
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Computer Science Faculty Research & Creative
Works Computer Science

27 Feb 1998

Parallel Genetic Algorithm to Solve the Satisfiability Problem Parallel Genetic Algorithm to Solve the Satisfiability Problem

Nicole Nemer-Preece

Ralph W. Wilkerson
Missouri University of Science and Technology, ralphw@mst.edu

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_facwork

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
N. Nemer-Preece and R. W. Wilkerson, "Parallel Genetic Algorithm to Solve the Satisfiability Problem,"
Proceedings of the ACM Symposium on Applied Computing, pp. 23 - 28, Association for Computing
Machinery, Feb 1998.
The definitive version is available at https://doi.org/10.1145/330560.330565

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been
accepted for inclusion in Computer Science Faculty Research & Creative Works by an authorized administrator of
Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for
redistribution requires the permission of the copyright holder. For more information, please contact
scholarsmine@mst.edu.

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_facwork?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F1268&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F1268&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1145/330560.330565
mailto:scholarsmine@mst.edu

PARALLEL GENETIC ALGORITHM TO SOLVE THE SATISFIABILITY PROBLEM
Nicole Nemer-Preece and Ralph Wilkerson

Computer Science Department
University of Missouri-RoUa

18 Miner Circle
Rolla, Missouri, 65409

nnemer@umr.edu and ralphw@umr.edu

Keywords: parallel processing, genetic algorithms,
satisfiability problem, David-Putnam method, model
generation

ABSTRACT

the input. The size of the input for a SAT problem is the
number of variables in the clauses of the formula. For a
formula with n variables, there are 2 ~ interpretations for that
formula. One method of finding a model for a formula is
with a truth table.

This paper offers a parallel genetic algorithm solution to the
satisfiability problem. It combines components of the
Davis-Putnam method and genetic algorithms for the
solution. This solution is useful in the areas of theorem
proving, constraint satisfaction programming, and VLSI
design. The algorithm is implemented and run on a Paragon.
The results show performance improvement by increasing
the number of nodes. Two parallel methods are compared:
one that implements interprocessor communication and one
that does not. The results show performance improvement
with the method that uses interprocessor communication.

INTRODUCTION

The satisfiability problem (SAT) is determining whether or
not a logic formula can be evaluated true for some
assignment of the logic variables in that formula. This
problem finds much use in the areas of theorem proving,
constraint satisfaction programming, and VLSI design.
In propositional logic, an atom A is a logical variable that

has a value of either true or false, ! or 0. An atom or its
negation is called a literal. ,~ clause C is a disjunction of
literals. For example: CI = A V B V -C. CI is true if and
only if at least one of A, B, or -C is true. Otherwise CI is
false. A formula F is a conjunction of clauses. For example:
FI --CI A C2 A C3. FI is true i f and only i fC l is true and
C2 is true and C3 is true. An assignment of true or false to
the variables in a formula is called an interpretation.

A formula is satisfiable if and only if there exists an
interpretation for the formula that will make the formula
true. Otherwise the formula is unsatisfiable. If the formula
is satisfiable, then the interpretation that satisfies the
formula is called a model. Model generation is one method
of solving the SAT problem. R entails generating an
interpretation for the formula that makes the formula true.
The SAT problem is NP hard, which means that the time

required for the solution is exponential based on the size of

Permission to make digital/hard copy of all or part of this work for personal or
classroom use is granted without lke provided that copies are not made or
distributed for profit or commercial advantage, the copyright notice, the title of the
publication and its date appear, and notice is given that copying is by permission of
ACM, Inc. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

© 1998 ACM 0-89791-969-6/98/0002 3.50

Determining whether F has a model is trivial with the truth
table. Examining the final column of the table can
determine the satisfiability of the formula. If at least one
row has the value of true, then the formula is satisfiable. If
every row in the table evaluates to false in the final column
of the truth table, then the formula is unsatisfiable. This
solution is easyto understand. However, it would take more
than a lifetime to compute on the fastest computer i f the
number of atoms is large.

