87,054 research outputs found

    A parallel computation approach for solving multistage stochastic network problems

    Get PDF
    The original publication is available at www.springerlink.comThis paper presents a parallel computation approach for the efficient solution of very large multistage linear and nonlinear network problems with random parameters. These problems result from particular instances of models for the robust optimization of network problems with uncertainty in the values of the right-hand side and the objective function coefficients. The methodology considered here models the uncertainty using scenarios to characterize the random parameters. A scenario tree is generated and, through the use of full-recourse techniques, an implementable solution is obtained for each group of scenarios at each stage along the planning horizon. As a consequence of the size of the resulting problems, and the special structure of their constraints, these models are particularly well-suited for the application of decomposition techniques, and the solution of the corresponding subproblems in a parallel computation environment. An augmented Lagrangian decomposition algorithm has been implemented on a distributed computation environment, and a static load balancing approach has been chosen for the parallelization scheme, given the subproblem structure of the model. Large problems – 9000 scenarios and 14 stages with a deterministic equivalent nonlinear model having 166000 constraints and 230000 variables – are solved in 45 minutes on a cluster of four small (11 Mflops) workstations. An extensive set of computational experiments is reported; the numerical results and running times obtained for our test set, composed of large-scale real-life problems, confirm the efficiency of this procedure.Publicad

    A parallel computation approach for solving multistage stochastic network problems

    Get PDF
    This paper presents a parallel computation approach for the efficient solution of very large multistage linear and nonIinear network problems with random parameters. These problems resul t from particular instances of models for the robust optimization of network problems with uncertainty in the values of the right-hand side and the objective function coefficients. The methodology considered here models the uncertainty using scenarios to characterize the random parameters. A. scenario tree is generated and, through the use of full-recourse techniques, an implementable solution is obtained for each group of scenarios at each stage along the planning horizon. As a consequence of the size of the resulting problems, and the special structure of their constraints, these models are particularly well-suited for the application of decomposition techniques, and the solution of the corresponding subproblems in a parallel computation environment. An Augmented Lagrangian decomposition algorithm has been implemented on a distributed computation environment, and a static load balancing approach has been chosen for the parallelization scheme. given the subproblem structure of the model. Large problems -9000 scenarios and 14 stages with a deterministic equivalent nonlinear model having 166000 constraints and 230000 variables- are solved in 15 minutes on a cluster of 4 small (16 Mflops) workstations. An extensive set of computational experiments is reported; the numerical results and running times obtained for our test set, composed of large-scale real-life problems, confirm the efficiency of this procedure

    Machine Learning for Fluid Mechanics

    Full text link
    The field of fluid mechanics is rapidly advancing, driven by unprecedented volumes of data from field measurements, experiments and large-scale simulations at multiple spatiotemporal scales. Machine learning offers a wealth of techniques to extract information from data that could be translated into knowledge about the underlying fluid mechanics. Moreover, machine learning algorithms can augment domain knowledge and automate tasks related to flow control and optimization. This article presents an overview of past history, current developments, and emerging opportunities of machine learning for fluid mechanics. It outlines fundamental machine learning methodologies and discusses their uses for understanding, modeling, optimizing, and controlling fluid flows. The strengths and limitations of these methods are addressed from the perspective of scientific inquiry that considers data as an inherent part of modeling, experimentation, and simulation. Machine learning provides a powerful information processing framework that can enrich, and possibly even transform, current lines of fluid mechanics research and industrial applications.Comment: To appear in the Annual Reviews of Fluid Mechanics, 202

    Convex Relaxations for Gas Expansion Planning

    Full text link
    Expansion of natural gas networks is a critical process involving substantial capital expenditures with complex decision-support requirements. Given the non-convex nature of gas transmission constraints, global optimality and infeasibility guarantees can only be offered by global optimisation approaches. Unfortunately, state-of-the-art global optimisation solvers are unable to scale up to real-world size instances. In this study, we present a convex mixed-integer second-order cone relaxation for the gas expansion planning problem under steady-state conditions. The underlying model offers tight lower bounds with high computational efficiency. In addition, the optimal solution of the relaxation can often be used to derive high-quality solutions to the original problem, leading to provably tight optimality gaps and, in some cases, global optimal soluutions. The convex relaxation is based on a few key ideas, including the introduction of flux direction variables, exact McCormick relaxations, on/off constraints, and integer cuts. Numerical experiments are conducted on the traditional Belgian gas network, as well as other real larger networks. The results demonstrate both the accuracy and computational speed of the relaxation and its ability to produce high-quality solutions

    Research and Education in Computational Science and Engineering

    Get PDF
    Over the past two decades the field of computational science and engineering (CSE) has penetrated both basic and applied research in academia, industry, and laboratories to advance discovery, optimize systems, support decision-makers, and educate the scientific and engineering workforce. Informed by centuries of theory and experiment, CSE performs computational experiments to answer questions that neither theory nor experiment alone is equipped to answer. CSE provides scientists and engineers of all persuasions with algorithmic inventions and software systems that transcend disciplines and scales. Carried on a wave of digital technology, CSE brings the power of parallelism to bear on troves of data. Mathematics-based advanced computing has become a prevalent means of discovery and innovation in essentially all areas of science, engineering, technology, and society; and the CSE community is at the core of this transformation. However, a combination of disruptive developments---including the architectural complexity of extreme-scale computing, the data revolution that engulfs the planet, and the specialization required to follow the applications to new frontiers---is redefining the scope and reach of the CSE endeavor. This report describes the rapid expansion of CSE and the challenges to sustaining its bold advances. The report also presents strategies and directions for CSE research and education for the next decade.Comment: Major revision, to appear in SIAM Revie

    An Alternating Trust Region Algorithm for Distributed Linearly Constrained Nonlinear Programs, Application to the AC Optimal Power Flow

    Get PDF
    A novel trust region method for solving linearly constrained nonlinear programs is presented. The proposed technique is amenable to a distributed implementation, as its salient ingredient is an alternating projected gradient sweep in place of the Cauchy point computation. It is proven that the algorithm yields a sequence that globally converges to a critical point. As a result of some changes to the standard trust region method, namely a proximal regularisation of the trust region subproblem, it is shown that the local convergence rate is linear with an arbitrarily small ratio. Thus, convergence is locally almost superlinear, under standard regularity assumptions. The proposed method is successfully applied to compute local solutions to alternating current optimal power flow problems in transmission and distribution networks. Moreover, the new mechanism for computing a Cauchy point compares favourably against the standard projected search as for its activity detection properties
    • 

    corecore