A PARALLEL COMPUTATION
APPROACH FOR SOLVING
MULTISTAGE STOCHASTIC

NETWORK PROBLEMS

L.F. Escudero, J.L. de la
Fuente, C. Garcia and F.J.
Prieto

96-37

Universidad Carlos |l de Madrid

WORKING PAPERS



Working Paper 96-37 Departamento de Estadfstica y Econometrfa
Statistics and Econometrics Series 11 Universidad Carlos IIT de Madrid
May 1996 Calle Madrid, 126
28903 Getafe (Spain)

Fax (341) 624-9849

A PARALLEL COMPUTATION APPROACH FOR SOLVING
MULTISTAGE STOCHASTIC NETWORK PROBLEMS

L.F.Escudero, J.L. de la Fuente, C. Garcfa and F.J. Prieto”

Abstract

This paper presents a parallel computation approach for the efficient solution of very large multistage
linear and nonlinear network problems with random parameters. These problems result from particular
instances of models for the robust optimization of network problems with uncertainty in the values of
the right-hand side and the objective function coefficients. The methodology considered here models
the uncertainty using scenarios to characterize the random parameters. A scenario tree is generated
and, through the use of full-recourse techniques, an implementable solution is obtained for each group
of scenarios at each stage along the planning horizon.

As a consequence of the size of the resulting problems, and the special structure of their constraints,
these models are particularly well-suited for the application of decomposition techniques, and the
solution of the corresponding subproblems in a parallel computation environment. An Augmented
Lagrangian decomposition algorithm has been implemented on a distributed computation environment,
and a static load balancing approach has been chosen for the parallelization scheme, given the
subproblem structure of the model. Large problems -9000 scenarios and 14 stages with a deterministic
equivalent nonlinear model having 166000 constraints and 230000 variables- are solved in 15 minutes
on a cluster of 4 small (16 Mflops) workstations. An extensive set of computational experiments is
reported; the numerical results and running times obtained for our test set, composed of large-scale
real-life problems, confirm the efficiency of this procedure.
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This paper presents a parallel computation approach for the efficient solution of very large multistage linear
and nonlinear network problems with random parameters. These problems result from particular instances
of models for the robust optimization of network problemns with uncertainty in the values of the right-hand
side and the objective function coetlicients. The methodology considered here models the uncertainty using
scenarios to characterize the random paraineters. A scenario tree is generated and, through the use of
full-recourse techniques. au implementable solution is obtained for each group of scenarios at each stage
along the planning horizon.

As a consequence of the size of the resulting problems, and the special structure of their constraints,
these models are particularly well-suited for the application of decomposition techniques, and the solution
of the corresponding subproblems in a parallel computation environment. An Augmented Lagrangian
decomnposition algorithm has been implemented on a distributed computation environment, and a static
loac balancing approach has been chosen for the parallelization scheme, given the subproblem structure
of the model. Large problems—9000 scenarios and 14 stages with a deterministic equivalent nonlinear
model having 166000 constraints and 230000 variables—are solved in 15 minutes on a cluster of 4 small (16
Mfops) workstations. An extensive set of computational experiments is reported; the numerical results and
running times obtained for our test set. conposed of large-scale real-life problems, confirm the efficiency of
this procedure.

1 Iutroduction

In this paper we are concerned with the application of a parallel computation approach to the solu-
tion of nwltistage stochastic linear and nonlinear network problems obtained from the formulation of
network problems with uncertainty both in the right-hand side of the constraints and in the objective
function coefficients. This class of problems is among the most intractable in numerical computation.
Our methodology can be extended in a straightforward manner to the case when the uncertainty also
appears in the constraint matrix coefficients.

In contrast to traditional mathematical programming approaches, we have chosen to model the
uncertainty using scenarios to characterize the random parameters in the objective function and the right-
hand side. A scenario tree is generated and, through the use of full-recourse techniques, an implementable
solution is obtained for each group of scenarios at each stage along the planning horizon.

When this approach is used, the so-called deterministic equivalent (DE) model has a huge number
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of variables and constraints, and very often the network structure is lost as a consequence of the need to
impose additional conditions on the values of the variables, to ensure the coherence of the decisions taken
at different time stages. Practical problems can easily have in excess of 100,000 variables and constraints;
also, very frequently the function to optimize is a nonlinear function of the variables,

Decomposition techniques are particularly suitable for this class of models, by careful choice of the
approximation scheme, given the very large size of the resulting problems, and their ability to recover
the network structure in the subproblems.

Once the problem has been decomposed, a reasonable and efficient procedure to compute a solution
is to treat the different subproblems in parallel, where each subproblem is composed of one or more nodes
of the scenario tree. We have chosen a static load balancing scheme, as the subproblem structure is not
modified within the decomposition procedure, and the relative effort required to solve the subproblems
remains fairly constant throughout the algorithm.

This approach has been tested, and shown to be very efficient, on a collection of large test problems
obtained from real-life long-term hydropower generation planning applications. The tests have compared
both the sequential and parallel versions of our implementation of the decomposition algorithm, and this
algorithm with other alternatives for the direct solution of the DE model.

The paper is organized as follows: in Section 2 we present the model of interest, and we comment on its
special structure. Sections 3 and 4 discuss the two approaches, Benders decomposition and augmented
Lagrangian decomposition. that we have considered as most suitable for the parallel solution of the
problem. Section 5 presents the parallelization of the algorithms, and describes the details involved in
this parallelization. Section 6 shows results obtained from the application of these techniques to three
sets of very large real-world test problems. Finally, in Section 7 we draw some conclusions from our
experience on the application of this approach.

2 Model description

Consider the following deterministic linear problem:

z= min ctzr
st. Ar= (1
z>0

where ¢ I» an n-column vector, A is the m X n constraint matrix, b is an m-column vector and z is the
n-colunmn vector of the nonnegative unknowns. We are particularly interested in the solution of planning
problems. where time plavs a significant role in the definition of the variables and the structure of the
constraints. If we consider a planning problem over several time periods, we niay partition the variables
into sets corresponding to information concerning just one stage (a period or set of periods to be treated
jointly in the model}. and to the information carried over from one stage to the next. Siniilarly, we may
partition the constraints into subsets related to the limitations imposed on the operation of the system
m each stage.

Iu our case of interest we shall assume that the structure of the constraints is similar for all periods,
and that all constraints can be treated as pertaining to a single stage (and the variables representing the
information shared between stages). Under these assumptions, the structure of the constraints is that of
a collection of models for each stage, linked by terms related to the variables carrying information from
each stage to the next.

In order to illustrate this structure, consider a case with three time stages, where the variables z,
represent the information related to stage r, and the variables z,. 4 correspond to the information carried
over from stage r into stage r -+ 1. In this case, the system Az = b can be written as:

A]I‘l + .4%2.]312 = bl

A}azin +  Aszy 4+ Alszas = by {(2)
A§3CL‘23 -+ A3.’l‘3 = b3
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There exists a broad range of application fields for stage programs of this form, such as electric-
ity /water/gas distribution, financial planning, exchange rate management with currency arbitrage, pro-
duction planning, input-output tables in macroeconomic analysis, design and operation of communica-
tions networks. road networks, etc. See [1], [2], [6], [13], [17], [18], [21], [22], [24], [27], [33], [34], [36]. [42],
[47]. [48]. [49], [50], among others. In many such cases A in (1) is an m X n node-arc incidence matrix
for some directed graph G = (V, E), where V denotes the set of nodes with m = |V|, and E denotes the
set of arcs with n = |E|.