Compl~ness and soundness are char~eris t ies of a search
method. The truth table solution is an example of a solution
that is complete. Completeness means that given an
unsatisfiable formula, the scorch for the solution can
determine that the formula is unsatisfiable [WOLB92].
The truth table solution is also sound. Soundness means that
no tmsatisfiable formula will be found satisfiable with this
method [WOLB92]. Another sound and complete solution
for the SAT problem is the Davis.Putnam Method [DP60].

DAVIS-PUTNAM METHOD

Using several rules, the Davis-Putnam Method reduces the
search space until it is empty (the formula is satisfable) or
a contradiction occurs (the formula is unsatisfiable). If a
clause has only 1 variable in it, the Rule for Elimination of
One-Literal Clauses can be used. It will assign the variable
in the clause a value to make the clause true and then that
clause can be removed from the formula [1360] If a variable
ooaws only in the positive/ne~tive in all of the clauses, then
The Affirmative-Negative Rule can be used. This rule
assigns that variable true /false. Then all clauses that
contain that variable can be removed from the formula
[DP60]. The Rule for Eliminating Atomic Formulas (also
called the Split Rule) is a process of choosing a single
variable and then assigning that variable the value of true
and assigning that variable the value of false and
determining the satisfiability of the formula in each case
[DP6Ol.

There have been many implementations of the Davis-Putnam
Method [CF90, McC94, SM95, ZS94]. One of these was
developed at Argonne National Labs. It is called

2 3

http://crossmark.crossref.org/dialog/?doi=10.1145%2F330560.330565&domain=pdf&date_stamp=1998-02-27

ANL-DP[McC94]. MACE is a front end to ANL-DP that
allows the input to be in first-order form. MACE uses
clauses produced from OTTER, a high performance theorem
prover, to generate propositional clauses to port into
ANL-DP. MACE converts the first-order form logic into
CNF (conjunctive normal form is a formula that is a
conjunction of clanses where each clause is a disjunction of
literals) for ANL=DP. ANL-DP then uses the Davis-Putnam
Method to search for a model of the formula. This method
has been used to solve various mathematical applications
from combinatorial logic, group theory, ring theory, and
ternary boolean algebra [MeC94].

GENETIC ALGORITHMS

Random search is an example of a search technique that is
sound but not complete. One example of a guided random
search is a genetic algorithm. A genetic algorithm(GA) is a
search method that may reduce the time required to solve
complex problems that are computationally intractable. It
is based on Darwin's "'survival of the fittest" idea. This
method searches for a solution by allowing candidates for the
solution to evolve from the best candidates seen so far.
There are several characteristics of a genetic algorithm that
are defined by parameters. There are no set values for these
parameters. Design of the GA includes manipulating the
parameters to find a better solution. Because the problem
being solved is the satisfiability problem the strings consists
of 0's and l's.

Parent selection is the process of determining which strings
will be used to create the new offspring. Reproduction will
create new offspring with 2 patent strings. This paper uses
a uniform a~ssover and random bits crossover. For random
bits crossover, a random number of bits are chosen to be flip
bits. The first offspring is a duplicate of the first parent and
the second offspring is a duplicate of the second parent.
Then in the flip bit positions, the two offspring swap the
values of the bits in those positions. Survival selection is
the process of determining which of the current generation
and the newly created offspring will live on the next
generation. This selection must ensure that at least some of
the new offspring will live to ensure evolution.

The process of parent selection, retn~uction, and survival
selection continues until a solution is found or until the
number of generations exceeds a maximum number of
generations. Be~_nse this search is random, it in not
complete. If the process continues without finding a
solution, that does not mean that there is no solution. The
very next offspring pool may generate a solution.
Additionally, if there is no solution, this method does not
determine that either. It will continue generating
populations, searching for a solution, with no way of
determining that a solution does not exist.

Algorithm Descriptiea

A hybrid of Davis-Putnam rules and genetic algorithms is
used to determine satisfiability in this work. Two

¢omIxments of the Davis-Putnam procedure will be used and
combined with the genetic search. A typical formula has 45
to 512 atoms. Generating a truth table for problems of these
sizes would take 10 hours to 1.2e129 years assuming it takes
1 nanosecond to generate one row in the truth table.

