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Abstract

This paper presents a simple and novel approach, based on nonlinear time series analysis of

an experimental system, to infer from subtle alteration of the system dynamics the changes

caused in the system parameters. Using the acceleration time-series as a measurement

of simulated and experimental impact oscillators (serving as a model for the drilling

conditions with intermittent contact between the drill bit and the formation), the systems

attractor is reconstructed and characterised. It is shown that the stiffness correlates

with the topology of the reconstructed attractor. Non-impacting trajectories form an

approximate plane within the three dimensional reconstructed phase-space, and contact

with the constraint causes a systematic deviation from the linear subspace, the inclination

of which, measured by the statistics of the tangent vector, can be used to infer the stiffness.

This relationship between the topology of attractor and the stiffness was also verified

experimentally. Based on the developed framework, it is now possible to classify the

stiffness of the impacted material from a single variable in a simple way and in real time.
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1. Introduction

Systems with impacts have received a great deal of attention both in the study of

fundamental non-smooth dynamics and in engineering applications. Periodic impacts of

colliding bodies in mechanical systems such as gears can be highly detrimental to their

life span, and can generate vibration and noise. In contrast, some other mechanical

systems rely on impact motion to perform their intended function. An example of such

systems is percussive drilling, where higher impact performance is required to increase

the penetration rate through hard rock formations. Hence, advanced understanding of

impacting systems should help in prolonging their usable life span by controlling vibration

and noise levels and/or to improve their performance and functionality.

Impacting systems have been studied extensively in the literature mainly assuming a

harmonically forced oscillator having rigidly or flexibly constrained vibration amplitude.

In both cases, the systems exhibit periodic and complex behaviour including chaos. Pe-

terka and Vacik [1] studied numerically impact system behaviour. Time-series recordings,

phase-space trajectories, and Poincaré maps were used to determine parameters that led

to stable periodic motion and also to explained the bifurcations that led to chaotic be-

haviour for different impact conditions. In [2] Peterka studied non-smooth characteristics

arising from mechanical system with impacts. Several types of non-smooth interactions

were considered during the soft impact. Nonlinear analysis techniques were used to study

how parameters affect the system behaviour and the modifications suffered in the dynam-

ics of the system under the influence of changing impact stiffness. The results showed

that the smoothness of the trajectories in phase space is lost in a boundary surface rep-

resenting the moment of the impact, when both the vector field and the Jacobian of the

system become discontinuous. Půst and Peterka [3] analysed the dynamical properties

of a single degree-of-freedom mechanical system with a soft restraint using Hertz contact

theory. They emphasized that the applied model based on the Hertz contact law could de-

scribe the real behaviour of impact systems better than other models, because it respects

the nonlinearity of the restoring force between the impacted bodies. System parameters

were studied and the phase-space portraits showed an enlargement of the trajectories as

impact stiffness was increased and the energy lost during the impacts is increased with
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increase of the impact velocity. In Di Bernardo et al. [4] a non-smooth dynamical systems

theory was developed based on approaches from bifurcation theory to classify the complex

behaviour of impacting dynamic systems. A coherent framework for studying dynamic

behaviour of piecewise-smooth and hybrid systems was presented and discussed with nu-

merous examples of relevant technical developments and application from numerical and

experimental results.

Thompson and Ghaffari [5] studied an impact oscillator rebounding elastically when-

ever the relative displacement drops to zero. Using numerical methods they showed

cascades of period doubling bifurcations leading to chaotic regimes. Shaw and Holmes [6]

studied a model of a periodically forced oscillator with a flexible constraint and analysed

its corresponding bifurcations. A mapping was constructed from the model and used to

investigate the dynamic impact forces for a nonlinear oscillator with a single discontinu-

ity. Later, Shaw [7, 8] studied the harmonic and sub-harmonic double impact motions

for a system having two sided amplitude constraints. Bifurcation theory was employed

to study the impacting responses and their stability including unstable symmetric orbits

with two impacts. Whiston [9] studied the steady state responses of a harmonically ex-

cited piecewise linear oscillator using a dynamical systems approach. They constructed

from numerical simulations Poincaré maps to follow the evolution of the impact with

time. Nordmark [10] took the analysis of impact system further and used it to study

the response of a single degree-of-freedom oscillator with a hard impact. The results

have been derived from a system with instantaneous impact. The author has utilised the

phase-space geometrical representation of the system to study different impact conditions.

Analytical methods were developed to construct one-dimensional map between the differ-

ent phase-space sections to study the singularities and stability of the orbits caused by

different impact conditions. A square root singularity in the Jacobian matrix was found

to appear exactly at the grazing impact conditions.

Extensive studies have been carried-out at the Centre for Applied Dynamic Research

(CADR), the University of Aberdeen, on the dynamical behaviour of the impact systems.

Different sizes experimental rigs were used to study the behaviour of drill-string where

the rotation and axial excitation were combined to drill vertical and horizontal holes on
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real rock formations. Comprehensive studies had also been carried out by the CADR on

a piecewise linear oscillator system impacting against elastic beam. The impact oscillator

experimental rig was originally developed by Wiercigroch and Sin [11, 12] to study bifurca-

tions of a system with a two sided restraint. Later, Ing et al. [13] modified it by removing

one constraint to examine experimentally the bifurcation scenarios of near grazing condi-

tions. Their study was supported by a robust mathematical model developed for the same

setup. Later, the same authors [14] conducted experimental and semi-analytical studies

on the behaviour of the impact oscillator under different exciting parameters. Smooth

and non-smooth bifurcations were observed experimentally and explained using mapping

solutions. Pavlovskaia et al. [15] studied the behaviour of a linear oscillator constrained

by an elastic beam. Several bifurcations for near grazing conditions were observed exper-

imentally. The results showed that the attractor evolution is influenced by an interplay

between smooth and non-smooth behaviour.

