, J. (2007). Fractional embedding of differential operators and Lagrangian systems. Journal of Mathematical Physics, 48(3), 033504. doi:10.1063/1.2483292Meerschaert, M. M., & Tadjeran, C. (2004). Finite difference approximations for fractional advection–dispersion flow equations. Journal of Computational and Applied Mathematics, 172(1), 65-77. doi:10.1016/j.cam.2004.01.033Geiser, J. (2011). Computing Exponential for Iterative Splitting Methods: Algorithms and Applications. Journal of Applied Mathematics, 2011, 1-27. doi:10.1155/2011/193781Geiser, J. (2008). Iterative operator-splitting methods with higher-order time integration methods and applications for parabolic partial differential equations. Journal of Computational and Applied Mathematics, 217(1), 227-242. doi:10.1016/j.cam.2007.06.028Ladics, T. (2015). Error analysis of waveform relaxation method for semi-linear partial differential equations. Journal of Computational and Applied Mathematics, 285, 15-31. doi:10.1016/j.cam.2015.02.003Yuan, D., & Burrage, K. (2003). Convergence of the parallel chaotic waveform relaxation method for stiff systems. Journal of Computational and Applied Mathematics, 151(1), 201-213. doi:10.1016/s0377-0427(02)00749-5Ladics, T., & Faragó, I. (2013). Generalizations and error analysis of the iterative operator splitting method. Open Mathematics, 11(8). doi:10.2478/s11533-013-0246-4Moler, C., & Van Loan, C. (2003). Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later. SIAM Review, 45(1), 3-49. doi:10.1137/s00361445024180Najfeld, I., & Havel, T. F. (1995). Derivatives of the Matrix Exponential and Their Computation. Advances in Applied Mathematics, 16(3), 321-375. doi:10.1006/aama.1995.1017Hochbruck, M., & Ostermann, A. (2010). Exponential integrators. Acta Numerica, 19, 209-286. doi:10.1017/s0962492910000048Casas, F., & Iserles, A. (2006). Explicit Magnus expansions for nonlinear equations. Journal of Physics A: Mathematical and General, 39(19), 5445-5461. doi:10.1088/0305-4470/39/19/s07Magnus, W. (1954). On the exponential solution of differential equations for a linear operator. Communications on Pure and Applied Mathematics, 7(4), 649-673. doi:10.1002/cpa.3160070404Jeltsch, R., & Pohl, B. (1995). Waveform Relaxation with Overlapping Splittings. SIAM Journal on Scientific Computing, 16(1), 40-49. doi:10.1137/0916004Faragó, I. (2008). A modified iterated operator splitting method. Applied Mathematical Modelling, 32(8), 1542-1551. doi:10.1016/j.apm.2007.04.018Li, J., Jiang, Y., & Miao, Z. (2019). A parareal approach of semi‐linear parabolic equations based on general waveform relaxation. Numerical Methods for Partial Differential Equations, 35(6), 2017-2043. doi:10.1002/num.22390Trotter, H. F. (1959). On the product of semi-groups of operators. Proceedings of the American Mathematical Society, 10(4), 545-545. doi:10.1090/s0002-9939-1959-0108732-6Strang, G. (1968). On the Construction and Comparison of Difference Schemes. SIAM Journal on Numerical Analysis, 5(3), 506-517. doi:10.1137/0705041Geiser, J. (2009). Operator-splitting methods in respect of eigenvalue problems for nonlinear equations and applications for Burgers equations. Journal of Computational and Applied Mathematics, 231(2), 815-827. doi:10.1016/j.cam.2009.05.00

    Time-parallel iterative solvers for parabolic evolution equations

    Get PDF
    We present original time-parallel algorithms for the solution of the implicit Euler discretization of general linear parabolic evolution equations with time-dependent self-adjoint spatial operators. Motivated by the inf-sup theory of parabolic problems, we show that the standard nonsymmetric time-global system can be equivalently reformulated as an original symmetric saddle-point system that remains inf-sup stable with respect to the same natural parabolic norms. We then propose and analyse an efficient and readily implementable parallel-in-time preconditioner to be used with an inexact Uzawa method. The proposed preconditioner is non-intrusive and easy to implement in practice, and also features the key theoretical advantages of robust spectral bounds, leading to convergence rates that are independent of the number of time-steps, final time, or spatial mesh sizes, and also a theoretical parallel complexity that grows only logarithmically with respect to the number of time-steps. Numerical experiments with large-scale parallel computations show the effectiveness of the method, along with its good weak and strong scaling properties