Before starting the genetic algorithm search for a model,
some of these atoms are classified as "'unchangeable'. If an
atom occt~ only in the positive form, or only in the negative
form, then that atom is assigned a value of true or false
respectively, and marked as unchangeable. This action
implements the Affirmative-Negative Rule l~om
Davis-Ptmmm [DP60]. Ira clause has only a single literal in
it, then that atom is marked as unchangeable and assigned a
value to make that clause true. This action implements the
Rule for Elimination of One-Literal Clauses from
David-Putnam [DP60]. The values for the atoms that are not
marked as unchangeable are then determined by the GA
search. The search space is reduced right from the start.

For the satisfiability problem, the string with the best fitness
will be the string that makes the most number of clauses
true. So if the number of clauses in a formula is M, then a
solution string will have a fitness of M. The initial
population will be randomly generated and the number of
strings in the initial population is 20. The selection method
will be the roulette style selection. Fifteen (15) unique
parents are selected with this method. Each parent is paired
with the best string do far. Each pair reproduces two
offsprin& The crossover method is the uniform crossover.
A new mask is created for each pair-wise reproduction. If
the fitness of the selected parent is above a parameterized
cutoff point then the random bits crossover is used. This
method is used to attempt to slightly change the string to
avoid changing the candidate too much and moving away
from a solution. With fiReen pairs of parents, 30 offspring
are generated. Upon deriving each string, the corresponding
fitness is calculated and stored. If one of these newly
generated offspring has a fitness of M then the process can
terminate with a solution.

Sta~ival selection will ensure that at least some of the new
offspring live on to the next generation. The size of the
survival population is 30. The top 10 best fit offspring
strings survive to the next population. The remaining 20 to
sm'vive to the next population are the 20 most fit among the
ctmm~ population and the offspring combined (not including
the offspring that have already been chosen for survival). In
this process, there are no duplicates to survive to the next
generation. After the entire survival population has been
determined, it becomes the current population for the next
cycle.

This evolution continues until a solution is found (a string
that has a fimess M) or until a maximum number of
genea'ation has been created. The pseudocode for the process
is given below:

2 4

Algorithm GADP
n :=- N - Find_Unchangeables
solved .--'- Createlnitial_Population
gencount := 0
WHILE (! solved AND gencount < MAXGENS)

Select_Parents
solved .'= Reproduction
if(solved)

break;
SelectSurvival
increment gencount

ENDWHILE
if (solved)

Output_solution

The procedure FindUnchangeables marks the variables that
are identified with the first 2 rules of the Davis-Putnam
method as unchangeable. The number of these unchangeable
variables is returned fi'om this function. Therefore, instead
of a candidate string being of length N, it is reduced to
length n, which is N minus the number of variables that are
marked as unchangeable. Create_Initial_Population will
randomly generate 20 strings. For each, the fitness value is
calculated. If one of these strings is a solution,
Create_InitialPopulation returns TRUE; otherwise it
returns FALSE. This flag value is stored in the variable
solved. Select_Parents generates a list of fifteen (15) unique
parents that will be used in the reproduction process.
Reproduction will perform the crossovers with each parent
that was selected paired with the best string so far. Two
offspring are created for each crossover, 30 offspring in total.
Like Createlnitial_Population, Reproduction returns a
TRUE / FALSE for the flag solved.

Algorithm Reproduction
solved .--- FALSE
FOR each selected parents AND NOT solved

solved .--- One Crossover

Algorithm One_Crossover
Create_Mask
GenerateBoth_Offspring
Perform_Mutation_Function
Calculate Fitness(offspringl)
CalculateFitness(offspring2)
IF (either offspringl or offspring2 is a solution)

solved .--- TRUE

Reproduction will call One_Crossover for each parent that
has been selected for reproduction. If One_Crossover
returns TRUE (meaning that a solution has been found) then
the remaining pairs of parents do not perform the
reproduction and Reproduction will return TRUE.
One_Crossover will perform reproduction for one parent

pair. h will use uniform crossover unless the selected parent
has a fitness above cutoff; then it will use random bits
crossover. Two offspring are generated. Each bit of each
string may be mutated with a mutation rate of 0.001. The
fitness of each of the offspring is calculated. If either of the

offspring is a solution, then One_Crossover will return
TRUE; otherwise it returns FALSE.