2.0 DUncertainty

The real-life problems that have motivated this paper fit model (1) and (2) introduced above, but in
order to obtain a sufficiently accurate representation of the operation of the real system, we must expand
this model by taking into account explicitly that some elements of the matrix A or the vectors ¢ and b
may not be known with certainty.

In these cases, one needs to consider two additional features. In the first place, one must model the
availability of information over time, and state what sort of decisions can be made at each of the various
stages. Secondly, to compute an optimizer any proposed solution will have to be compared with other
candidate solutions but. in the stochastic setting, the criteria by which this comparison can be performed
are mucl less clear. Thus, we need an approach to model the uncertainty in the problem data. The
traditional approach is to make distributional assumptions. estimate the parameters from historical data
and then develop an stochastic model to take the uncertainty into account. Such approach may not be
appropriate if only limited mformation is available. On the other hand. in many applications it is often
necessary and possible to take into account mformation that is not reflected in the historical data. In
many such cases we may employ a technique called “scenario analysis”, where the uncertainty is modelled
via a set of scenarios. say S. (See [23] for a description of a methodology for the estimation of the number
of scenarios: see also [25] for a Monte Carlo importance sampling approach for the generation of the
appropriate set of scenarios.)

For example. in our model (1) the vectors for the right-hand side and the objective function coefficients
may take different values for different scenarios, say b* and ¢* for s € S, respectively. We also introduce
welghts w* representing the likelihood that the decision maker (modeler) associates with each scenario
S EN.

Oue way to deal with the uncertainty is to obtain the solution & that best tracks each of the scenarios,
while satisfving the constraints for each scenario, see [13], [32]. This can be achieved by obtaining
a solution that minimizes the weighted upper difference between the proposed solution value and the
optimal solution value for each scenario, see [1]. [2], [13], [26], [32]. The resulting model does not increase
the number of variables of the original formulation, but now there are m|S| constraints. Unfortunately,
this representation of the model does not preserve the structure of the deterministic model (1) (for
example. n the case of network models we have two nonzero constraint entries for each variable, at most,
and one of them is +1), and the objective function is no longer linear; see in [1} and [2] some procedures
to overcome this difficulty. Models of this form are known as scenario immunization models, or SI models
for short.

As an alternative goal, we could minimize the expected value of the objective function, and in this
case model (1) becomes

min - ) s w' ()T x
s.t. Ar = b° Vse s (3)
z > 0.

Note that (3) gives an implementable policy based on the so-called simple recourse, that is, the whole
vector of decision variables 1s anticipated at stage 1.
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2.2 Non-anticipative policies

Scenario immunization models anticipate decisions in z that for multistage applications may not be
needed at stage » = 1. Frequently, the decisions for stage r = 1 are the only decisions to be made, since
at stage r = 2 one may realize that some of the data has been changed, some scenarios vanish, etc. In
this case. the models will usually be reoptimized in a rolling planning horizon mode. When only spot
decisions (i.e.. decisions for stage r = 1) are to be made, the information about future uncertainty is only
taken into account for a better spot decision making. This type of approach is termed full recourse.

Let R denote the set of stages, and z* denote the arc flows under scenario s, for s € 5. The following
nonanticipativity principle has been stated in [37], see also [45].

“If two different scenarios s and s’ are identical up to stage r on the basis of the information available
about them at stage r. then the values for the z-variables must be identical up to stage r for r € R”.

This condition guarantees that the solution obtained by the model is not dependent at stage r on
information that is not yet available. To illustrate this concept, consider Figure 1: each node in the figure
represents a point in time where a decision can be made. Once a decision is made, contingencies can
happen (in this example, the number of contingencies is three for all nodes), and information related to
these contingencies is available at the beginning of the next stage. This information structure is visualized
in Figure 1 as a tree. where each root-to-leaf path represents one specific scenario and corresponds to one
realization of the objective function coefficient vector ¢ and right-hand side 4. In our example we have
three stages: the elements of vectors ¢, and b; cau take one value each for all scenarios. but the elements
of vectors ¢» and b+ can each take three different values, one for each realization of the uncertainty in
stage 2. The elements of vectors ¢z and bz can then take each three different values for each value of ¢s
and bs. Note that in this case we have a total of [S| = 9 different scenarios.

In order to introduce this condition into our model, let N denote the set of solutions that satisfy the
so-called nenanticipativity constraints. That is,

reN={2"|2*=2" forallsands that are identical up to stage r}. (4)

These constraints must be added to model (1), to obtain the deterministic equivalent (DE) model

min, g wic' Ta?

SES
st. Ars=b VYse S ()
£ E _N

2*>0 Vsed&s.

We can also visualize the full recourse approach by introducing the scenario group concept. For each
stage 1 we define a set of groups of scenarios G, such that all scenarios having the same realizations of
the wncertainty up to stage r belong to a given group ¢ of scenarios, for ¢ € GG,.. For example, in Figure
I we have that G is composed of a single group of scenarios (all scenarios are identical in stage 1, as no
realization of the uncertainty has yet taken place), Gy is composed of three sets of scenarios, with three
scenarios belonging to each set, and (3 is composed of nine sets of scenarios, each one including a single
scenario. The nonanticipativity principle then requires a single solution value for each group of scenarios
in each stage. that is. a single value 24 for each ¢ € G,. Let Sy denote the set of scenarios that belong
to group ¢ for S, € S. ¢y € G, and r € R. Using this notation, we can reformulate condition (4) as

reN={z'|2t =2 Vs €S,VgeG,,VreR). (6)

Note also that the scenario tree is defined by the set of nodes U,¢gG, and the set of directed arcs E,
where (k.1) € Efor k€ G,..l € G,4, and S; C Si.

Model (5) has a nice structure that we may exploit. Two approaches can be used to represent the
nonanticipativity constraints (6). One approach is based on a compact representation, where (6) is used
to eliminate variables, and to reduce model size, so that there is a single variable zd for each ¢ € G-, but
any special structure of the constraints in (1) (e.g.: any network type structure) is destroyed. The other
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Stage: =1 2 3 Scenario

Figure 1: Scenario Tree
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approach is based on a splitting variable representation. If we denote the variables associated with each
stage as ¢ for g € G, and r € R, and 2! |, denotes the connecting variables between stages, then we
can use a single variable 24 for each ¢ € G,, as in the preceding case, as this reduction does not affect
the network structure. On the other hand, we may introduce more than one variable z; ., to represent
the connecting variables for s € 5; and a given g € G; in this case, the nonanticipativity condition is
then enforced by explicitly including the corresponding constraints from (6) as part of the model, but
the network structure is preserved.

3 Compact representation

3.1 The model

The compact representation of the full recourse model (5) requires modifying the model example (2) by
mtroducing the following variables to take into account the uncertainty in the data:

rpand arpo with the same meaning as xp and »p» in (2), respectively.

o5 and why with the same meaning as ro and a3 in (2). respectively, but now related to each group of
scenarios k& € G.

v with the same meaning as z3 in (2). but now related to each group of scenarios | € G3.

Let the vectors (cy.cpa. CS. Cé's, Cg) and (b, bg, bg) denote the objective function coefficients and right-
hand side parameters, partitioned according to the scenario tree and variable partitioning scheme indi-
cated above.

