10,572 research outputs found

    Efficient implicit FEM simulation of sheet metal forming

    Get PDF
    For the simulation of industrial sheet forming processes, the time discretisation is\ud one of the important factors that determine the accuracy and efficiency of the algorithm. For\ud relatively small models, the implicit time integration method is preferred, because of its inherent\ud equilibrium check. For large models, the computation time becomes prohibitively large and, in\ud practice, often explicit methods are used. In this contribution a strategy is presented that enables\ud the application of implicit finite element simulations for large scale sheet forming analysis.\ud Iterative linear equation solvers are commonly considered unsuitable for shell element models.\ud The condition number of the stiffness matrix is usually very poor and the extreme reduction\ud of CPU time that is obtained in 3D bulk simulations is not reached in sheet forming simulations.\ud Adding mass in an implicit time integration method has a beneficial effect on the condition number.\ud If mass scaling is usedā€”like in explicit methodsā€”iterative linear equation solvers can lead\ud to very efficient implicit time integration methods, without restriction to a critical time step and\ud with control of the equilibrium error in every increment. Time savings of a factor of 10 and more\ud can easily be reached, compared to the use of conventional direct solvers.\ud

    Exploiting replication in distributed systems

    Get PDF
    Techniques are examined for replicating data and execution in directly distributed systems: systems in which multiple processes interact directly with one another while continuously respecting constraints on their joint behavior. Directly distributed systems are often required to solve difficult problems, ranging from management of replicated data to dynamic reconfiguration in response to failures. It is shown that these problems reduce to more primitive, order-based consistency problems, which can be solved using primitives such as the reliable broadcast protocols. Moreover, given a system that implements reliable broadcast primitives, a flexible set of high-level tools can be provided for building a wide variety of directly distributed application programs

    Equivalent Permeability of Step-Lap Joints of Transformer Cores: Computational and Experimental Considerations

    No full text
    The paper develops an efficient computational method for establishing equivalent characteristics of magnetic joints of transformer cores, with special emphasis on step-lap design. By introducing an equivalent material, the method allows the real three-dimensional structure of the laminated thin sheets to be treated computationally as a two-dimensional problem and enables comparative analysis of designs. The characteristics of the equivalent material are established by minimizing the magnetic energy of the system. To verify the proposed approach, a series of experiments have been conducted. First, the anisotropic characteristics of the step-lap were established, and then space components of the flux density at specified positions measured. This enabled detailed analysis of the flux distribution in the step-lap region, in particular the way in which the flux travels between the laminations close to the air-gap steps. Encouraging correlation between the homogenized 2-D model and experiment has been observed

    Virtual manufacturing: prediction of work piece geometric quality by considering machine and set-up

    Get PDF
    Lien vers la version Ć©diteur: http://www.tandfonline.com/doi/full/10.1080/0951192X.2011.569952#.U4yZIHeqP3UIn the context of concurrent engineering, the design of the parts, the production planning and the manufacturing facility must be considered simultaneously. The design and development cycle can thus be reduced as manufacturing constraints are taken into account as early as possible. Thus, the design phase takes into account the manufacturing constraints as the customer requirements; more these constraints must not restrict the creativity of design. Also to facilitate the choice of the most suitable system for a specific process, Virtual Manufacturing is supplemented with developments of numerical computations (Altintas et al. 2005, Bianchi et al. 1996) in order to compare at low cost several solutions developed with several hypothesis without manufacturing of prototypes. In this context, the authors want to predict the work piece geometric more accurately by considering machine defects and work piece set-up, through the use of process simulation. A particular case study based on a 3 axis milling machine will be used here to illustrate the authorsā€™ point of view. This study focuses on the following geometric defects: machine geometric errors, work piece positioning errors due to fixture system and part accuracy

    On the relation between different parametrizations of finite rotations for shells

    Get PDF
    In this work we present interrelations between different finite rotation parametrizations for geometrically exact classical shell models (i.e. models without drilling rotation). In these kind of models the finite rotations are unrestricted in size but constrained in the 3-d space. In the finite element approximation we use interpolation that restricts the treatment of rotations to the finite element nodes. Mutual relationships between different parametrizations are very clearly established and presented by informative commutative diagrams. The pluses and minuses of different parametrizations are discussed and the finite rotation terms arising in the linearization are given in their explicit forms

    scatterplot3d - An R Package for Visualizing Multivariate Data

    Get PDF
    Scatterplot3d is an R package for the visualization of multivariate data in a three dimensional space. R is a "language for data analysis and graphics". In this paper we discuss the features of the package. It is designed by exclusively making use of already existing functions of R and its graphics system and thus shows the extensibility of the R graphics system. Additionally some examples on generated and real world data are provided.
    • ā€¦
    corecore