Even though there is an extensive literature on nonlinear analysis to characterise the

behaviour of nonsmooth dynamical systems, there is a need for experimental methods to

help determining the moment, the conditions, and the parameters of the impact and of

the impacted material, topics that constitute the main purpose of this work. Nonlinear

time series analysis will be applied in here to investigate the underlying properties of this

impacting mechanical systems.

There are several examples in the literature explaining the application of nonlinear

time series analysis to study the behaviour of engineering systems. Craig et al.[16] ap-

plied phase-space reconstructing techniques and measured the fractal dimension to mon-

itor a dynamical system with bearing clearance. Their system was representing an elasti-

cally supported rotor excited by imbalance and restricted to two dimensional movements.

The study was conducted on three different magnitudes of clearance using two different

shaft speeds. Initially, conventional embedding delay method was used to reconstruct the

phase-space for time series recorded in one direction but, it resulted in bad quality and

unacceptable reconstructions leading to substandard computation of correlation dimen-

sion. This was reasoned to be a consequence of the weakening of the coupling between

the two motions in the two dimensions. Also, increasing the magnitude of the clearance
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caused more information lost about each direction. A modified method to reconstruct the

phase-spaces was then used by considering values from other observation recorded from

the system into the reconstructing vector. The study showed that the computed correla-

tion dimension decreases as the magnitude of clearance is increased. This was observed in

each case of the shaft speed. The authors emphasised the importance of using correlation

dimension techniques on monitoring events related to the mechanical system.

Da Silva et al. [17] discussed the application of the nonlinear time series analysis

to study experimental data when drilling in a semi-insulating Gallium arsenide, GaAs

sample. They used the method of false nearest neighbours to estimate the embedding

dimension of the attractor. The correlation dimension and maximum Lyapunov exponent

were computed for the reconstructed phase-space to obtain more understanding of the dy-

namics of the experimental system in order to develop models for numerical simulations.

A noteworthy feature of their article is that all of the computations were performed using

a special-purpose time series analysis software called TISEAN [18]. Reiss and Sandler

[19] also applied nonlinear time series analysis to electronic signals generated by a syn-

thesizer to observe harmonic structures over long time spans. The study concluded that

the nonlinear time series analysis techniques have a tendency to identify predominantly

short term dynamics. Piiroinen et al. [20] studied a single degree-of-freedom system rep-

resenting horizontally excited pendulum restricted by a rigid stopper. The time series

showed a sudden change to chaotic and period-adding cascade behaviours as a parameter

is altered, which is the expected dynamics that could be predicted from a grazing bifurca-

tion normal form. These results were also achieved from the numerical simulation of the

system, where discontinuity map was applied to derive the coefficient of the square-root

normal-form map. Numerical continuation method was also applied to found the graz-

ing periodic orbit and the linearization of the system along the orbit. Then the system

parameters were computed, which allow changing in the system behaviour to chaos or

period-adding cascade. The study also highlighted the important role of the damping

coefficient in the observed dynamics, and the importance of using correct amplitude in

order to get close quantitative agreement between the numerical and experimental results.

This implies that the amplitude might require an adjustment to overcome the effects of
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the parameters that might not be considered in the model. Kodba et al. [21] have studied

a signal of a RLC-diode circuit driven by an alternating voltage source of variable ampli-

tude. Using systematically nonlinear time series analyzes the author observed that as the

strength of the voltage source is increased, the system reaches a chaotic state through a

period doubling route. Perc [22] also applied the same techniques mentioned in the previ-

ous papers to study the dynamic of electrocardiogram and human gait systems [23]. The

study emphasised that the time series recoded for a human gait possesses deterministic

chaotic nature which was consistent with other related studies.

Detecting an impact between the mass and the restraint, and its stiffness from experi-

mental data is not an easy task especially if the impact is near grazing and also if the noise

level was high. The experimental setup may require making use of a more sophisticated

sensing system, thus more complicated and sensitive devices would be needed. Ing [25]

and Ing et al. [13] investigated the determination of the times of the impact between

mass and restraint, where a threshold in the mass acceleration was applied to distinguish

between the impact data. The authors have also used the velocity-acceleration and the

displacement-acceleration phase planes to identify the impact size and magnitude instead

of using the standard displacement-velocity phase portraits.

This article is intended to study the behaviour of an impacting system using nonlinear

time series technique to estimate the mechanical parameters, in particular the stiffness

of the impacted restraint (and consequently its mechanical properties) based on the ge-

ometric representation of the time (the reconstructed phase-space). In Section 2, the

experimental setup and sensing devices are briefly described. Section 3 presents the data

handling process and standard nonlinear time series analysis and the phase-space recon-

struction process. Section 4 goes on to explain several approaches that were developed to

estimate the stiffness of the impact from acceleration time histories.