For the case with three stages. our representation of model (5) is as follows:

min o 1 + chre + E (5)7eh + E (c53)T 253 + E (ch)Tx}

KEG, kEGH 1€G;
~.t. 4-11.1'1-{-:1?_).1‘13 =,
Arn+ Aarh 4 Az, rk, =b5 Vk € Gs (7)
Al ok, + Asrh =b, Yk, 1) € E,
ke G2
Ty, T2, I"ch 153, I.l?, >0,

Stmplex based procedures. with crash ad hoc starting solution techniques, can be used to solve (7), as
well as tuterior point methods. The first approach gives good results, provided the number of scenarios
1s small (say 25-50), and the loss of the special structure in (1) is not a big inconvenience.

The disadvantages of using interior point methods are emphasized in [10], [29], and result from the
fill-in in the computation of the Choleski factor required for the solution of a system of linear equations
i each iteration.

The 2-stage version of (7). the so-called block angular problem, has been extensively studied in the
literature. Several special-purpose algorithms for solving linear problems with this structure have been
developed. including the L-shaped method described in [44], among others. Interior point inethods applied
to these problems have been discussed in [8], [9] and [46], where decomposable algorithms amenable to
parallel computing approaches have been proposed. The basic idea is to decompose the system of linear
equations to solve at each iteration. using versions of the Sherman-Woodbury-Morrison formula. This
procedure takes advantage of the structure in the 2-stage version of (7), and obtains the solution of the
system from the solution of |S| smaller systems.

3.2 Benders decomposition

lustead of using a direct method to solve the DE model (7}, the multistage stochastic program represented
in (7) can be solved using a Benders decomposition [3] approach. It has the property that if the values of
the variables xy» and @4, are fixed, then the optimal values for the remaining variables can be obtained
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from the solution of separable subproblems.
A scheme for the solution of problem (7) that computes first the values of the variables )4 and 2%,
and then the values of all other variables, can be obtained after rewriting the problem as

min ol A+ YA ehy + o(zi0, 255) ®)
s.t L9, :::g3 > 0,

where we have isolated the comiplicating variables, and all other variables are treated through the function
. This function is defined as

p(Z12.255) =
min cfz; + Z (E)Teh + T ()Tl
5.t .*11.81 fed 1)1 e A%Q.’I_}lg
Aoak = bk — AL d0~ A3ty Vke G (9)
Aarh = by — A3, 5, Vik, 1) e E,
ke G,
ry. z", 2l > 0.

Ounce the values of the variables x4 and x4 are fixed, we obtain a 1model that is separable in the variables
ek and 2l
The function  can also be defined in terms of the dual of (9},

Slrys 75) =

wax (by = Al o) A+ 3 (b = Al T — A% 130) A+ 1, (6 — ALT5)TA

AT A ' <a (10)
EED Y <cf Yied,
FYD <l L viedq,.

I'vom this definition we can derive a simple characterization for »(x1a2.25;) to be used in (8). The
solutions for the optimization problems in (9) and (10) will be attained at some extreme point. More
specifically. let A denote the set of extreme points of the feasible region in (10), A; € A for any extreme
pomnt A, where

A= (AL AL ),
and let [ be index set corresponding to a complete enumeration of these extreme points, Then (10) is
equivalent to
P E1e, _Ls]
nin; =
st 22> (by — ALE 1) Ay + T4 (be — AdyE 10 — AZ,E5)T AL, (11)

+ 5 (05 — ARE)TA, Viel

and this characterization can be introduced in (8) to obtain the following equivalent problen:

min chayp (5 ek, +6
st (i’;ﬂ.{} +(D Ak An)m + > ((/\ TAf+( ) ig,)TA§3>r§3 +02G Viel (g
EEeG) kE€Gn H{k)eE
L1z, Tza 2 0.

where ¢; = Ab) + P keas! (A5)T8k + Y, (AT ok,

As the number of e\tleme points for problem (10) can be very large, we must introduce some
procedure that requires the use of a limited number of them in (12).

The solution process for problem (7) using Benders decomposition would proceed through the fol-
lowing rough algorithm.
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ALGORITHM A-1. BENDERS DECOMPOSITION ALGORITHM

Step 0  Start with an initial value for the variables z,5 and z%,. Set i = 1.

Step 1 With the last values for ), and 2% solve (10), and obtain the corresponding mulsiplier vector
A

Step 2 Add a constraint of the form (11) to the master problem (12), and solve this problem to obtain
a new value for the variables xa, .7:53 and 6.

Step 3  If the value of @ lies within a prespecified tolerance ¢ of the best value of (2 s, z%;), then
terminate. Otherwise, let ¢ =7+ 1 and go to step 1.

The procedure is guaranteed to terminate in a finite number of iterations, as there is only a finite
number of extreme points for problem (10).

The L-shaped method mentioned above was extended in [5] to the multistage setting by nesting several
levels inside one another. Other nested Benders decomposition approaches are described in [14], [20] and
[35]: parallelized versions are given in [7], [15]. Other parallelizations of the Benders decomposition
method for the two-stage stochastic linear program are given in [11], [24].

4 Splitting variable representation

4.4 The model

Au alternative to the compact representation of the full-recourse model (5) can be obtained after splitting
the coupling variables between stages. r12 and x4, in the case of our example (7). A new set of variables
+b, for k € G4 are then added and equated to z)2, and also a set of variables .rlgs for | € G3 are added
and equated to the corresponding x5, for (k. I) € E.

The resulting representation takes the form:

min ef £y 4 ¢iy 11 +3 ()T 23+ 30, (c5) 25 +3(ea) 2
s.t. _-11I1+:Hg.l'12 =b1
ri2 - I‘fg =0 vk
AbLrb, 4 Asrk 4+ A3k, =b5 vk (13)
5 — by =0 V!
Alszh+  Asry  =by VI
. Ii2. 1'f2. ré 1’2‘3, z’23. zls >0.
For a circular-link representation of the nonanticipativity constraints, say a:f;il =zf ., see [6], [28],

[39] The advantages of the splitting variable representation over the compact representation for solving
tlie full recourse model (5) using interior point methods have been explored in [29], see also [10]. In [19]
a computational comparison of different strategies for interior point methods and the Simplex method
with and without crash procedures can be found. The results of these studies do not all go in the same
direction. but none of them analyze decomposition procedures. A Dantzig-Wolfe decomposition scheme,
and (its dual) a Benders approach to the solution of (13) have been presented in [2], but no computational
results are reported: the authors claim they are not good enough.

4.2 Augmented Lagrangian decomposition

Augmented Lagrangian methods proceed by moving the nonanticipative constraints (6) into the objective
function to generate a problem with independent sets of constraints, one per node in the scenario tree,
<o that each subset keeps any special structure that might be present in the original problem (1).

Il this procedure is applied to (13). the resulting problem becomes

max D,(7), (14)
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where the function D,(r) is defined as

D,(7) = min Zw’(C’)TzS + i (m1) (212 — 2f,) + Z(k,l)(”lzs)T(-’Cgs — z53)

SES
p 2 2 15
+ §Zk|l’312—f’f2” + g llzds — zhall ) (15)
s.t. e X
and we have used the notation
£’ = (21, 212, -’C’zc; z’2°3, ’3.!3)) (16)
the feasible set X' is defined as
X= {I’l Az + Abl‘lg =0
A'l"’zzf,_, + Agl‘g + A§3z§3 = b§ vk (17)
‘ A§3xf_,3 + A;;zé = bé Vi
zy, T, zfs, a8, 53, zhs, i >0},

7 = (7f,, 7hs) is the vector of dual variables for the constraints (6), and p > 0 is a penalty parameter.
rough algorithm to solve (14) is as follows:

ALGORITHM A-2. AUGNENTED LAGRANGIAN DECOMNPOSITION ALGORITHNM

Step 1 For a given multiplier vector 7; available at iteration 7, solve problem (15). Let 2! be the
solution of this problem.