Table 1 gives a description of the input files used in these
tests. They are the first order input files that are packaged
with MACE. Table 2 shows the results of running GADP on
these input files. The Atoms column shows the number of
variables in the problem that are not marked as
unchangeable by Find_Unchangeables and the total number
of variables. The Gem column is the number of generations
required to find a sequential solution. For the tough-nut.in
input problem, there is no solution found for the formula is
unsatisfiable. In this situation, GADP stops because of the
MAXGENS requirement. MAXGENS is 5000 generations
for these sequential test.

Input
Problem

cl_sw

ordered

Description

combinitorial logic

group theory

ring theory ring

ringunit ring theory

tba ternary boolean algebra

Table 1. In mt Problem Descriptions

Input
Problem

cl sw

ordered

ring

ring_unit

tba

Atoms Clauses
C / T

30 /45 9728

6 4 / 9 6 7728

74/164 14966

52/168 5671

44/105 8688

Table 2. Smnmary of Sequential Results

~ens

1224

1686

4847

4692

3584

PARALLELIZATION

In parallelizing this algorithm, the third component of the
Davis-Putnam method is implemented, the Split Rule.
Given 2 p processors, the top p highest ranking variables that
have not been marked as unchangeable are determined. The
ranking used on the variables is based on the Jeroslow-Wang
Rule [HV95]. Each variable x~ is assigned a value JW
where JW = NC where x~ o¢oa's in clause j, NC is the

2 - ' I

j=l
number of clauses in the formula, and nj is the number of
variables in claase j. The ranking is based on this JW value.
To enumerate the possible interpretations for these p

2 5

¸ , 7 . , ¸ . ~ *

variables, there are 2P interpretations. Each processor will
be assigned one of the interpretations to these p variables
with the highest JW values. These assigned variables are
then marked as unchangeable. The search space is
logarithmically reduced.

Broadcasting and Nonbroadcasting Versions

This work implements two versions of this parallel
algorithm. One version, Broadcasting, allows each processor
to communicate with all of the other processors after every
increment generations. For these tests, increment equals 20.
The other version, Nonbroadcasting, does not allow the
interprocessor communication. In the Broadcasting version,
each processor will broadcast its best fit candidate so far to
all of the other processors. Therefore each processor will
receive p - 1 new strings to consider. The pseudocode for
GADP with Broadcasting is given below:

Algorithm GADP-B(N is number of logic variables in the
CNF formula; and there are 2 p processors in the
environment)
n .-- N - Find_Unchangeables
p -- Mark...Jerosiow-Wang..Variables
n . - - n - p
Assign_Jeroslow-Wang._Variables(p)
solved .-= Create_Initial_Population
gencount .--- 0
WHILE (! solved AND gencount < MAXGENS)

Select_Parents
solved .'= Reproduction
if(solved)

break;
Select_Survival
IF mod(gencount,increment) = 0

Do_Broadcast
solved .'=Add_NewStrings

if (solved)
break;

increment gencount
ENDWHILE
if (solved)

Do Bruadcast
Output_solution

Mark_.Jeroslow-Wang..Variables will determine the p
highest ranking variables based on the Jeroslow-Wang rule.
Assign_Jeroslow- Wang..Variables will assign a value to
those variables based on the current processor number.
Because there are 2P processors, each will have a unique
assignment to give to the p variables. Do_Broadcast will
perform the broadcast that will allow each processor to send
its best fit string to all of the other processors.
Add_New_Strings determines the fitness of each of these
newly received strings and for each string it determines if
that string is better than the worst string in the current
population. If so, that new string replaces the string in the
current population. Duplication of strings is avoided, l fa
new string is a solution, then Add_New_Strings will return
TRUE; otherwise it returns FALSE.