2. Experimental setup

The experimental rig used in this article to generate the time histories is the same rig

as detailed in [24]. It is a piecewise linear impact oscillator system with constrained am-

plitude in the form of an elastic beam. In previous studies the focus was on determining
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Figure 1: (a) Photograph of the experimental setup: 1-elastic beam; 2-moving mass; 3-

pin; 4-mass accelerometer; 5-leaf springs; 6-eddy current probe; 7-base accelerometer,(b)

Schematic of the experimental setup including the measurement system, Adopted from

[13].

the bifurcation structure of near grazing trajectories as a function of excitation frequency

and forcing amplitude. The intention of the current study will be on developing a frame-

work to determine the material effective stiffness from reconstructed phase-space of single

output time histories. As shown in Fig. 1(a) the setup consists of two parallel columns

made from steel with different heights mounted on a steel plate mounted at the top of

electro-dynamic shaker. A steel block mass is attached to two parallel leaf springs at-

tached to the short column. The leaf springs here provide primary stiffness for the system

which determined by the springs length. The other column is used to support an elastic

beam and bolt, which is separated from the top side of the mass by a pre-defined gap (g).

This beam provides the secondary stiffness in the system. It can also be controlled by the

length of the beam.

An eddy current displacement transducer is attached to the top of the short column

pointing towards the leaf springs to measure the relative displacement of the moving mass.

It is denoted as xm and the signal is passed to the computer through a proxymeter and

interface panel. There are also two accelerometers; one is mounted on the top of the

moving mass and another one is mounted on the base plate. They are denoted as ẍm and
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ẍb, for the moving mass and the body, respectively. Both accelerometers were connected

to high/low pass filters and charge amplifiers, and then through the interface panel as

shown in Fig. 1(b) to the computer. The signals were recorded in real time via Labview

data acquisition system.

A controlled sinusoidal signal was used to drive the system. The contact between the

pin and the mass occurs when the relative displacement of the moving mass is equal to

zero. The tests were carried out by varying the excitation parameters and monitoring

the system responses until even a subtle change was observed. Then the responses were

recorded for different values of the forcing amplitude and exciting frequency for situations

in which the attractors remain topologically similar [25]. The time histories were then

smoothed using Savitzky-Golay algorithm by fitting a second order polynomial curve to

preserve the sharpness and height of peaks of the signal in time domain, whilst minimising

the effect of noise as much as possible.

3. Direct method of identifying impacts stiffness

As was mentioned previously, the trajectory in the phase-space of the non-smooth

system crosses the boundaries of adjacent regions to form an additional plane. The size

and inclination of the trajectory in the additional plane is influenced by the impact stiff-

ness. Constructing acceleration-displacement phase portraits for different time histories

generated by the same parameters but with different stiffness ratios showed that the in-

clination and the size of the trajectory in the additional plane increases as the impact

stiffness increased. Fig. 2(a) is an example of this relationship.

However, in the presence of parameter noise, especially in the gap, this relationship

became less clear. Additionally, in real drilling applications only a single measurement

might be possible. The obvious solution is to reconstruct the phase-space from just one

variable using the embedding theorem. Fig. 2(b) shows the projection of xt-xt+2τ planes

from the reconstructed phase-spaces for the same time histories. As can be noted, the

planes inclination-stiffness relationship is still preserved in the reconstructed phase-space.

The advantage of using reconstructed phase-space over the one formed from the orig-

inal variables is that the analysis is done in a single variable with no need to rely on the
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Figure 2: (a) Acceleration- displacement phase portrait for theoretical time histories with

stiffness ratio of 15 (blue); 29 (red); 60 (green); and 90 (black), (b) xt − xt+2τ planes of

reconstructed phase-space for the same time histories.

accuracy, synchronicity, and other features of all the other measurements. Also, in the

original phase-space some properties could be hidden by the effect of the parameters noise.

Several time histories have been analysed in this paper including time history recorded

for no impact response, near grazing impact and larger impact. This study has considered

the acceleration time histories of mass because of the ability show sudden changes on the

contact force. Samples of recorded mass acceleration response for both impact and no

impact response are shown in Fig. 3(a, b).

Since, the analysed time histories in this paper are generated from a well-known sys-

tem, there is no need to apply any techniques to classify the impact or non-impact data.

However, in real applications not all the system parameters are known. Hence, there is

a need for a technique to distinguish between these two types of data. To detect the

impact time histories Ing et al. [13] used a threshold index in the mass acceleration time

history plots. Additionally, the velocity-acceleration and displacement-acceleration phase

portrait were used, an example of which is shown in Fig. 3(b) and 2(a). A simpler way

to detect the impact is to compute the second derivative for the mass acceleration time

histories. Fig. 3(c) shows an example of the numerically computed derivative of the mass

acceleration presented in Fig. 3(b). As it can be seen the sharp impact spikes presented
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Figure 3: Samples of the recorded mass acceleration time histories for (a) Data with no

impact, (b) data with impact, (c) Calculated derivative of the mass acceleration time

history shown in (b).

on the acceleration time history are now well pronounced and easy discernable from the

other data. Even the near grazing and insignificant spikes can be well observed from the

derivative. Another technique to detect the impact times is to compute and plot the root

mean square of the acceleration time history. This is done by calculating the mean of all

data points and then subtracting it from each point separately and computing its square

product. This technique separates all the impact points from the non-impact points in

the time series.
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4. Time series analysis

In experimental studies the governing equations of motion for the system are usually

unknown and all that is available from the system is a set of observations in form of time

histories. There is no information about the underlying system dynamics and its com-

plexity or sensitivity to the initial conditions. One way for getting better understanding

of the system dynamics and their properties is to apply nonlinear time series analysis,

where the analysis is done with just a single or a set of time histories.