Step 2 If for some tolerance parameter ¢ > 0,
[(212); = (2ha)ill S € and [|(255); — (2ha)ill S ¢ V(k, 1) € B,k € Gy,

holds, then stop; the optimal solution for (13), and for the original problem (7), has been
found.

Step 3  Otlerwise, reduce by an adequate amount the penalty paraineter p, and update the dual
multipliers 7 according to

7Tik+1 = ﬂ'ik‘ﬁ(-'l'l:’_ﬁz) Vk € G, (18)
T = T — Baky —zhg) V(K1) € E,

where 2 > 0 is an appropriate steplength.

1t is well known that if (14) has a solution, then algorithm A-2 converges in a finite number of
iterations—see [4], for example.

In order to obtain decomposable subproblems, we still need to address the fact that the objective
function in (15) is not linear but quasi-separable quadratic. A description of several frameworks to
decompose the objective function in (15) can be found in [2].

If the quadratic terms of the form ||z; — 1‘j||2 in (15) are expanded, and the cross-product terms z7 z;
are approximated by using a suggestion from [41]—see also [30], [31], [38], [39], it results that for the
variables x;, rj, and some particular values of these variables z;, z;, we can write

2 2 2
i = 2il® = lzall” + Nl |I° = 227 2
alz; —-iTs; +5Te; + 272, 4 (2: - )T (z; — %)

leili? + |27 + 22T #; — 22T 2; — 227 &5,

s — =°

Q

where we assume that the terms of the form (z; — ;)T(z; — Z;) are negligible compared to HIzHg and

2
5117
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Using this result, the objective function in (15) can be approximated by

Fe,mp) = g v+ ghma+ Tu((oh)Tobo + (65)7 2k + (o52)Toks)
+ Zl((glzs)Tl'Izs + (gé)ng)
14 9 L2 .2 2
2 all + Sallleball® + kel + Sillabel) + £, (19)
where
g1 =0
g12 = c1o — Y (7hs + pEs)
gff_, = ﬂ'f? — pTa vk € G,
k k 't
G = C4q Vk € G‘)
S L ' (20)
9oz = Co3 — Z{l|(k,l)eE}(7r’_>3 + pZa3) Vk € Ga
gha = Thy — pih, V(k,[)e E
g5 = ¢h _ Vi € Gs
f = o Blat Y, By (ke E} Zhg).
Now the problem
min, F(z,7,p) .
s.t. re X, (21)

where X iz defined as in (17), can be decomposed into quadratic subproblems with linear constraints
that preserve the original structure, a network structure, for example. Our rough algorithin for solving
(14) via separable quadratic approximations is as follows:

Let ¢ be a given iteration of algorithm A-2 and ; and x; be the dual multipliers and current value
of the variables. respectively. Replace step 1 of algorithim A-2 with the following algorithm:

ALGORITHM A-3. AUGMENTED LAGRANGIAN INNER ITERATION
Step 0 leta=m. &, =x; aud m = 1.
Step 1 Solve (21) with £ = &,,,. to obtain a new point X;p,.
Step 2 If ||&ipm — I,m|| < €. then stop. Otherwise, set
Lim41 = Tim + A/'(xim - iim)v
where 5 1s an appropriate steplength, increase m by one and go to step 1.
In some of the computational experiments to be described in Section 6, the value of the penalty

parameter p in (19) has been kept constant for all iterations, but in other cases the value of p has been
adjusted in the algorithm according to the following heuristic rules:

ALGORITHM A-4. PENALTY PARAMETER UPDATE

Step 0 At the start of the algorithin define two problem dependent constants, Cp and Cr, where Cp
should be a lower bound on the optimal value of the objective function.
For the test problems in Section 6 we have used C,, = 1050, where n denotes the number of
variables in (21), and C'p = 0.

Step 1 In each iteration 7 of Algorithm A-2. compute the values
My = max (|[(z12): — (ha)ill, l1(253)i = (@hs)illc) -

Nio= ) fan)i = ()il + D ll(#ha)i — (2ha)illa-
k

(k.0



L.F. Escudero et al. / Parallel computation and multistage networks 11

Step 2 The new value p;; 1s obtained from the value p; as

1.5p; it M; > 1,
piyl = C,/N; it M; < 1 and C,/N; < 10*(F(2;) — CF),
102 (F(x;) = Cp) otherwise.

5 Parallel implementation

From the preceding description of the Augmented Lagrangian algorithm, it follows that step 1 in algorithm
A-3 can be carried out by solving a collection of quadratic subproblems having very similar structure
and complexity. The additional computational work required in step 3 of algorithm A-2, and step 2 of
algorithim A-3 is a very small fraction of the total computational effort required by the decomposition
algorithm.

Similar observations can be made for algorithm A-1, where step 1 requires the solution of a set of
independent linear programs. although i this case the computational cost of step 2 can be significant
compared to the total computational cost of the algorithm.

Taking advantage of this favorable structure, we have developed a parallel implementation of the
algoritlims presented in the preceding sections. Iu this implementation, the computations required in step
I of algorithm A-1 and step 1 of algorithm A-2 are conducted over a distributed network of computers
(nodes).

For the rest of this section we will concentrate on the description of the procedure for the Augimented
Lagrangian algorithm. as the general structure is similar for both cases, and this second algorithm has
been shown to be much more efficient in practice for the problems of interest, see Section 6.

For a different approach to the parallelization of the Augmented Lagrangian decomposition method,
see [31]. [39]. The similarly motivated row-action parallelization scheme is presented in [34] for the
two-stage problem.

The Augmented Lagrangian parallel implementation that we have developed follows a master/slave
strategy with static load balanciug. Given this structure, tlie execution flow of the program can be
sunmiarized as follows:

ALGORITHM A-5. DISTRIBUTED CODE EXECUTION FLOW

Step 1 The master program is loaded onto a node of the parallel computer, or distributed network of
computers,

Step 2 The master program loads the data for the problem, determines the subtasks to be performed
by the slaves, and allocates these subtasks to the nodes in the system, according to the
procedure described in Section 5.3.

Step 3  The master program loads the slave programs (where the computationally intensive part of
the algorithm is implemented) onto the remaining nodes of the computer (or network).

Step 4 The information required to complete the allocated tasks (step 2 in Algorithm A-3) in a given
iteration is sent to the slaves.

Step 5  The slaves perform the allocated tasks. Once these tasks are complete, the results are returned
to the master program.

Step 6  The parameters in step 3 of Algorithm A-2 and step 2 of Algorithm A-3 are updated by the
master prograni.

Step 7  With these new values of the parameters, new tasks are generated and allocated to the slaves
by tlie master program.

Step 8  Steps 4-7T in this procedure are repeated until the master program determines that the termi-
nation conditions in step 2 of Algorithm A-2 have been satisfied.
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5.1 Load balancing

In our implementation of the decomposition algorithms, we have chosen to define each subproblem as
corresponding to one stage and one scenario group. This choice implies that all subproblems are similar
n size and structure. and simplifies the allocation of tasks to processors. Other allocation schemes are
possible: for example, if the efficiency in the solution of the subproblems is an important consideration, it
may be worth assigning to each subproblem the largest number of stages for which the network structure
1s preserved.

For this choice, and as the number of subproblems to solve in each iteration is known and fixed
in advance, we have chosen to follow a static load balancing scheme. As a consequence, the allocation
of subproblems to tasks and the assignment of the individual tasks to the nodes is done once at the
beginning of the execution.