The Nonbroadcasting version does not allow each processor
to communicate with the other processors. Each processor
works independently towards a solution without sharing
information with other processors. If a processor finds a
solution string, it will inform all of the other processors that
a solution has been found. Every increment generations,
each processor will check to see if such a transmission has
occurred. The pseudocode for GADP with No Broadcasting
is given below:

Algorithm GADP-NB(N is number of logic variables in the
CNF formula; and there are 2 p processors in the
environment)
n :=- N - Find_Unchangeables
Mark_Jeroslow-Wang._Variables(p)
n - - n - p
Assign._Jeroslow-Wang..Variables(p)
solved ~ Create_Initial_Population
gencount .--- 0
WHILE (! solved AND geneount < MAXGENS)

Select Parents
solved := Reproduction
if(solved)

break;
Select_Survival
IF mod(gencotmt, increment) ~ 0

found.--Check Solutiun
if(found)

break;
increment gencount

ENDWHILE
if(solved)

Inform_Others
Outputsolution

At Check_Solution each processor will probe the receive
buffer to see if any other processor has found a solution.
This function will return TRUE or FALSE. When a
processor does find a solution, it will Inform_Others so that
the other processors can stop searching.

RESULTS

The results for the parallel versions are given in Tables 2,
3 and 4. Each test is run 15 times. The PEs columns tells
the number of processors used for that test. The Best C_,-ens
tells the number of generations required to find a solution for
the best run oftbe 15 tests. The Worst Gem column tells the
number of generations required to find a solution for the
worst of the 15 test and Avg Gens is the average number of
generations required for the tests that found a solution. The
No Sols column states the number of tests that did not
generate a solution within MAXGENS generations.
MAXGENS is 1000 for these parallel tests.

2 6

Input
Problem

el_sw

PEs Best Worst Avg No Sols

32 10 46 23.9 0

16 14 80 36.3 0

8 20 136 45.9 0

4 4 723 197.5 0

ordered 32 5 100 33.9 0

,i

ring

16 40 80 54.7 0

8 52 118 79.5 0

4 42 177 109.3 0

32 80 760 316.4 5

16 226 760 482.9 5

8 150 760 530.9 7

4 77 978 602.4 8

ring_unit 32 60 193 99.8 3

16 73 380 188.1 3

8 69 800 254.8 6

4 180 536 326.7 6

tba 32 40 860 313.2 2

16 28 500 231.4 4

8 32 500 242.2 6

4 20 660 421.3 9

Table 3. Parallel Results with Broadcasting

Table 3 summarizes the results for the implementation of
GADP-B, the version h inte~rocessor communication every
increment generations. The results for this parallel
b _rt~a,!ca___sting implenmatafion has better performance over the
sequential implementation. For each of the input files (not
including the tough-nut problem), the parallel version finds
a solution in fewer generations than the sequential version.
The ~ of improvement for the different input files range
from 6 to 15 with 4 processors. The parallel version with 4
processors for cl_sw is 6 times better than the sequential
version and the parallel version with 4 processors for
ordered_semi is 15 times better than the sequential version.

This is better than linear speedup with this sequential
version.

Within these parallel broadcasting tests, there is
improvement with an increase in processors. In all cases
except for one, the average number of generations required

to find a solution decreases with an increase in the number
of processors. With the tba input file when the number of
nodes increases from 16 to 32, the average generations also
inczeases. This is unexpected. In one case, the improvement
is considerable. With the ¢l..sw input file, when the number
of nodes increases from 4 to 8 (a factor of 2) the average
generations decreases by more than 50%.
This parallel broadcasting version shows improvements by
increasing the number of processors in the No Sols column
as well. In most cases, the number of tests that do not find
a solution decreases with an increase in processors. There
are several cases where the it~crease in processors does not
effect the number of tests that do not find a solution. Not a
single case finds an increase in the number of tests that do
not find a solution with an increase in the number of
processors. This is expected, The Best Gens and Worst
Gcns columns arc not as infonnadve for there is no a general
trend in the performano~ as the number of processors
increases.

