
Missouri University of Science and Technology Missouri University of Science and Technology 

Scholars' Mine Scholars' Mine 

Computer Science Faculty Research & Creative 
Works Computer Science 

27 Feb 1998 

Parallel Genetic Algorithm to Solve the Satisfiability Problem Parallel Genetic Algorithm to Solve the Satisfiability Problem 

Nicole Nemer-Preece 

Ralph W. Wilkerson 
Missouri University of Science and Technology, ralphw@mst.edu 

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_facwork 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
N. Nemer-Preece and R. W. Wilkerson, "Parallel Genetic Algorithm to Solve the Satisfiability Problem," 
Proceedings of the ACM Symposium on Applied Computing, pp. 23 - 28, Association for Computing 
Machinery, Feb 1998. 
The definitive version is available at https://doi.org/10.1145/330560.330565 

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been 
accepted for inclusion in Computer Science Faculty Research & Creative Works by an authorized administrator of 
Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for 
redistribution requires the permission of the copyright holder. For more information, please contact 
scholarsmine@mst.edu. 

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_facwork?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F1268&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F1268&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1145/330560.330565
mailto:scholarsmine@mst.edu


PARALLEL GENETIC ALGORITHM TO SOLVE THE SATISFIABILITY PROBLEM 
Nicole Nemer-Preece and Ralph Wilkerson 

Computer Science Department 
University of Missouri-RoUa 

18 Miner Circle 
Rolla, Missouri, 65409 

nnemer@umr.edu and ralphw@umr.edu 

Keywords: parallel processing, genetic algorithms, 
satisfiability problem, David-Putnam method, model 
generation 

ABSTRACT 

the input. The size of the input for a SAT problem is the 
number of  variables in the clauses of  the formula. For a 
formula with n variables, there are 2 ~ interpretations for that 
formula. One method of  finding a model for a formula is 
with a truth table. 

This paper offers a parallel genetic algorithm solution to the 
satisfiability problem. It combines components of the 
Davis-Putnam method and genetic algorithms for the 
solution. This solution is useful in the areas of  theorem 
proving, constraint satisfaction programming, and VLSI 
design. The algorithm is implemented and run on a Paragon. 
The results show performance improvement by increasing 
the number of nodes. Two parallel methods are compared: 
one that implements interprocessor communication and one 
that does not. The results show performance improvement 
with the method that uses interprocessor communication. 

INTRODUCTION 

The satisfiability problem (SAT) is determining whether or 
not a logic formula can be evaluated true for some 
assignment of the logic variables in that formula. This 
problem finds much use in the areas of theorem proving, 
constraint satisfaction programming, and VLSI design. 
In propositional logic, an atom A is a logical variable that 

has a value of either true or false, ! or 0. An atom or its 
negation is called a literal. ,~ clause C is a disjunction of 
literals. For example: CI = A V B V -C.  CI is true if and 
only if at least one of A, B, or -C is true. Otherwise CI is 
false. A formula F is a conjunction of  clauses. For example: 
FI --CI A C2 A C3. FI is true i f  and only i fC l  is true and 
C2 is true and C3 is true. An assignment of true or false to 
the variables in a formula is called an interpretation. 

A formula is satisfiable if  and only if  there exists an 
interpretation for the formula that will make the formula 
true. Otherwise the formula is unsatisfiable. If the formula 
is satisfiable, then the interpretation that satisfies the 
formula is called a model. Model generation is one method 
of  solving the SAT problem. R entails generating an 
interpretation for the formula that makes the formula true. 
The SAT problem is NP hard, which means that the time 

required for the solution is exponential based on the size of 
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Determining whether F has a model is trivial with the truth 
table. Examining the final column of the table can 
determine the satisfiability of  the formula. If at least one 
row has the value of  true, then the formula is satisfiable. If 
every row in the table evaluates to false in the final column 
of the truth table, then the formula is unsatisfiable. This 
solution is easyto understand. However, it would take more 
than a lifetime to compute on the fastest computer i f  the 
number of  atoms is large. 