The process of applying the nonlinear analysis is usually commenced by reconstructing

the phase-space from one or a set of time history to visualise the system dynamics and

unfold its attractor, for which then the stationarity and determinism requirements of the

underlying system are verified. Finally, some nonlinear measures such as the Lyapunov

exponents and correlation dimensions are computed for the characterisation the attractor.

4.1. Phase-space reconstruction

Phase-space reconstruction is a geometrical representation of the trajectories described

by the time histories with similar topology to the phase-space constructed from the original

variables. The reconstruction is performed from a single data set because the variables

in a deterministic system are related to each other [26]. Takens in [27] proved that the

reconstructed attractor has similar topological and dynamical properties to the original

attractor. This theorem is known as Taken theorem of phase-space reconstruction and it

states that for a compact manifold M with dimension m, its generic property of Φϕ,v:M →

R2m+1 can be defined as:

Φϕ,y(x) = (y(x), y(ϕ(x)), ......y(ϕ2m(x)))T , (1)

where: v are smoothed vector field, x(t) corresponds to the values of measurements taken

from the dynamical system at the state t ∈M , and ϕ is the flow of the vector field.

In the phase-space reconstruction two important parameters have to be considered,

which are embedding delay (τ) and the embedding dimension (m). A proper embed-

ding delay can be estimated by using the mutual information method or auto-correlation

function, and a proper embedding dimension can be estimated from the false nearest

neighbour method [18].
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4.1.1. Embedding delay

Two criteria should be fulfilled to obtain a proper embedding delay, where the first

is that, the delay τ has to be large enough to enable obtaining relevant and significantly

different information from variable x at time t + τ and variable x at time t. The second

criterion is that τ should not be too large so that the system does not lose the memory of

its initial state and the new variable becomes random with respect to the first variable.

The idea here is to create a set of variables that are neither highly decorrelated nor highly

correlated to each other. A proper embedding delay can be estimated by determining the

time for which auto-correlation function decays firstly by half. It can also be estimated by

computing the first decay of the auto-mutual information [28]. The absolute value of the

difference between the maximum and minimum points in the time series is first computed

and then partitioned into equal intervals. According to [28] the mutual information, I is

then calculated as follows:

I(S,Q) =

∫
Psq(s, q) log[Psq(s, q)/Ps(s)Pq(q)]dsdq, (2)

where: S and Q are variables, Ps and Pq are the probabilities of finding the variable S

and Q in the s− th and q − th bin, and Psq is the joint probability distribution function

of X and Q. In our case, the variable S represents the variable x(t) and the variable Q

the time-delay variablex(t− τ).

Mutual information takes into account the nonlinear correlations of the data. Hence,

it is usually used for chaotic data more than the auto-correlation algorithms, which is

usually considered as good rule of thumb for time histories that are nearly regular or not

chaotic.

4.1.2. Embedding dimension

A proper embedding dimension can be estimated using the false nearest neighbour

method. The technique assumes that the attractor for a deterministic system can be

folded and unfolded smoothly with no sudden irregularities in its structure. This implies

that any two close points in the reconstructed embedding space should remain sufficiently

close in any forward time iteration. Thus, the distance between points p(i) and p(t) which
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are a small amount, ε, apart in the reconstructed attractor should remain close under a

sufficiently short forward iteration and the distance should not grow further than the

threshold Rtrε. Hence, any point that is near the point t and does not fulfil this criterion

will be considered as a false nearest neighbour to the point t. The fraction of points

having a false nearest neighbour has to be minimized by selecting a sufficiently large m.

Trajectory crossings that create false neighbours induced by the choice of a low value of

m result in the loss of information about all other variables that influence the measured

variable [29]. In this article, Coa’s algorithm [30] has been used to determine whether a

point yn(i,d)(m) is a false neighbour of yi(m). It will be a false neighbours if a(i,m) is

larger than the threshold.

Let us compute the false nearest point a(i,m), which is expressed as following:

a(i,m) =
‖yi(m+ 1)− yn(i,d)(m+ 1)‖
‖yi(m)− yn(i,d)(m)‖

, (3)

where: ‖.‖ is Euclidian distance between the points of the index i, yi(m+ 1) is the recon-

structed vector of embedding dimension m + 1, the point yn(i,d)(m) is nearest neighbour

to the point yi(m) in the dimension m of the phase-space.

Fig. 4 shows the process of phase-space reconstruction for three different time histories,

starting from selection of the time histories, estimating the embedding delay and embed-

ding dimension, and finally, the reconstructed phase-space. The time histories presented

in the figure are the acceleration response for three different cases of impact conditions

namely, no-impact, near grazing impact, and larger impact. The data was generated for

the system parameters of excitation frequency = 7.9 Hz, forcing amplitude = 0.25 mm,

natural frequency = 9.38 Hz, Damping coefficient = 1.3 kgs−1.

