1,894 research outputs found

    Artificial Neural Network Logic-Based Reverse Analysis with Application to COVID-19 Surveillance Dataset

    Get PDF
    The Boolean Satisfiability Problem (BSAT) is one of the crucial decision problems in the fields of computing science, operation research, and mathematical logic that is resolved by deciding whether or not a solution to a Boolean formula exists. When there is a Boolean variable allocation that induces the Boolean formula to yield TRUE, then the SAT instance is satisfiable. The main purpose of this chapter is to utilize the optimization capacity of the Lyapunov energy function of Hopfield neural network (HNN) for optimal representation of the Random Satistibaility for COVID-19 Surveillance Data Set (CSDS) classification with the aim of extracting the relationship of dominant attributes that contribute to COVID-19 detections based on the COVID-19 Surveillance Data Set (CSDS). The logical mining task was carried based on the data mining technique of the energy minimization technique of HNN. The computational simulations have been carried using the different number of clauses in validating the efficiency of the proposed model in the training of COVID-19 Surveillance Data Set (CSDS) for classification. The findings reveals the effectiveness and robustness of k satisfiability reverse analysis with Hopfield neural network in extracting the dominant attributes toward COVID-19 Surveillance Data Set (CSDS) logic

    Safe and Efficient Reinforcement Learning for Environmental Monitoring

    Get PDF
    This paper discusses the challenges of applying reinforcement techniques to real-world environmental monitoring problems and proposes innovative solutions to overcome them. In particular, we focus on safety, a fundamental problem in RL that arises when it is applied to domains involving humans or hazardous uncertain situations. We propose to use deep neural networks, formal verification, and online refinement of domain knowledge to improve the transparency and efficiency of the learning process, as well as the quality of the final policies. We present two case studies, specifically (i) autonomous water monitoring and (ii) smart control of air quality indoors. In particular, we discuss the challenges and solutions to these problems, addressing crucial issues such as anomaly detection and prevention, real-time control, and online learning. We believe that the proposed techniques can be used to overcome some limitations of RL, providing safe and efficient solutions to complex and urgent problems

    Utilitarian Welfare Optimization in the Generalized Vertex Coloring Games: An Implication to Venue Selection in Events Planning

    Full text link
    We consider a general class of multi-agent games in networks, namely the generalized vertex coloring games (G-VCGs), inspired by real-life applications of the venue selection problem in events planning. Certain utility responding to the contemporary coloring assignment will be received by each agent under some particular mechanism, who, striving to maximize his own utility, is restricted to local information thus self-organizing when choosing another color. Our focus is on maximizing some utilitarian-looking welfare objective function concerning the cumulative utilities across the network in a decentralized fashion. Firstly, we investigate on a special class of the G-VCGs, namely Identical Preference VCGs (IP-VCGs) which recovers the rudimentary work by \cite{chaudhuri2008network}. We reveal its convergence even under a completely greedy policy and completely synchronous settings, with a stochastic bound on the converging rate provided. Secondly, regarding the general G-VCGs, a greediness-preserved Metropolis-Hasting based policy is proposed for each agent to initiate with the limited information and its optimality under asynchronous settings is proved using theories from the regular perturbed Markov processes. The policy was also empirically witnessed to be robust under independently synchronous settings. Thirdly, in the spirit of ``robust coloring'', we include an expected loss term in our objective function to balance between the utilities and robustness. An optimal coloring for this robust welfare optimization would be derived through a second-stage MH-policy driven algorithm. Simulation experiments are given to showcase the efficiency of our proposed strategy.Comment: 35 Page

    Automatic Generation of Personalized Recommendations in eCoaching

    Get PDF
    Denne avhandlingen omhandler eCoaching for personlig livsstilsstøtte i sanntid ved bruk av informasjons- og kommunikasjonsteknologi. Utfordringen er å designe, utvikle og teknisk evaluere en prototyp av en intelligent eCoach som automatisk genererer personlige og evidensbaserte anbefalinger til en bedre livsstil. Den utviklede løsningen er fokusert på forbedring av fysisk aktivitet. Prototypen bruker bærbare medisinske aktivitetssensorer. De innsamlede data blir semantisk representert og kunstig intelligente algoritmer genererer automatisk meningsfulle, personlige og kontekstbaserte anbefalinger for mindre stillesittende tid. Oppgaven bruker den veletablerte designvitenskapelige forskningsmetodikken for å utvikle teoretiske grunnlag og praktiske implementeringer. Samlet sett fokuserer denne forskningen på teknologisk verifisering snarere enn klinisk evaluering.publishedVersio

    CLAASP: a Cryptographic Library for the Automated Analysis of Symmetric Primitives

    Get PDF
    This paper introduces CLAASP, a Cryptographic Library for the Automated Analysis of Symmetric Primitives. The library is designed to be modular, extendable, easy to use, generic, efficient and fully automated. It is an extensive toolbox gathering state-of-the-art techniques aimed at simplifying the manual tasks of symmetric primitive designers and analysts. CLAASP is built on top of Sagemath and is open-source under the GPLv3 license. The central input of CLAASP is the description of a cryptographic primitive as a list of connected components in the form of a directed acyclic graph. From this representation, the library can automatically: (1) generate the Python or C code of the primitive evaluation function, (2) execute a wide range of statistical and avalanche tests on the primitive, (3) generate SAT, SMT, CP and MILP models to search, for example, differential and linear trails, (4) measure algebraic properties of the primitive, (5) test neural-based distinguishers. In this work, we also present a comprehensive survey and comparison of other software libraries aiming at similar goals as CLAASP