Compl~ness and soundness are char~eris t ies  of  a search 
method. The truth table solution is an example of  a solution 
that is complete. Completeness means that given an 
unsatisfiable formula, the scorch for the solution can 
determine that the formula is unsatisfiable [WOLB92]. 
The truth table solution is also sound. Soundness means that 
no tmsatisfiable formula will be found satisfiable with this 
method [WOLB92]. Another sound and complete solution 
for the SAT problem is the Davis.Putnam Method [DP60]. 

DAVIS-PUTNAM METHOD 

Using several rules, the Davis-Putnam Method reduces the 
search space until it is empty (the formula is satisfable) or 
a contradiction occurs (the formula is unsatisfiable). If a 
clause has only 1 variable in it, the Rule for Elimination of 
One-Literal Clauses can be used. It will assign the variable 
in the clause a value to make the clause true and then that 
clause can be removed from the formula [1360] If a variable 
ooaws only in the positive/ne~tive in all of the clauses, then 
The Affirmative-Negative Rule can be used. This rule 
assigns that variable true /false. Then all clauses that 
contain that variable can be removed from the formula 
[DP60]. The Rule for Eliminating Atomic Formulas (also 
called the Split Rule) is a process of choosing a single 
variable and then assigning that variable the value of true 
and assigning that variable the value of false and 
determining the satisfiability of the formula in each case 
[DP6Ol. 

There have been many implementations of  the Davis-Putnam 
Method [CF90, McC94, SM95, ZS94]. One of  these was 
developed at Argonne National Labs. It is called 
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ANL-DP[McC94]. MACE is a front end to ANL-DP that 
allows the input to be in first-order form. MACE uses 
clauses produced from OTTER, a high performance theorem 
prover, to generate propositional clauses to port into 
ANL-DP. MACE converts the first-order form logic into 
CNF (conjunctive normal form is a formula that is a 
conjunction of  clanses where each clause is a disjunction of  
literals) for ANL=DP. ANL-DP then uses the Davis-Putnam 
Method to search for a model of  the formula. This method 
has been used to solve various mathematical applications 
from combinatorial logic, group theory, ring theory, and 
ternary boolean algebra [MeC94]. 

GENETIC ALGORITHMS 

Random search is an example of  a search technique that is 
sound but not complete. One example of a guided random 
search is a genetic algorithm. A genetic algorithm(GA) is a 
search method that may reduce the time required to solve 
complex problems that are computationally intractable. It 
is based on Darwin's "'survival of the fittest" idea. This 
method searches for a solution by allowing candidates for the 
solution to evolve from the best candidates seen so far. 
There are several characteristics of  a genetic algorithm that 
are defined by parameters. There are no set values for these 
parameters. Design of  the GA includes manipulating the 
parameters to find a better solution. Because the problem 
being solved is the satisfiability problem the strings consists 
of  0's and l's. 

Parent selection is the process of  determining which strings 
will be used to create the new offspring. Reproduction will 
create new offspring with 2 patent strings. This paper uses 
a uniform a~ssover and random bits crossover. For random 
bits crossover, a random number of  bits are chosen to be flip 
bits. The first offspring is a duplicate of  the first parent and 
the second offspring is a duplicate of  the second parent. 
Then in the flip bit positions, the two offspring swap the 
values of  the bits in those positions. Survival selection is 
the process of  determining which of  the current generation 
and the newly created offspring will live on the next 
generation. This selection must ensure that at least some of 
the new offspring will live to ensure evolution. 

The process of  parent selection, retn~uction, and survival 
selection continues until a solution is found or until the 
number of  generations exceeds a maximum number of  
generations. Be~_nse this search is random, it in not 
complete. If the process continues without finding a 
solution, that does not mean that there is no solution. The 
very next offspring pool may generate a solution. 
Additionally, if there is no solution, this method does not 
determine that either. It will continue generating 
populations, searching for a solution, with no way of  
determining that a solution does not exist. 