In the first case there was no contact between the restraint and mass, hence the

system is linear. In the embedding parameters determination, the first minimum mutual

information was found around 60 τ and the saturation of percentage of false nearest

neighbour corresponded to an embedding dimension of 3. In the reconstructed phase-

space the attractor exhibits periodic behaviour and forms a circular orbit within one

plane. In the other two cases there was contact between the secondary stiffness and

moving mass, near grazing impact in the second case and larger impact in the third
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case. In determining the embedding parameters, the first minimum mutual information

for both were found also around 60 τ and the saturation of percentage of false nearest

neighbour corresponded to 4 m implying that the system becomes more complicated as

compared with the first case and it will require at least 4 dimensions to be described.

In the reconstructed phase-space, the attractors also exhibited periodic behaviour and

formed a circular orbit in one plane with three groups of spikes attached to the circular

orbit, but they cross the boundaries of the linear plane to another plane.

4.2. Stationarity and determinism

Reconstructing a proper phase-space is not only necessary to perform further nonlinear

time series analysis, but it is also important to verify that time series comes from a system

that is stationary and deterministic. Even though the studied system might not be fully

deterministic, determinism is a major component as will be demonstrated in the following

sections. Identifying its deterministic dynamics allows to identify some change in the

system being observed, a change that points to how the environment of the drilling is

changing.

4.2.1. Stationarity test

The stationarity of the data is confirmed by computing the cross-prediction error. This

technique checks for predictability of the data with itself by using the data segments to

predict the value of another forward segment [31]. The time history is first partitioned

into non-overlapping segments j with a sufficient equal length. Then each segment of

data is used to make prediction for another one. For every point p(t) in the first segment,

the closest neighbour p(i) from the next segment has to be found and the average value

neighbourhood are then used to predict the value of xi+δt, which is the future values of

xi. The average prediction error is then used to evaluate the accuracy of the obtained

predictions.

Finally, the whole procedure is repeated for all combinations of j and i , and then a

plot of those combinations is performed. If the obtained Sji was significantly larger than

the average this means that the stationarity requirements for the examined data are not

fulfilled. Fig. 5 shows an example of cross-prediction error plotted for data with large
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Figure 5: Confirming the stationarity of the data using cross-prediction error. N=100000,

neighbour distance 0.1 and factor of increasing the neighbour distance 1.4142. Minimum

and maximum errors are 0.1058 and 0.1872.

impact case. The maximum and minimum cross-prediction errors are 0.1058 and 0.1872,

respectively. Since the different between them is not even one time larger and all the

errors differ maximally by a factor less than 0.05, it is clear this data originates from a

stationary process.

4.2.2. Determinism test

This test enables confirmation of the presence of deterministic chaos in the examined

data and distinguishes it from irregular random behaviour. The determinism test used

also to produce true vector filed for the analysed data. The Kaplan and Glass method

[32] is used here to assess the determinism of the embedded data. The method requires

construction of an approximate vector field of the reconstructed phase-space, partitioned

into coarse grained boxes with equal dimension as the embedding space. A vector is then

assigned to each box occupied by the trajectory where every time i the trajectory passes

through the box k, will generates unit vector ei and its direction is determined by direction

of the phase-space points where the trajectory enters and leaves the box.
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0.91, (c) zoomed area from the approximated factor field.

Approximation of the vector field Vk for each box is computed as the average vector

of trajectories passing through the box. Performing this task with all the boxes occu-

pied by the trajectory provides the directional approximation of the system vector field

and its uniqueness depends on the direction of all the vectors in each box. The length

of vector field increases if all vectors inside the boxes are pointing into the same direc-

tion. This implies a unique vector field, hence, a deterministic system. In contrast,

presence of trajectories crossing inside the boxes will decrease the length of Vk, indicating

a non-uniqueness in the vector field. Since Vk is normalised, the determinism factor for

a completely deterministic system is 1, whilst for a random walk it is 0. Fig. 6 shows

the reconstructed phase-space and its approximated vector field for data with larger im-

pact case. The pertaining determinism factor is 0.91, which is close to the uniqueness of

the vector field 1. According to Kaplan and Glass [], the analysed data is generated for

deterministic system.
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By comparing the three reconstructed phase-spaces, it can be easily observed that

the attractor of the non-impact time history lies within the same plane. Whilst, in the

other two reconstructed phase-space the attractor lives in same plane as far as there is

no impacts and then escapes to another plane after impacts occurs. Fig. 7 shows a

comparison between the three reconstructed phase-spaces. As indicated by the dimension

estimation, the non-impacting trajectory lies in an m − 1 subspace of the reconstructed

phase-space. Impacts perturb the system into full m dimensional space. However, even

in the full nonlinear system, the non-impacting part of the response remains largely in

the subspace of the linear system. This fact will be used to help the impact detection.
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Figure 7: Comparison between three reconstructed phase-spaces for non impact (solid

black), near grazing impact (solid red), and larger impact (dashed blue).

This relationship becomes clearer if the reconstructed phase-space is projected into

x− z plane. An understanding of this relation could provide a key concept of identifying

the stiffness of the impact from just studying the dynamical behaviour of the system.
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5. Impact parameter identification

The application of nonlinear time series analysis is extensively used to study dynam-

ical systems in many branches of science and understanding their underlying dynamical

behaviour. Yet, this is the first attempt to use such analysis to study impact system

parameters, specifically related to down-hole drilling. This article is intended to propose

a framework based on applying nonlinear time series method to determine mechanical

properties related to the rock formation while being drilled. The main concept behind

the proposed analysis is to use the variation of trajectory inclination from the plane of

the linear system to the other plane, caused by impact. The effect of changing stiffness on

the orientation of the plane will be investigated. For this purpose the inclination of the

secondary plane in the reconstructed phase-space is computed. This approach has utilised

common angle estimation techniques, namely, the gradient and least square approach.