If the network connecting the computer nodes is not heavily loaded then a static load balancing
scheme 1s the most efficient choice, as for our decomposition approaches the load remains fairly constant
throughout the execution (the solution times for the different subproblems in a given iteration, measured
as a fraction of the total elapsed time for the iteration, do not change significantly from iteration to
iteration). and the overheads associated with dynamic schemes are avoided.

Lor the tests we have conducted in our computational experiments, we have made use of a homo-
geneous allocation of subproblems to tasks. In this sense, all tasks that we generate are in principle
equivalent regarding their associated coniputational load, a reasonable choice for dedicated machines of
roughly similar computing power. Nevertleless, our implementation is also able to generate nonhomoge-
neous allocations, based on a priori knowledge of the processing capabilities of the different nodes in the
{(nonhomogeneous) network. or on some estimate of the expected load of the nodes. In these cases it is
assumed that this load will remain sufficiently stable that our static load allocation does not become too
mefficient.

3.2 Communications between processors

(iiven that the program has two or more separate parts (imaster and slaves), one of our main concerns has
Leen 1o ensure the efficiency of the procedures to communicate the information for the variables shared by
caclh part The specific design of these communication tasks between programs has a significant impact
on the overall efficiency of the parallel algorithm, and the speedup that can be achieved with regard to
the sequential version.

In our imiplementation. this conmmmunication is performed at different points in the execution of the
prograni:

e Initially. immediately after the master program loads thie slave to each of tlie nodes (step 3 in
Algorithm A-3), all the information that will not change throughout the execution of the algorithm
1s sent to each slave.

e Immediately before a slave must begin processing a particular task, the master sends all information
specific to this task (step 4 in Algorithm A-5).

e Ll the “child” of a given subproblem has been allocated to a different node, the values corresponding
to the common variables for the subproblem and its child are sent to the corresponding node
nninediately after solving the subproblem.

e The values of the multiplier vectors for the shared variables between subproblems are updated from
the new values for the connecting variables (step 3 in Algorithm A-2) immediately after solving
both subproblems. If the “parent” for a given subproblem has been allocated to a different node,
the new values for the multipliers are not sent to the corresponding parent node until the end of the
current iteration, that is, until all the tasks currently allocated to the node have been completed.

e Once a slave finishes a given task, the results generated are sent to the master program, in order
to check the optimality conditions and to decide on the need to conduct a new iteration.
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Note that the amount of information to be sent to a slave depends on the structure of the subproblems
assigned to it. For example, in order to solve a subproblen1 whose “parent” has been allocated to the
same node no additional information is required.

The most likely cause for a node having to wait to start solving a given subproblem is the need to
receive information from another node (the results from solving the parent of the current subproblem),
and the wait for the master to send the information to process a task to a given slave. As a consequence,
in order to attain a high speedup it is necessary that the task allocation algorithm both balances the load
between processors, and minimizes the total time a slave must wait for information from another slave.

3.3  Tuask allocation

As we mentioned above, the allocation of subproblems to tasks has been performed so that all tasks
require a similar computational effort, and the information exchange required between slaves is limited.
This allocation is performed by the master program immediately after reading all input data and starting
the slaves in all available nodes.

Task allocation is conducted according to the following algorithm:

ALGORITHM A-6. TASK ALLOCATION TO PROCESSORS

Step 1 Once the input data has been loaded. the scenario tree is analyzed.
Let n, denote the number of different scenario groups associated with stage r, that is, n, =
|(r]. and let N be the number of nodes available in the parallel computer, or the network.
Find an 7 such that .\ = 4n;.
This last value has been chosen to ensure that a sufficiently well-balanced first assignment
can be made for the subproblems corresponding to that stage, without having to consider any
later stages.

Step 2 All subproblems in stage 7 are assigned to one of the nodes.
Let s,. 9 = 1..... nys, denote each of the subproblems in stage 7. Ve define one subproblem
for each scenario group at each stage. Also, let ng_  denote the total number of subproblems
n later stages associated with subproblem s, then ns, denotes the total number of nodes in
the scenario tree from node ¢ to the leafs for ¢ € G,..
A given set of ratios for each computer node, ux, k = 1...., N, satisfying >~ wx = 1, and
representing a measure of the availability of each processor. or the speed of the processor, is
specified n advance.
Each subproblem s, together with its associated subproblems is assigned to one of the com-
puter nodes. If 13 denotes the set of subproblems in stage # assigned to node k, the assignment
is conducted so that ||la — ¢|| is minimized, where

ap = E ng,, ty = ug E N5 s

i5, €V 34|9€G,

thiat is. a denotes the vector of assigned loads to each computer node, and ¢t denotes the vector
of desired loads for each computer node, obtained from the prespecified ratios u; and the total
number of subproblems to be allocated. We attempt to minimize the distance between the
actual and tle desired assignments.
In our case. we have used uy = 1/N.

Step 3 The subproblems corresponding to stages 1,2,...,7 —1 are sequentially assigned to one of the
nodes. according to the following rules:

Step 3.1 Rank the unassigned subproblems starting with stage ¥ — 1 and proceeding to
stage 1. Within each stage use any ordering for the subproblems. Make the first
subproblem in this list the current one.

Step 3.2 For the current subproblem, the number of children already assigned to each node,



L.F. Escudero et al. / Parallel computation and multistage networks 14

hy for node k, are determined and ranked. Let k) denote the node having the
largest number of children, k2 the second largest, etc. Let | denote the number of
nodes having a number of children assigned equal to hy,, that is, let

) l:max{iZl:hkl :hk.}-
Step 3.3 If [ =1 then the current subproblem is assigned to node k;.

Step 3.4 If I > 1, then the current subproblem is assigned to node k;, where j is taken from

j € argmax(ty, — ag,),
i<i

that is, the node having the greatest difference between the required and actual
load is selected from all nodes having the largest number of children.

Step 3.5 Make the next subproblem the current one, and go to step 3.2.

This scheme has the advantages of being fairly simple to implement. and producing a reasonably
well-halanced assignment, while reducig the amount of inforimation to be exchanged between slaves (see
Section 3.2). Note that the exact amount of effort to solve a given subproblem will vary during the
solution process, and cannot be known in advance; so it does not seem efficient to try to compute an
“optimal” allocation scheme.

Figure 2 shows an illustration of the behavior of Algorithm A-6. In this figure we indicate the
partitioning of the subproblems generated by this algorithm for the case of having 4 stages and 27
scenarios. We also show the communications that need to be established between slaves to intercahnge
information in each iteration, and the connections between subproblems that require these interchanges.
Note that there are two different types of communication involved in the solution process. The continuous
arrows denote the communication between slaves, taking place in one direction as the values for the
common variables for the subproblems are sent from parent to child during the iteration. The broken
arrows denote the (bidirectional) communications between master and slaves, involving the slaves sending
to the master information on the values of the variables and multipliers at the end of the iteration (in
order to evaluate the satisfaction of the termination conditions), and the master sending to the slaves the
new values for the multipliers of the complicating constraints at the beginning of the new iteration.

In Tables I and 2 we present results of the application of these procedures to some of the test problems
described in Section 6. In Table 1 we indicate the number of subproblems assigned to each slave, and also
the total number of data interchanges that must be conducted between slaves in each major iteration.