Algorithm Descriptiea 

A hybrid of  Davis-Putnam rules and genetic algorithms is 
used to determine satisfiability in this work. Two 

¢omIxments of the Davis-Putnam procedure will be used and 
combined with the genetic search. A typical formula has 45 
to 512 atoms. Generating a truth table for problems of these 
sizes would take 10 hours to 1.2e129 years assuming it takes 
1 nanosecond to generate one row in the truth table. 

Before starting the genetic algorithm search for a model, 
some of these atoms are classified as "'unchangeable'. If an 
atom occt~ only in the positive form, or only in the negative 
form, then that atom is assigned a value of true or false 
respectively, and marked as unchangeable. This action 
implements the Affirmative-Negative Rule l~om 
Davis-Ptmmm [DP60]. Ira clause has only a single literal in 
it, then that atom is marked as unchangeable and assigned a 
value to make that clause true. This action implements the 
Rule for Elimination of  One-Literal Clauses from 
David-Putnam [DP60]. The values for the atoms that are not 
marked as unchangeable are then determined by the GA 
search. The search space is reduced right from the start. 

For the satisfiability problem, the string with the best fitness 
will be the string that makes the most number of  clauses 
true. So if the number of  clauses in a formula is M, then a 
solution string will have a fitness of  M. The initial 
population will be randomly generated and the number of  
strings in the initial population is 20. The selection method 
will be the roulette style selection. Fifteen (15) unique 
parents are selected with this method. Each parent is paired 
with the best string do far. Each pair reproduces two 
offsprin& The crossover method is the uniform crossover. 
A new mask is created for each pair-wise reproduction. If 
the fitness of  the selected parent is above a parameterized 
cutoff point then the random bits crossover is used. This 
method is used to attempt to slightly change the string to 
avoid changing the candidate too much and moving away 
from a solution. With fiReen pairs of  parents, 30 offspring 
are generated. Upon deriving each string, the corresponding 
fitness is calculated and stored. If one of  these newly 
generated offspring has a fitness of  M then the process can 
terminate with a solution. 

Sta~ival selection will ensure that at least some of the new 
offspring live on to the next generation. The size of  the 
survival population is 30. The top 10 best fit offspring 
strings survive to the next population. The remaining 20 to 
sm'vive to the next population are the 20 most fit among the 
ctmm~ population and the offspring combined (not including 
the offspring that have already been chosen for survival). In 
this process, there are no duplicates to survive to the next 
generation. After the entire survival population has been 
determined, it becomes the current population for the next 
cycle. 

This evolution continues until a solution is found (a string 
that has a fimess M) or until a maximum number of  
genea'ation has been created. The pseudocode for the process 
is given below: 
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Algorithm GADP 
n :=- N - Find_Unchangeables 
solved .--'- Createlnitial_Population 
gencount := 0 
WHILE ( ! solved AND gencount < MAXGENS) 

Select_Parents 
solved .'= Reproduction 
if(solved) 

break; 
SelectSurvival 
increment gencount 

ENDWHILE 
if (solved) 

Output_solution 

The procedure FindUnchangeables marks the variables that 
are identified with the first 2 rules of the Davis-Putnam 
method as unchangeable. The number of these unchangeable 
variables is returned fi'om this function. Therefore, instead 
of a candidate string being of length N, it is reduced to 
length n, which is N minus the number of variables that are 
marked as unchangeable. Create_Initial_Population will 
randomly generate 20 strings. For each, the fitness value is 
calculated. If one of these strings is a solution, 
Create_InitialPopulation returns TRUE; otherwise it 
returns FALSE. This flag value is stored in the variable 
solved. Select_Parents generates a list of fifteen (15) unique 
parents that will be used in the reproduction process. 
Reproduction will perform the crossovers with each parent 
that was selected paired with the best string so far. Two 
offspring are created for each crossover, 30 offspring in total. 
Like Createlnitial_Population, Reproduction returns a 
TRUE / FALSE for the flag solved. 