Table 4 summarizes the results for the implementation of
GADP-NB, the version with no interprocessor
communication. The results for this parallel
non _broadca___sting implementation has better performance over
the sequential implementation. For each of the input files
(not including the tough-nut problem), the parallel version
finds a solution in fewer generations that the sequential
version. The factors of improvement for the different input
files range from 4 to 14 with 4 processors. The parallel
version with 4 processors for cl_sw is 4 times better than the
sequential vecsion and the parallel version with 4 processors
for orderedsemi is 14 times better than the sequential
version. This is better than linear speedup with this
sequential version.
Within these parallel nonbroadcasting test, in all cases the

average generations required to find a solution decreases
with an increase in number of processors. Again with the
cl_sw input file going from 4 to 8 processors, the
improvement is considerable as the average generations
decreases by more than 50%,

As with the broadcasting version, there is a decrease in the
number of tests that find no solution with an increase in
number of processors in most cases. There are several where
the increase in number of processors does not effect the
number of tests that find no solution.

Comparing table 3 with table 4 shows expected
improvement for the broadcasting version over the
nonbroadcasting version. In every case, the average
generations required to find a solution is better for the
broadcasting version than the nonbroadcasting version. In
every case except one, the number of tests that find no
solution is lower for the broadcasting version than the
nonbroadcasting version. With the tba input file and 4
processors, the two versions have the same number of tests
that fail to find a solution. These results show the enhanced
performance that is given for the broadcasting version,
despite the overhead of the intetprcg~essor communication.

2 7

InputPro PEs Best Worst Avg No Sols
blem

cl_sw 32 3 161 52.9 0

16 16 292 80.2 0

8 II 374 106.1 0

4 19 632 260.1 1

ordered 32 38 132 69.2 0

16 45 199 103.6 0

8 60 227 108.3 0

4 31 362 119.5 0

ring 32 121 710 415.8 10

16 249 674 449.8 l0

8 309 969 620.0 12

4 899 949 924.0 13

ring__unit 32 103 671 311.3 5

16 99 576 315.5 7

8 218 801 534.9 8

4 152 851 589.1 8

tba 32 56 919 335.3 7

16 162 887 417.7 9

8 103 854 512.5 9

4 128 898 550.7 9

Table 4. Parallel Results with Non Broadcasting

CONCLUSIONS

This work has shown an increase in performance with the
parallel version, especially the broadcasting version.
Applying the Davis-Putaam rules before the genetic
algorithm roduc¢s the search Slm~ logarithmically. The
parallel versions have super linear speedup over this
sequential implementation. In most cases, an increase in
processors decreases the average number of generations
required to find a solution and decreases the number of tests
that do not find a solution. In every case, the broadcasting
version outperforms the nonbroadcasting version for the
average number of generations required to find a solution
and (with the exception of I case) for the number of tests
that do not find a solution.

REFERENCES
[CF90] Chen, W. and Fang, M. Theorem Proving in

Propositional Logic on Vector Computers Using a
Generalized Davis-Putnam Procedure.
Proceedings of Supercomputing 1990, pp. 658 -
665, 1990.

[DP60]

[(3o189]

[HV951

[McC94]

[Shu96]

[wo921

Davis, M. and Putnam, H. A Computing
Procedure for Quantification Theory. Journal of
the Association for Computing Machinery, Vol. 7,
No. 3, pp. 201 - 215, 1960.

Goldberg, David E. Genetic Algorithms in Search,
Optimization, and Machine Learning. Reading,
Massachusettts: Addison-Wesley Publishing
Company, Inc., 1989.

Hooker, J. N. and Vinay, V. Branching Rules for
Satisfiability. Journal of Automated Reasoning,
Vol. 15, No. 3, pp. 359 - 383, 1995.

McCune, W. A Davis-Putnam Program and its
Application to Finite First-Order Model Scorch:
Quasigroup Existence Problems. Technical
Report, Argonne National Laboratory, 1994.

Shumsky, Olga. New Methods in Finite First.
Order Model Search. Masters Thesis, University
of Missouri-Rolla, Rolla, Missouri, 1996.

Wos, Larry;, Overbeek, Ross; Luck, Ewing; and
Boyle, Jim. Automated Reasoning: Introduction
and Applications. New York: McCwaw-l-fiil, Inc.,
1992.

[ZS94] Zhang, H. and Stick,l, M. E.. Implement!ng the
Davis-Putnam Algorithm by Tries, 1994.

2 8

	Parallel Genetic Algorithm to Solve the Satisfiability Problem
	Recommended Citation

	tmp.1680285817.pdf.FMg1i