5.1. The new concept of stiffness identification

As mentioned previously, the attractor is restricted to a subspace of the phase-space

during no contact mode, then once the contact occurs the attractor escapes from the

“linear plane” to a nonlinear surface within the phase-space. This escape is found to

be a result of the secondary stiffness term in the equation of motion, which explains the

presence of another plane in reconstructed phase-space. The attractor remains in the

linear plane while there is no contact. However, as soon as there is contact the trajectory

moves out into the “nonlinear plane” before it moves back again to the linear one at

the end of contact. Also, it was mentioned previously that the inclination of the second

plane depends upon stiffness magnitude. As the stiffness increases, the inclination of the

second plane increases and the angle of the plane becomes sharper compared with lower

stiffness. Thus studying the relationship between plane inclination and impact stiffness

could reveal more information about the impact stiffness and also develop an index for

the stiffness.

The process of computing the inclination of the plane is undertaken by applying a

second order polynomial filter (Savitzky-Golay) to scale the data and minimise the noise

effect as much as possible. The purpose of smoothing the time histories at this stage
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is because it is easier to fit a filter in a one dimensional data than in a vector. Also,

it will preserve the shape and magnitude of impact spikes and original coordinates of

tangent vectors. The standard phase-space reconstructing process is then performed for

the filtered time history after estimating embedding parameters as was described earlier.

Also the stationarity and determinism requirement have to be fulfilled as described earlier.

In order to estimate the inclination of the plane from embedded data, the following

procedure is used. The tangent vectors
−→
V t are first computed for each variable from the

embedded data by calculating the difference between the coordinates for a given distance,

which should be sufficiently large and will depend on the sampling rate and the magnitude

of the generated vector. The tangent vector is given by
−→
V t = (V t

x , V
t
y , V

t
z ) ,where

V t
x (N − n) = x(N)− x(N − n), (4)

and

V t
y (N − n) = y(N)− y(N − n), (5)

and

V t
z (N − n) = z(N)− z(N − n), (6)

where: N is element of the time history and n is determined by the sampling rate, and

the amount of averaging required.

There is an increase of the moving mass acceleration after the impact compared with

its original acceleration before the impact. Accordingly, values of the tangent vector

products of the reconstructed phase-space will be different before and after the impact.

Tangent vectors after the impact will have a greater magnitude than tangent vectors

before the impact. This fact is exploited to separate the contact and non-contact planes.

A histogram is used to assess the distribution of resultant tangent vectors. Based on

the difference of the moving mass acceleration, there will be two classes of distributions.

Higher distribution with lower tangent vector magnitudes presents the non-contact plane,

while a lower distribution, but with higher tangent vector magnitudes presents the contact

plane. Based on this definition a cutoff magnitude can be determined visually from the

histogram in the point where the two distributions overlap. Fig. ?? shows the process of

separating planes using tangent vector magnitude.
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Figure 8: Separating contact from non-contact data; (a) histogram of the tangent vectors

magnitude, (b) embedded data after separating non-contact (dot red) from contact data

(dot black).

The vector products are then projected into x−z plane and the inclination is computed

as the inverse of gradient of this plane by considering x and z coordinates from the

embedded data for each plane. Averaging of the angles in each orbit before and after the

impact is then performed and used to create a coloured map for the angles by plotting

angles before the impact against angles after it for all the time histories. The inclinations

of the planes are computed by the gradient approach. Assuming that Vl and Vn are

tangent vectors in linear and nonlinear planes, respectively. Such that,

−→
V l =

−→
a1i+

−→
b1j +

−→
c1k, (7)

and
−→
V n =

−→
a2i+

−→
b2j −

−→
c2k. (8)

The two vectors are then projected into the x − z plane, and inclination of the contact

(θl) and non-contact (θn) planes can now be computed as

θl = tan−1(
−→
c1k/
−→
a1i), (9)

and

θn = tan−1(
−→
c2k/
−→
a2i), (10)
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The other approach to compute the inclination of the nonlinear plane is to calculate it

directly as coefficients of a polynomial fitted curve. The embedded data within the impact

region are first defined using the tangent vectors magnitude distribution as discussed in

the previous approach. Then a polynomial regression approach is applied to fitted two

curves through the embedded data before and after the impact region and the gradients

of these curves are direct measures of the planes inclination.

5.2. Applying stiffness identification method

The previous section discussed the framework of stiffness identification from the re-

constructed attractor of the impact oscillator. An example was given to demonstrate the

adopted methodology and explain how the computation was done. The adopted frame-

work was then tested on numerical time histories and then on numerical time histories

with added noise to demonstrate its effectiveness in noisy data. Finally, it is applied to

experimental time histories. This section presents the data processing and manipulating

and discusses some results obtained from applying the adopted framework into several

time histories.

5.2.1. Applying stiffness identification method to numerical data

The time histories analysed in this section are all obtained from the impact oscillator

setup, which is described in [14]. For the simplicity of the analysis, that data is required

to be obtained from the same system parameters, apart from varying the stiffness ratios.