Algorithm Reproduction 
solved .--- FALSE 
FOR each selected parents AND NOT solved 

solved .--- One Crossover 

Algorithm One_Crossover 
Create_Mask 
GenerateBoth_Offspring 
Perform_Mutation_Function 
Calculate Fitness(offspringl) 
CalculateFitness(offspring2) 
IF (either offspringl or offspring2 is a solution) 

solved .--- TRUE 

Reproduction will call One_Crossover for each parent that 
has been selected for reproduction. If One_Crossover 
returns TRUE (meaning that a solution has been found) then 
the remaining pairs of parents do not perform the 
reproduction and Reproduction will return TRUE. 
One_Crossover will perform reproduction for one parent 

pair. h will use uniform crossover unless the selected parent 
has a fitness above cutoff; then it will use random bits 
crossover. Two offspring are generated. Each bit of each 
string may be mutated with a mutation rate of  0.001. The 
fitness of each of  the offspring is calculated. If either of  the 

offspring is a solution, then One_Crossover will return 
TRUE; otherwise it returns FALSE. 

Table 1 gives a description of the input files used in these 
tests. They are the first order input files that are packaged 
with MACE. Table 2 shows the results of running GADP on 
these input files. The Atoms column shows the number of 
variables in the problem that are not marked as 
unchangeable by Find_Unchangeables and the total number 
of variables. The Gem column is the number of generations 
required to find a sequential solution. For the tough-nut.in 
input problem, there is no solution found for the formula is 
unsatisfiable. In this situation, GADP stops because of the 
MAXGENS requirement. MAXGENS is 5000 generations 
for these sequential test. 

Input 
Problem 

cl_sw 

ordered 

Description 

combinitorial logic 

group theory 

ring theory ring 

ringunit ring theory 

tba ternary boolean algebra 

Table 1. In mt Problem Descriptions 

Input 
Problem 

cl sw 

ordered 

ring 

ring_unit 

tba 

Atoms Clauses 
C / T  

30 /45  9728 

6 4 / 9 6  7728 

74/164 14966 

52/168 5671 

44/105 8688 

Table 2. Smnmary of  Sequential Results 

~ens 

1224 

1686 

4847 

4692 

3584 

PARALLELIZATION 

In parallelizing this algorithm, the third component of  the 
Davis-Putnam method is implemented, the Split Rule. 
Given 2 p processors, the top p highest ranking variables that 
have not been marked as unchangeable are determined. The 
ranking used on the variables is based on the Jeroslow-Wang 
Rule [HV95]. Each variable x~ is assigned a value JW 
where JW = NC where x~ o¢oa's in clause j, NC is the 

2 - ' I  

j=l 
number of clauses in the formula, and nj is the number of 
variables in claase j. The ranking is based on this JW value. 
To enumerate the possible interpretations for these p 
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variables, there are 2P interpretations. Each processor will 
be assigned one of  the interpretations to these p variables 
with the highest JW values. These assigned variables are 
then marked as unchangeable. The search space is 
logarithmically reduced. 

Broadcasting and Nonbroadcasting Versions 

This work implements two versions of  this parallel 
algorithm. One version, Broadcasting, allows each processor 
to communicate with all of  the other processors after every 
increment generations. For these tests, increment equals 20. 
The other version, Nonbroadcasting, does not allow the 
interprocessor communication. In the Broadcasting version, 
each processor will broadcast its best fit candidate so far to 
all of  the other processors. Therefore each processor will 
receive p - 1 new strings to consider. The pseudocode for 
GADP with Broadcasting is given below: 

Algorithm GADP-B(N is number of  logic variables in the 
CNF formula; and there are 2 p processors in the 
environment) 
n .-- N - Find_Unchangeables 
p -- Mark...Jerosiow-Wang..Variables 
n . - - n - p  
Assign_Jeroslow-Wang._Variables(p) 
solved .-= Create_Initial_Population 
gencount .--- 0 
WHILE ( ! solved AND gencount < MAXGENS) 

Select_Parents 
solved .'= Reproduction 
if(solved) 

break; 
Select_Survival 
IF mod(gencount,increment) = 0 

Do_Broadcast 
solved .'=Add_NewStrings 

if (solved) 
break; 

increment gencount 
ENDWHILE 
if (solved) 