    A parallel nearly implicit time-stepping scheme

    Get PDF
    Across-the-space parallelism still remains the most mature, convenient and natural way to parallelize large scale problems. One of the major problems here is that implicit time stepping is often difficult to parallelize due to the structure of the system. Approximate implicit schemes have been suggested to circumvent the problem. These schemes have attractive stability properties and they are also very well parallelizable.\ud The purpose of this article is to give an overall assessment of the parallelism of the method

    A linear domain decomposition method for partially saturated flow in porous media

    Get PDF
    The Richards equation is a nonlinear parabolic equation that is commonly used for modelling saturated/unsaturated flow in porous media. We assume that the medium occupies a bounded Lipschitz domain partitioned into two disjoint subdomains separated by a fixed interface Γ\Gamma. This leads to two problems defined on the subdomains which are coupled through conditions expressing flux and pressure continuity at Γ\Gamma. After an Euler implicit discretisation of the resulting nonlinear subproblems a linear iterative (LL-type) domain decomposition scheme is proposed. The convergence of the scheme is proved rigorously. In the last part we present numerical results that are in line with the theoretical finding, in particular the unconditional convergence of the scheme. We further compare the scheme to other approaches not making use of a domain decomposition. Namely, we compare to a Newton and a Picard scheme. We show that the proposed scheme is more stable than the Newton scheme while remaining comparable in computational time, even if no parallelisation is being adopted. Finally we present a parametric study that can be used to optimize the proposed scheme.Comment: 34 pages, 13 figures, 7 table

    A parallel-in-time algorithm for high-order BDF methods for diffusion and subdiffusion equations

    Full text link
    In this paper, we propose a parallel-in-time algorithm for approximately solving parabolic equations. In particular, we apply the kk-step backward differentiation formula, and then develop an iterative solver by using the waveform relaxation technique. Each resulting iteration represents a periodic-like system, which could be further solved in parallel by using the diagonalization technique. The convergence of the waveform relaxation iteration is theoretically examined by using the generating function method. The approach we established in this paper extends the existing argument of single-step methods in Gander and Wu [Numer. Math., 143 (2019), pp. 489--527] to general BDF methods up to order six. The argument could be further applied to the time-fractional subdiffusion equation, whose discretization shares common properties of the standard BDF methods, because of the nonlocality of the fractional differential operator. Illustrative numerical results are presented to complement the theoretical analysis

    PORTA: A three-dimensional multilevel radiative transfer code for modeling the intensity and polarization of spectral lines with massively parallel computers

    Full text link
    The interpretation of the intensity and polarization of the spectral line radiation produced in the atmosphere of the Sun and of other stars requires solving a radiative transfer problem that can be very complex, especially when the main interest lies in modeling the spectral line polarization produced by scattering processes and the Hanle and Zeeman effects. One of the difficulties is that the plasma of a stellar atmosphere can be highly inhomogeneous and dynamic, which implies the need to solve the non-equilibrium problem of the generation and transfer of polarized radiation in realistic three-dimensional (3D) stellar atmospheric models. Here we present PORTA, an efficient multilevel radiative transfer code we have developed for the simulation of the spectral line polarization caused by scattering processes and the Hanle and Zeeman effects in 3D models of stellar atmospheres. The numerical method of solution is based on the non-linear multigrid iterative method and on a novel short-characteristics formal solver of the Stokes-vector transfer equation which uses monotonic B\'ezier interpolation. Therefore, with PORTA the computing time needed to obtain at each spatial grid point the self-consistent values of the atomic density matrix (which quantifies the excitation state of the atomic system) scales linearly with the total number of grid points. Another crucial feature of PORTA is its parallelization strategy, which allows us to speed up the numerical solution of complicated 3D problems by several orders of magnitude with respect to sequential radiative transfer approaches, given its excellent linear scaling with the number of available processors. The PORTA code can also be conveniently applied to solve the simpler 3D radiative transfer problem of unpolarized radiation in multilevel systems.Comment: 15 pages, 15 figures, to appear in Astronomy and Astrophysic
    • …
    corecore