These values should give an indication of the performance of Algorithm A-6, that is, if Algorithin
A-6 behaves as expected. then the number of subproblems allocated to each processor, a measure of the
load balancing between processors. should be roughly equal for all precessors. Also, the number of data
interchanges should be small (it has to be at least N — 1) in order to minimize delays for processors
waiting to receive information before being able to start solving their assigned subproblems.

Note that a smaller number of data interchanges is closely related to a less homogeneous assignment.
It should be noted that the structure of the scenario tree for all these problems is highly nonhomogeneous,
with parts of the tree having a significantly larger number of scenarios than others, and very different
numbers of outcomes (children) for different stages and scenarios.

In order to evaluate the practical behavior of Algorithm A-6 it is important to consider also the
practical results of the allocation as. in addition to the factors included in Table 1, the final speedup
achieved by the algorithm will also be affected by the total waiting time in each of the slaves. Table 2 shows
the time the slaves wait to receive information from the master at the beginning of each iteration, plus
the time spent waiting for information from other slaves, accumulated for all iterations in the algorithm.

[t is remarkable to note how small the total waiting time is compared to the total (sequential)
execution time. It is clear from these results that the communication delays are not very significant, and
the load assigned to each slave is fairly well balanced. Also, the assumption that the solution times for
the different subproblems are very similar is clearly supported by these results.
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Processor communications

Subproblem aflocation

Figure 2: Task Allocation and Processor Communications
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Table 1
Full recourse. Augmented Lagrangian decomposition. Subproblem allocation between processors
Problem Total 2 WS 3 WS 4 WS
net10-9-30 3848 1892 1298 940
1956 1312 872
1238 1008
1028
Data interchanges 3 4 7
net10-15-14 18448 9147 5618 4222
9301 6402 4850
6428 4681
4695
Data interchanges 3 5 6
nee35-60-7 335 188 128 96
197 129 938
128 95
96
Data interchanges 2 9 8
net35-60-10 4586 2269 1403 1051
231% 1594 1165
1589 1194
1176
Data intevchanges 4 6 10
Legend: Total total number of subproblems
(1.e.: cardinality of the scenario tree)
x WS number of subproblems allocated to each node for x nodes
Data intevchanges total number of information interchanges between nodes
at each Lagrangian iteration
Table 2

Total processor waiting time (secs.)

Problem m n |5] # Subp Total 2 WS 3 WS 4 WS
net10-9-30 38480 T1572 154 3848 691 13 13 50
10 16
4 12
2
netl0-15-14 134480 368850 9235 18448 2477 24 52 47
2 36 43
4 12
2
net35-60-7 13475 28420 233 385 267 6 6 5
1 3 5
2 7
3
net35-60-10 39583 87705 564 1131 1130 39 69 76
5 45 54
4 53
7
Legend: Total total sequential solution time for the problem
x WS waiting time for each node, x nodes
m number of constraints
1t number of variables
|5 number of scenarios
# Snbp total number of subproblems
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6 Computational results

In this section we present the results obtained from the implementation of the algorithm described in the
preceding sections. Our test set, see below, is composed of real-life problems with network structure in
the constraints. We have written a C code, SPNET, implementing the Augmented Lagrangian algorithm
A-2/A-3. to run on a distributed computation environment. In order to solve the quadratic network
subproblems generated in algorithm A-3, we have also developed a C code, QPNET, based on the
preconditioned variable reduction truncated Newton approach described in [12] and [16], see also [40],
[42]. where the search direction is obtained from an approximate solution of the Newton equations by
using a preconditioned conjugate gradient algorithm whose preconditioner has been obtained from the
diagonal of the reduced Hessian matrix. The C codes use the HP-UX “cc” compiler, and the parallel
code was prepared using PV version 3.3.7.

The instances in the problem set are taken from the hydropower generation management field (see for
example [2]). In this case the matrices Ay correspond to the node-arc incidence matrix of a given basic
network (vepresenting the reservoir network of a river basin), that is replicated for a certain number of time
periods. and the coefficients ¢ and b are random parameters. The sizes of the basic and replicated networks
for the test problems are shown in Table 3. There are three sets of problems, two sets corresponding to
linear problems. and one set of nonlinear problems whose objective function is a polynomial function of
degree 12 or higher. The parameter values tliat we have used throughout our computational experiments
(except where we indicate otherwise) are as follows: ¢ =107, d =1,y =1 and p = 1.

The number of scenarios. the number of subproblems (i.e.: the cardinality of the scenario tree) and
the size of the compact representation for model (5) corresponding to each test problem are shown in
Table 4. All subproblems in the decomposition scheme have been defined so that each stage corresponds
to a single time period.

Table 3 shows the comparison for problem set 1 (linear problems) between an interior point code
(OB1 [28]) for the solution of the full recourse version (splitting variable representation), our Benders
decomposition algorithm and our Augmented Lagrangian algorithm. The comparison has been conducted
running OBl on an HP 730 with 32 Mb of internal meniory, and running the two decomposition imple-
mentations on an HP 720 (16 Mb of internal memory). These workstations are rated at 23 and 17 Mflops
respectively. The results show the superiority of the Augmented Lagrangian approach, and the good
properties of this approach as the dimension of the problem increases, both in terms of the storage space
required. and the running time to compute a solution. We should also note the remarkable performance
of OB1 while the dimensions of the problems are sufficiently small. For this table, the solution was
computed to an accuracy of 5 correct decimal places. Results from a parallel implementation of the code
on a network of 3 workstations (two HP 720 and one HP 730) are also included.

Table 6 shows additional experiments along the lines of comparing different procedures for solving in a
sequential environment the full recourse model (5) with a splitting variable representation for problem set
2 (linear programs). This comparison has been conducted to provide a reference for both the sequential
and parallel versions of our Augmented Lagrangian decomposition algorithm, regarding the behavior of
elficient codes for the sequential solution of our problems of interest. The sequential codes used have
been LoQo (see [43]) and OB1. two efficient interior point codes. Simplex type algorithms seem to behave
poorly on problems with the structure described in this paper. The termination conditions for all three
codes were to stop when five significant digits in the objective function had been correctly determined.
The comparison has been conducted on an HP 735/125 workstation (rated at 65 Mflops) with 90 Mb
of internal memory. From the results in the table it should be noted that, while the running times
(as given in seconds) for the decomposition algorithm are in general larger than those for the interior
point methods, they are within the same order of magnitude, and the differences tend to decrease with
problem size. The missing entries correspond to those cases that exceeded the resources (internal memory)
available in the workstation. In this sense. the decomposition code is far more parsimonious in the use
ol computational resources than both interior point codes. Note that problem netl0-15-14 (compact
dimensions m = 184480 and n = 368850) was solved in less than 22 minutes by using our SLD approach.