Do Bruadcast 
Output_solution 

Mark_.Jeroslow-Wang..Variables will determine the p 
highest ranking variables based on the Jeroslow-Wang rule. 
Assign_Jeroslow- Wang..Variables will assign a value to 
those variables based on the current processor number. 
Because there are 2P processors, each will have a unique 
assignment to give to the p variables. Do_Broadcast will 
perform the broadcast that will allow each processor to send 
its best fit string to all of  the other processors. 
Add_New_Strings determines the fitness of  each of  these 
newly received strings and for each string it determines if 
that string is better than the worst string in the current 
population. If so, that new string replaces the string in the 
current population. Duplication of  strings is avoided, l fa  
new string is a solution, then Add_New_Strings will return 
TRUE; otherwise it returns FALSE. 

The Nonbroadcasting version does not allow each processor 
to communicate with the other processors. Each processor 
works independently towards a solution without sharing 
information with other processors. If a processor finds a 
solution string, it will inform all of the other processors that 
a solution has been found. Every increment generations, 
each processor will check to see if such a transmission has 
occurred. The pseudocode for GADP with No Broadcasting 
is given below: 

Algorithm GADP-NB(N is number of logic variables in the 
CNF formula; and there are 2 p processors in the 
environment) 
n :=- N - Find_Unchangeables 
Mark_Jeroslow-Wang._Variables(p) 
n - - n - p  
Assign._Jeroslow-Wang..Variables(p) 
solved ~ Create_Initial_Population 
gencount .--- 0 
WHILE ( ! solved AND geneount < MAXGENS) 

Select Parents 
solved := Reproduction 
if(solved) 

break; 
Select_Survival 
IF mod(gencotmt, increment) ~ 0 

found.--Check Solutiun 
if(found) 

break; 
increment gencount 

ENDWHILE 
if(solved) 

Inform_Others 
Outputsolution 

At Check_Solution each processor will probe the receive 
buffer to see if  any other processor has found a solution. 
This function will return TRUE or FALSE. When a 
processor does find a solution, it will Inform_Others so that 
the other processors can stop searching. 

RESULTS 

The results for the parallel versions are given in Tables 2, 
3 and 4. Each test is run 15 times. The PEs columns tells 
the number of processors used for that test. The Best C_,-ens 
tells the number of generations required to find a solution for 
the best run oftbe 15 tests. The Worst Gem column tells the 
number of  generations required to find a solution for the 
worst of the 15 test and Avg Gens is the average number of  
generations required for the tests that found a solution. The 
No Sols column states the number of  tests that did not 
generate a solution within MAXGENS generations. 
MAXGENS is 1000 for these parallel tests. 
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Input 
Problem 

el_sw 

PEs Best Worst Avg No Sols 

32 10 46 23.9 0 

16 14 80 36.3 0 

8 20 136 45.9 0 

4 4 723 197.5 0 

ordered 32 5 100 33.9 0 

,i 

ring 

16 40 80 54.7 0 

8 52 118 79.5 0 

4 42 177 109.3 0 

32 80 760 316.4 5 

16 226 760 482.9 5 

8 150 760 530.9 7 

4 77 978 602.4 8 

ring_unit 32 60 193 99.8 3 

16 73 380 188.1 3 

8 69 800 254.8 6 

4 180 536 326.7 6 

tba 32 40 860 313.2 2 

16 28 500 231.4 4 

8 32 500 242.2 6 

4 20 660 421.3 9 

Table 3. Parallel Results with Broadcasting 

Table 3 summarizes the results for the implementation of  
GADP-B, the version h inte~rocessor communication every 
increment generations. The results for this parallel 
b _rt~a,!ca___sting implenmatafion has better performance over the 
sequential implementation. For each of the input files (not 
including the tough-nut problem), the parallel version finds 
a solution in fewer generations than the sequential version. 
The ~ of improvement for the different input files range 
from 6 to 15 with 4 processors. The parallel version with 4 
processors for cl_sw is 6 times better than the sequential 
version and the parallel version with 4 processors for 
ordered_semi is 15 times better than the sequential version. 

This is better than linear speedup with this sequential 
version. 