Hence, only one parameter is varying each time. Therefore, co dimension one bifurcations

are obtained each time, such as period doubling. This was confirmed via comparison of

the phase portraits and construction of bifurcation diagrams. According to Ing et al. [14]

The mathematical model of the impact oscillator is expressed as following:

x′ = v, (11)

v′ = aω2sin(ωt)− 2ξv − x− β(x− e)H(x− e), (12)

where: x is the displacement, v is the velocity, t is the time, β is the stiffness ratio, e is

the gap, a is the forcing amplitude, ξ is the damping ratio, and H is the Heaviside step

function.

22



[
]

&& x
g

[ ]t s
[

]
&& x
g

[
]

&& x
g

[ ]t s [ ]t s

[ ]t s

[
]

&& x
g

0.6

0.6

0

0

8

0

0

8

0 0.6 0

0

10

0.2 0.4

0.60.2 0.4 0.2 0.4

0.2 0.4
-2

5

-2

4

9

-2

0

5

-2

4

(a)

(c)

(b)

(d)

Figure 9: Samples of the numerical acceleration time histories for stiffness ratios; (a)

β=12, (b) β=26, (c) β=31, (d) β=47.

The above differential equation was solved numerically in Matlab using the ”ODE45”

solver. Time histories were generated and phase portraits were then constructed to assess

the system behaviour. Bifurcation diagram was also constructed to study the effect of

changing stiffness ratio on the system behaviour. The parameters of the mathematical

model were chosen as follows:a=1.9, ω=1.05, fn=9.48 Hz, ξ =0.02, and e=2.8. Seventeen

stiffness ratios were considered, 5, 10, 12, 15, 20, 26, 31, 35, 40, 47, 50, 55, 60, 80, 90,

and 100. Fig 9 shows four examples of the time histories obtained from the simulation

for stiffness ratios β= 12, 26, 31, and 48. As it can be observed, the magnitude of

the acceleration spikes is increasing and the duration of the impact is decreasing as the

stiffness ratios are increased.

The phase-space reconstruction process was performed as discussed earlier to deter-

mine the embedding parameters. Minimum mutual information and false nearest neigh-

bour techniques were used to estimate the embedding delay and embedding dimension

for each time history. The first minimum mutual information was found around 17 τ and

the false nearest neighbour percentage was saturated around 80% which corresponded to

4 m. Following the estimation of the embedding parameters, the attractor reconstruction
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Figure 10: Reconstructed phase-space for the numerical time histories from for stiffness

ratios; (a) β=12 (solid blue), (b) β=26 (solid red), (c) β=31 (solid green), (d) β=47 (solid

black).

was performed for all time histories. Fig 10 shows the reconstructed phase-space for the

four numerical time histories cases projected in x − z plane. As can be observed from

the figure, the attractor forms a circular orbit in one plane and then when contact occurs

the attractor escapes to another plane. The size of the attractor in the z plane increases

and its duration decreases as the stiffness ratios increases. The inclination of the contact

plane increases as stiffness ratio increases.

The inclination of the contact and non-contact planes were also computed as discussed

earlier. The results of inclination estimation using the gradient approach are presented

in the coloured map on Fig 11. It is obvious from the map that the inclination-stiffness

relationship forms a clear trend in which the inclinations of planes before and after impact

are increasing as the stiffness ratio increases. Separation between the inclinations is not

the same for all cases. The separation decreases with increase of the stiffness ratios until

it reaches stage where different between the inclinations became very minor and hard to

distinguish. This can be noted clearly from the different between stiffness ratio cases 60,

80, 90, and 100, where increment of the inclination before and after the impact became

very close.
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The results of applying a polynomial fit to the four stiffness ratios presented in Fig 9

are illustrated in table 1. The table confirms that higher stiffness ratios produce higher

inclination before and after the impact, which confirms the results of inclination-stiffness

trend obtained from the gradient approach.
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Figure 11: Plot showing the planes inclination before and after the impact calculated

for all the theoretical time histories with stiffness ratios of 5 (gray), 20 (sea-green), 35

(green), 50 (red), 60 (black), 80 (cyan), 90 (yellow), 100 (blue), and the black line denotes

theoretical angles trend.

Table 1: Results of applying polynomial fit to the reconstructed phase-space for four

numerical acceleration time histories.

Stiffness ratio Inclination before impact Inclination after impact

(degree) (degree)

12 61.3 85.2

26 62.9 86.8

31 63.2 87.3

47 67.4 88.4

5.2.2. Noise effect on the stiffness-inclination relationship

As mentioned earlier, noise could hide some properties related to the system determin-

istic behaviour and affect the performance of the proposed framework and its accuracy
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and ability to distinguish between different stiffness ratios. For this purpose, two different

noise scales cases were investigated by adding a Gaussian noise to four numerical time

histories with different stiffness ratios.