Tables 7 and 8 show the computational running times for both the sequential and parallel versions
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Table 3
Problem specifications. Deterministic version
BN RN

Problem m n T m n
Set 1. Linear programs
recl4-3-7 4 3 7 28 45
red4-3-10 4 3 10 40 66
red4-3-30 4 3 30 120 206
recd10-9-6 10 9 6 60 104
recd10-9-7 10 9 T 70 123
red10-9-14 10 9 14 140 256
rec10-9-30 10 9 30 300 560
recd10-9-50 10 9 30 500 940
red10-15-14 10 15 14 140 340
recd23-35-12 25 35 12 300 695
red25-41-5 25 41 5 125 305
recd25-41-6 25 11 6 150 371
red25-41-7 25 11 T 175 437
red25-11-10 25 11 10 230 635
recd25-41-12 25 41 12 300 67
recl35-52-12 35 52 12 120 1009
rec35-60-5 35 60 3 175 440
recl33-60-6 35 60 6 210 535
recd33-60-7 35 60 n 245 630
recd35-60-10 35 60 10 350 915
rec33-G0-12 35 60 12 420 1105
~et 2. Linear programs
net10-9-6 10 9 [ 60 104
netl0-9-7 10 9 7 n 123
net10-9-30 10 9 30 300 560
netl0-9-50 10 9 50 500 940
netl-15-1-1 10 15 14 140 340
netlo-9-11 10 9 14 140 256
net3s5-60-5 35 60 5 175 440
net35-60-6 35 60 6 210 535
net35-60-7 35 60 T 245 630
uet3n-60-10 35 60 10 350 915
net35-60-12 35 60 12 420 1105
net:35-52-12 35 52 12 420 1009
sct 3. Nonlinear programs
nlu-3-10 9 8 10 80 162
nls-3-11 9 8 11 88 179
nlo-3-12 9 8 12 96 196
nlo-3-13 9 8 13 104 213
nly-3-14 9 8 14 112 230
uly-13-11 9 13 11 143 229
nly-13-12 9 13 12 156 251
nly-13-13 9 13 13 169 273
nly-13-14 9 13 14 182 295
ul9-13-15 9 13 15 195 317
nl¥-13-16 9 13 16 208 339
Legencl: BN Basic network

RN Replicated network

ni number of constraints (nodes)

i number of variables (arcs)

T number of periods
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Table 4
DE model specifications. Full recourse version {compact representation)
Problem - 151 # Subp m n nel
Set 1. Linear programs
red4-3-7 233 385 1540 1765 4454
red4-3-10 3625 6027 24108 27689 69874
red4-3-30 154 3848 15392 26320 53252
red10-9-8 96 152 1520 1928 4806
recl10-9-7 233 385 3850 4985 12290
red10-9-14 9235 181448 184480 258162 6086644
red10-9-30 154 3848 38480 71572 144674
ved 10-9-30 154 69238 69230 130092 261714
recll10-15-14 9235 13448 184480 368850 830040
red25.35-12 2301 1586 114650 217635 492770
rec23-41-5 34 56 1400 2846 6317
recd25-41-6 96 152 3800 7632 17639
recl25-41-7 233 383 9625 19585 44970
rec 25-41-10 564 1131 28275 60346 135187
rec23-41-12 2301 1386 114650 217635 457802
recl33-52-12 2301 4586 160510 318447 717394
ved35-60-5 15 32 1120 2515 5520
rec35-60-6 96 152 5320 11080 25485
recd33-60-7 233 385 13475 28420 64960
red35-60-10 564 1131 39585 87705 195115
rect35-60-12 2301 4586 160510 355135 790770
Set 2. Linear programs
net 10-9-6 96 152 1520 1928 4806
neto-9-7 233 335 3850 4985 12290
net 10-4-30 154 3843 338480 71572 144674
et 1U-9-50 154 6928 69280 130092 261714
netlu-15-14 4235 18443 134480 368850 830040
net =411 9235 18448 184480 258162 808664
net3s-6u-s 15 32 1120 2515 5520
nee3s-60-6 94 152 5320 11080 25485
net35-60-7 233 383 13475 28420 64960
ner3s-80-10 564 1131 39585 87705 185115
net3a-60-12 2301 4586 160510 355135 TO0TT0
net3s52-12 2301 4586 160510 318447 717394
Set 4 Nanhinear programs
nlg-x-10 564 1131 10179 14151 33369
nhs.11 1154 22385 20565 28459 67295
nlo-8-12 2301 4586 41274 57253 135206
nlo-R-13 4627 9213 82917 114978 271590
nls-14 9235 18448 166032 230501 544108
nlg-13-11 311 751 68759 13723 30236
nlg-13-12 569 1320 11880 23919 52950
1l9-13-13 997 2317 20853 42001 92966
al913-14 1729 4046 36414 73451 162454
nl9-13-15 3036 7082 63738 128480 284275
nl9-13-16 5296 12378 111402 224652 496959
Legeud: |5] number of scenarios

# Subp total number of subproblems

m number of constraints

n number of variables

nel number of nonzero entries in the constraint matrix
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Table 5
Computational results, Full recourse
OB1 SBD SLD PLD

Problem NIT Time NIT Time NIT Time Time
Set 1. Linear programs
red4-3-7 21 0:07 11 1:30 1010 2:14 1:48
rect4-3-10 906 30:49 13:00
recl4-3-30 29 1:51 122 3:12 1:31
rec10-9-8 22 0:09 22 2:45 910 2:42 1:54
red | 0-9-7 25 U:19 726 5:42 2:58
veclLU-9-1-1 1430 8:49:23 4:54:38
red10-9-30 322 24:.08 12:17
recd10-9-50 337 45:08 22:34
recd10-15-14 254 1:33:16 15:48
redd23-33-12 871 4:14:59 2:13:05
recd25-41-3 27 13 (3% 13:42 214 0:46 0:29
recd23-41-6 28 0:57 468 4:02 1:57
recd25-41-7 33 3:22 266 6:21 3:08
recl25-41-10 321 22:15 12:44
red25-41:12 443 2:03:23 1:14:23
ved35-52-12 610 4:31:57 2:32:32
red35-60-3 28 0:25 > 80 > 1:00:00 167 0:52 0:39
red35-G0-6 31 141 407 5:47 2:34
recd35-60-7 36 5:31 319 11:21 5:18
recli3s-GU-10 163 17:39 26:15
red33-60-12 408 2:51:24 1:31:31
Legendl: 8BD Benders decomposition

SLD Sequential Augmented Lagrangian decomposition

PLD Paralle! Augmented Lagrangian decomposition

NIT Number of iterations

Time Running time (hh:mm:ss)
fable o
Sequential comparison. Running time for full recourse, splitting variable representation
Problem SLD LoQo 0OB1
Net 2. Linear programs
net10-9-6 225 2.8 1.4
et 1U-9-7 49.8 9.1 4.7
net 10-9-30 264.2 129.9 82.8
net10-9-50 490.0 — —
netlo-15-14 1319.2 — -
net 10-9-14 5009.5 —_— —
uet35-60-5 8.3 4.3 2.4
net35-60-6 48.7 48.8 32.3
net35-60-7 102.8 274.0 125.8
tet 35-60- 10 436.6 — —
ner33-60- 42 1590.2 — —
uet35-32-12 2008.8 — ——
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Table 7
Sequential vs. Parallel computation. Augmented Lagrangian code. Fixed p =1

Problem NIT Seq Par.2W§S SpUp Par.3WS SpUp Par.4WS$S SpUp

Set 2. Linear programs

net10-9-6 910 0:01:04 0:00:45 1.42 0:00:37 1.73 0:00:32 2.00
netl0-9-7 726 0:02:17 0:01:20 1.71 0:01:01 2.25 0:00:48 2.85
net10-9-30 322 0:11:32 0:06:20 1.82 0:04:20 2.66 0:03:24 3.39
net10-9-50 337 0:21:35 0:11:52 1.82 0:08:03 2.68 0:06:19 3.42
net10-15-14 255 0:41:42 0:22:39 1.84 0:15:43 2.65 0:11:33 3.61
netl0-9-14 1430 3:41:53 1:58:21 1.87 1:22:11 2.70 1:00:10 3.69
net35-60-5 265 0:00:20 0:00:16 1.25 0:00:13 1.54 0:00:10 2.00
net35-60-6 407 0:02:08 0:01:14 1.73 0:00:53 2.42 0:00:41 3.12
net35-60-7 319 0:04:28 0:02:26 1.84 0:01:41 2.65 0:01:17 3.48
net33-60-10 463 0:18:53 0:10:05 1.87 0:07:01 2.69 0:05:13 3.62
net35-60-12 408 1:09:00 0:35:37 1.94 0:24:53 2.77 0:18:45 3.68
net35-52-12 610 1:51:09 0:56:23 1.97 0:39:01 2.85 0:29:26 3.78
Legend: NIT number of major (Lagrangian) iterations