Within these parallel broadcasting tests, there is 
improvement with an increase in processors. In all cases 
except for one, the average number of generations required 

to find a solution decreases with an increase in the number 
of  processors. With the tba input file when the number of 
nodes increases from 16 to 32, the average generations also 
inczeases. This is unexpected. In one case, the improvement 
is considerable. With the ¢l..sw input file, when the number 
of  nodes increases from 4 to 8 (a factor of 2) the average 
generations decreases by more than 50%. 
This parallel broadcasting version shows improvements by 
increasing the number of  processors in the No Sols column 
as well. In most cases, the number of  tests that do not find 
a solution decreases with an increase in processors. There 
are several cases where the it~crease in processors does not 
effect the number of  tests that do not find a solution. Not a 
single case finds an increase in the number of  tests that do 
not find a solution with an increase in the number of 
processors. This is expected, The Best Gens and Worst 
Gcns columns arc not as infonnadve for there is no a general 
trend in the performano~ as the number of  processors 
increases. 

Table 4 summarizes the results for the implementation of 
GADP-NB, the version with no interprocessor 
communication. The results for this parallel 
non _broadca___sting implementation has better performance over 
the sequential implementation. For each of  the input files 
(not including the tough-nut problem), the parallel version 
finds a solution in fewer generations that the sequential 
version. The factors of  improvement for the different input 
files range from 4 to 14 with 4 processors. The parallel 
version with 4 processors for cl_sw is 4 times better than the 
sequential vecsion and the parallel version with 4 processors 
for orderedsemi is 14 times better than the sequential 
version. This is better than linear speedup with this 
sequential version. 
Within these parallel nonbroadcasting test, in all cases the 

average generations required to find a solution decreases 
with an increase in number of  processors. Again with the 
cl_sw input file going from 4 to 8 processors, the 
improvement is considerable as the average generations 
decreases by more than 50%, 

As with the broadcasting version, there is a decrease in the 
number of  tests that find no solution with an increase in 
number of processors in most cases. There are several where 
the increase in number of  processors does not effect the 
number of  tests that find no solution. 

Comparing table 3 with table 4 shows expected 
improvement for the broadcasting version over the 
nonbroadcasting version. In every case, the average 
generations required to find a solution is better for the 
broadcasting version than the nonbroadcasting version. In 
every case except one, the number of  tests that find no 
solution is lower for the broadcasting version than the 
nonbroadcasting version. With the tba input file and 4 
processors, the two versions have the same number of  tests 
that fail to find a solution. These results show the enhanced 
performance that is given for the broadcasting version, 
despite the overhead of  the intetprcg~essor communication. 
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InputPro PEs Best Worst Avg No Sols 
blem 

cl_sw 32 3 161 52.9 0 

16 16 292 80.2 0 

8 II  374 106.1 0 

4 19 632 260.1 1 

ordered 32 38 132 69.2 0 

16 45 199 103.6 0 

8 60 227 108.3 0 

4 31 362 119.5 0 

ring 32 121 710 415.8 10 

16 249 674 449.8 l0 

8 309 969 620.0 12 

4 899 949 924.0 13 

ring__unit 32 103 671 311.3 5 

16 99 576 315.5 7 

8 218 801 534.9 8 

4 152 851 589.1 8 

tba 32 56 919 335.3 7 

16 162 887 417.7 9 

8 103 854 512.5 9 

4 128 898 550.7 9 

Table 4. Parallel Results with Non Broadcasting 

CONCLUSIONS 

This work has shown an increase in performance with the 
parallel version, especially the broadcasting version. 
Applying the Davis-Putaam rules before the genetic 
algorithm roduc¢s the search Slm~ logarithmically. The 
parallel versions have super linear speedup over this 
sequential implementation. In most cases, an increase in 
processors decreases the average number of generations 
required to find a solution and decreases the number of tests 
that do not find a solution. In every case, the broadcasting 
version outperforms the nonbroadcasting version for the 
average number of generations required to find a solution 
and (with the exception of I case) for the number of tests 
that do not find a solution. 
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