Following the process of reconstructing the phase-space, the inclination of contact and

non-contact planes was computed for four time histories with stiffness ratios = 12, 26,

31, and 47 and noise less than 5% of the forcing amplitude. For the other cases the noise

is 9% of the forcing amplitude. The results of applying the proposed framework in two

both cases are presented on the coloured maps in Fig 12(a, b). From the two maps,

it is clear that the stiffness-inclination relationship is still preserved. A higher stiffness

ratio cases produce higher planes inclinations. For results shown in Fig 12(a), where a

lower noise is applied, the inclination of the planes are still clustered in groups and the

stiffness-inclination trend is still well pronounced with a clear separations between each

stiffness. In Fig 12(b) where higher noise is applied, the inclinations of the planes became

more scattered especially before the impact. This is due to the fact that the noise has

greater effect non-contact data where the distance between data points are more closed

due to the lower acceleration of the moving mass. Although, the planes inclinations of

the contact data are a bit scattered, there is still a clear separation if higher difference

between stiffness ratios is considered. This can be observed from the stiffness ratio cases

26 and 31.

5.2.3. Applying stiffness identification method to experimental data

After confirming the ability of the proposed framework to distinguish between different

stiffness ratios for the numerical data, it is vital at this stage to check its ability in the

experimental data generated from the impact system. For this purpose four acceleration

time histories with a period doubling have been generated for stiffness ratios β= 12, 26,

31, and 47.

The stiffness ratios were computed from the primary and secondary stiffness of the

experimental rig. Secondary stiffness was computed from the natural frequency of the

system, whilst the primary one was estimated from static test using Instron machine. Fig

13 shows samples of the experimental acceleration time histories. As it can be observed

from the figure again that the magnitude of the acceleration spikes is increasing and the
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Figure 12: Plot of plane inclinations calculated for two noise scale cases for stiffness ratios

of 12 (dot black), 26 (dot yellow), 31 (dot red), 47 (dot blue), and the black line denotes

theoretical angles trend; (a) noise smaller than 5% of the forcing amplitude, (b) noise

larger than 9% of the forcing amplitude.

duration of the impact is decreasing as the stiffness ratios increases, which is similar to

the numerical data presented earlier.

After smoothing the data by applying the second order Savitzky-Golay filter to all

time histories, the process of estimating the embedding parameters and reconstructing

the attractors repeated again for each case. Fig 14 shows the reconstructed phase-space

for the four cases projected in x− z plane. Again, the size of the attractors in the z plane

and their inclination depend on the stiffness ratio. A notch in impact region is noted in

the attractors of higher stiffness cases, which is due to smoothing process. To overcome

this effect a larger contact region should be considered when computing the inclinations.

The process of computing planes inclinations is performed again to estimate incli-

nations of contact and non-contact planes for all cases. The results are illustrated in

the plot in Fig 15 where the inclinations estimated for experimental time histories are

presented with stiffness-inclination trend obtained previously from the numerical data.

As can be noted, the inclinations computed from the experimental data are clustered in

groups widely spread and looks more separated from each other. Although, the experi-

mental data was associated with noise, the inclination-stiffness trend are still preserved

and well pronounced. Higher stiffness ratio case from experimental data produces also
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Figure 13: Samples from experimental acceleration time histories for stiffness ratio of;(a)

β =12, (b) β =23, (c) β =31, (d) β =48
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Figure 14: Reconstructed phase-space for experimental time histories for stiffness ratios;

(a) β=12 (solid blue), (b) β=26 (solid red), (c) β=31 (solid green), (d) β=47 (solid black).
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higher inclinations similar to the numerical with clear separation between each inclination.
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Figure 15: Comparison between the planes inclination before and after the impact cal-

culated for experimental time histories for stiffness ratios of 12 (cross black), 26 (cross

yellow), 31 (cross red), 47 (cross blue), and numerical time histories for stiffness ratios of

12 (dot black), 20 (dot yellow), 35 (dot red), and 50 (dot blue).

Conclusions

This work offers a simple and novel time-series analysis approach to characterise the

reconstructed attractor of simulated and experimental impact oscillators, models for cer-

tain drilling conditions. To ascertain that the topology of the systems being studied are

examples of dynamical systems, stationarity and determinism tests were computed. This

is most relevant to the determination of the dynamical and topological properties of the

reconstructed attractor, since the time-delay embedding approach used to reconstruct the

attractor is well defined for deterministic and stationary systems.

The reconstructed phase-space for no-impact time histories showed that the attractor lives

within a linear plane, whilst for the impact time histories the attractor escapes from the

linear plane after the impact and then returns back. The deviation of the trajectories of

the impact oscillator from the plane is larger, the larger the effective stiffness. Experi-

mentally, the effective stiffness parameter can be controlled by adjusting the length of the

elastic beam, and it represents the strength of the impacted material. Numerically, stiff-

ness is a control parameter that can be changed by varying the parameter β. Therefore,
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the effective stiffness and the stiffness of the numerical model studied correlates with the

angular deviation.

The reconstructed tangent vectors from both numerical and simulated time-series are

then employed to measure this deviation. Firstly, their magnitude is used to identify the

moment of impact. Larger (smaller) magnitudes correspond to data after (before) impact.

Secondly, the angle between trajectory points after and before the impact is estimated by

two methods. In the first method, this angle is estimated as an average of the inclination

of embedded points before and after impact set with respect to the plane. In the second

method, the angle is estimated from the angular separation of two fitted polynomials to

the trajectory points in a 2D projection, each polynomial fitting data from either before

or after the impact. Using the numerical model, it is shown that the relationship between

stiffness and the topology of the attractor is noise invariant when the noise level is less

than 5% of the amplitude value. However, at higher levels of noise, there is a slight un-

certainty introduced into the stiffness estimation.
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