Seq running time for the sequential code

Par.xW§S runining time for the parallel code on x workstations

splp Speed-up factor for the corresponding number of workstations

of the Augmented Lagrangian code. on problem set 2 (linear programs). The sequential results were
obtained on an HP 720 workstation. while the parallel version uses three HP 720’s and one HP730 (this
last workstation was used only for the results in the Par. 4 WS columm). The two tables correspond to
different strategies for the updating of the parameters, and the termination tolerance. In Table 7 the
value of p was kept constant throughout the algorithm, and the solution was computed to a relative
precision of 5 decimal places 1n the objective function. In Table 8§ the strategy to modify the penalty
parameter described in Section 4.2 has been used, and the solution process has been terminated after
two correct digits had been identified for the objective function.

These results, and in particular the closeness of the speedup ratios for the large problems to the
theoretical maximum. prove that a parallel implementation can be very efficient for using Augmented
Lagrangian decomposition approaches to solve large stochastic network problems. Note also that a com-
parison of the times in Tables 7 and 8 implies a clear advantage for the parallel code over any sequential
alternative. particularly for large problems, even when just two processors are used. Finally, it is impor-
tant 1o consider that the sequential nature of the interior point codes offers far less scope for their efficient
parallel implementation than the decomposition codes that we have described in the paper. Neverthe-
less. a computational comparison between our Auginented Lagrangian decomposition (LD) approach and
recent approaches for the two-stage stochastic problem, [8], [9], [46], based on decomposing the system
of linear equations to be solved at each interior point iteration would be useful for a comprehensive
assessment of the LD performance.

Finally. Table 9 shows the computational running times for both the sequential and parallel versions
of the Augmented Lagrangian code for problem set 3 (nonlinear problems) described in Table 4. The
computer environment for Tables 7 and 8 is used again for this table. Here the value of p has been
kept constant. and the convergence criterion has been to stop when two significant digits in the objective
function have been computed. Note that the speedup ratio is very close to the theoretical maximum for
the whole set of problems.

7 Conclusions

In this paper we have presented a procedure for the solution of linear and nonlinear problems under
uncertainty. where this uncertainty is treated via scenario analysis and a splitting variable representation
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Table 8
Sequential vs. Parallel computation. Augmented Lagrangian code. Variable p
Problem NIT Seq Par.2WS§ SpUp Par.3WS SpUp Par.4WS SpUp
Set 2. Linear programs
net10-9-6 44 0:00:06  0:00:05 1.20 0:00:04 1.50 0:00:04 1.50
net10-9-7 62 0:00:21  0:00:12 1.75 0:00:09 2.33 0:00:07 3.00
net10-9-30 35 0:03:26  0:01:55 1.79 0:01:23 2.48 0:01:02 3.32
net10-9-50 33 0:06:01  0:03:20 1.81 0:02:22 2.54 0:01:50 3.28
net10-15-14 25 0:09:36  0:05:52 1.64 0:04:02 2.38 0:03:02 3.16
net10-9-14 96 0:25:34  0:13:48 1.85 0:09:42 2.64 0:07:15 3.53
net35-60-5 24 0:00:08  0:00:07 1.14 0:00:05 1.60 0:00:04 2.00
net35-60-6 42 0:00:38  0:00:22 1.73 0:00:17 2.24 0:00:13 2.92
net35-60-7 53 0:01:49  0:01:00 1.82 0:00:43 2.53 0:00:33 3.30
net35-60-10 41 0:05:24  0:02:57 1.83 0:02:05 2.59 0:01:36 3.38
net35-60-12 50 0:23:37  0:12:31 1.89 0:08:54 2.65 0:06:43 3.52
net35-52-12 79 0:35:57  0:18:07 1.98 0:12:28 2.88 0:11:38 3.09
Legend: NIT number of major (Lagrangian) iterations
Seq running time for the sequential code
Par.xWS running time for the parallel code on x workstations
SpUp Speed-up factor for the corresponding number of workstations
Table 9
Sequential vs. Parallel computation. Augmented Lagrangian code. Fixed p =1
Problem NIT Seq Par.2WS SpUp Par.3WS SpUp Par.4WS SpUp
Set 3. Nonlinear programs
nl9-8-10 88 0:05:56 0:03:01 1.97 0:02:07 2.80 0:01:34 3.79
ul9-8-11 86 0:10:50 0:05:41 1.91 0:04:01 2.70 0:02:59 3.63
nl9-8-12 113 0:28:49 0:14:13 2.03 0:09:58 2.89 0:07:23 3.90
nl9-8-13 121 0:58:18 0:35:54 1.62 0:20:50 2.80 0:15:48 3.69
nl9-8-14 179 2:49:18 1:25:57 1.97 1:00:02 2.82 0:45:09 3.75
nl9-13-11 47 0:10:20 0:05:42 1.81 0:04:11 2.47 0:03:12 3.23
nl9-13-12 54 0:20:42 0:11:30 1.80 0:08:02 2.58 0:06:22 3.25
nl9-13-13 59 0:37:24 0:19:37 1.91 0:14:24 2.60 0:10:36 3.53
nl9-13-14 68 1:06:27 0:35:53 1.85 0:25:14 2.63 0:19:27 3.42
nl9-13-15 80 2:04:48 1:06:38 1.87 0:47:08 2.65 0:35:52 3.48
ul9-13-16 71 3:46:36 1:49:29 2.07 1:17:17 2.93 0:57:28 3.94
Legend: NIT number of major (Lagrangian) iterations
Seq running time for the sequential code
Par.xWS running time for the parallel code on x workstations
SpUp Speed-up factor for the corresponding number of workstations
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of the model. This methodology results in a huge deterministic equivalent (DE) model (with hundreds of
thousands of variables and constraints) where the constraint structure has been lost. Nevertheless, some
blocks of constraints still retain this structure.

A decomposition framework is considered for the solution of these models, based on an Augmented
Lagrangian decomposition approach, allowing the solution of the model via separable quadratic (or general

nonlinear) approximations of the subproblems (of small to moderate size) that retain the structure in the
constraints.

The separability of the subproblems, and the reduced overhead required for the parameter updating,
have motivated the development of a parallel version of the decomposition code. This code (and its
sequential version) has been tested on a collection of large problems obtained from the hydropower
management field. and compared to efficient alternatives for the solution of the DE model.

The results show the sequential version of the decomposition approach to be comparable to the LP
codes that solve the DE model. and the parallel version to be significantly superior. Also, we show that

the efficiency of the parallelization is very high, as measured by its speedup factor, particularly for very
large problems.

[n summary, we have shown that for a family of problems (linear and nonlinear networks under
uncertainty) a solution method of choice seems to be the application of an Augmented Lagrangian de-
composition approach on a distributed environment.

Some issues still remain to be studied in greater detail, such as the improvement of certain aspects
of our Augmented Lagrangian algorithm (updates of parameters), and the development of alternatives
for the static load balancing scheme for heavily loaded networks or shared (nondedicated) computers.
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