    Measuring the impact of COVID-19 on hospital care pathways

    Get PDF
    Care pathways in hospitals around the world reported significant disruption during the recent COVID-19 pandemic but measuring the actual impact is more problematic. Process mining can be useful for hospital management to measure the conformance of real-life care to what might be considered normal operations. In this study, we aim to demonstrate that process mining can be used to investigate process changes associated with complex disruptive events. We studied perturbations to accident and emergency (A &E) and maternity pathways in a UK public hospital during the COVID-19 pandemic. Co-incidentally the hospital had implemented a Command Centre approach for patient-flow management affording an opportunity to study both the planned improvement and the disruption due to the pandemic. Our study proposes and demonstrates a method for measuring and investigating the impact of such planned and unplanned disruptions affecting hospital care pathways. We found that during the pandemic, both A &E and maternity pathways had measurable reductions in the mean length of stay and a measurable drop in the percentage of pathways conforming to normative models. There were no distinctive patterns of monthly mean values of length of stay nor conformance throughout the phases of the installation of the hospital’s new Command Centre approach. Due to a deficit in the available A &E data, the findings for A &E pathways could not be interpreted

    A Non-Ideal Epistemology of Disagreement: Pragmatism and the Need for Democratic Inquiry

    Get PDF
    The aim of this thesis is to provide a non-ideal epistemic account of disagreement, one which explains how epistemic agents can find a rational resolution to disagreement in actual epistemic practice. To do this, this thesis will compare two non-ideal epistemic accounts of disagreement which have been proposed within the contemporary philosophical literature. The first is the evidentialist response to disagreement given within the recent literature on the analytic epistemology of disagreement. According to the evidentialist response to disagreement, an epistemic agent can rationally respond to disagreement by evaluating other epistemic agents as higher-order evidence, and adjusting one's belief accordingly. The second is the pragmatist response to disagreement given within the recent literature on the intersection between American pragmatism and democratic theory. According to the pragmatist response to disagreement, a collective group of epistemic agents can come to a rational resolution of disagreement through a process of social inquiry where epistemic agents cooperatively exchange ideas, reasons, and objections, and collectively form plans of action which settle collective belief. This thesis will critically examine both of these accounts, and explain how the pragmatist response to disagreement provides a better account of both the epistemic challenges which disagreement poses, and the method in which epistemic agent can come to rationally resolve disagreement in actual epistemic practice

    Exploring annotations for deductive verification

    Get PDF

    Marker and source-marker reprogramming of Most Permissive Boolean networks and ensembles with BoNesis

    Get PDF
    Boolean networks (BNs) are discrete dynamical systems with applications to the modeling of cellular behaviors. In this paper, we demonstrate how the software BoNesis can be employed to exhaustively identify combinations of perturbations which enforce properties on their fixed points and attractors. We consider marker properties, which specify that some components are fixed to a specific value. We study 4 variants of the marker reprogramming problem: the reprogramming of fixed points, of minimal trap spaces, and of fixed points and minimal trap spaces reachable from a given initial configuration with the most permissive update mode. The perturbations consist of fixing a set of components to a fixed value. They can destroy and create new attractors. In each case, we give an upper bound on their theoretical computational complexity, and give an implementation of the resolution using the BoNesis Python framework. Finally, we lift the reprogramming problems to ensembles of BNs, as supported by BoNesis, bringing insight on possible and universal reprogramming strategies. This paper can be executed and modified interactively.Comment: Notebook available at https://nbviewer.org/github/bnediction/reprogramming-with-bonesis/blob/release/paper.ipyn

    New Characterizations and Efficient Local Search for General Integer Linear Programming

    Full text link
    Integer linear programming (ILP) models a wide range of practical combinatorial optimization problems and has significant impacts in industry and management sectors. This work proposes new characterizations of ILP with the concept of boundary solutions. Motivated by the new characterizations, we develop an efficient local search solver, which is the first local search solver for general ILP validated on a large heterogeneous problem dataset. We propose a new local search framework that switches between three modes, namely Search, Improve, and Restore modes. We design tailored operators adapted to different modes, thus improving the quality of the current solution according to different situations. For the Search and Restore modes, we propose an operator named tight move, which adaptively modifies variables' values, trying to make some constraint tight. For the Improve mode, an efficient operator lift move is proposed to improve the quality of the objective function while maintaining feasibility. Putting these together, we develop a local search solver for integer linear programming called Local-ILP. Experiments conducted on the MIPLIB dataset show the effectiveness of our solver in solving large-scale hard integer linear programming problems within a reasonably short time. Local-ILP is competitive and complementary to the state-of-the-art commercial solver Gurobi and significantly outperforms the state-of-the-art non-commercial solver SCIP. Moreover, our solver establishes new records for 6 MIPLIB open instances. The theoretical analysis of our algorithm is also presented, which shows our algorithm could avoid visiting unnecessary regions and also maintain good connectivity of targeted solutions.Comment: 36 pages, 2 figures, 7 table
    corecore