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This paper presents a parallel computation approach for the efficient solution of very large multistage 

linear and nonIinear network problems with random parameters. These problems resul t from particular 

instances of models for the robust optimization of network problems with uncertainty in the values of 

the right-hand side and the objective function coefficients. The methodology considered here models 

the uncertainty using scenarios to characterize the random parameters. A. scenario tree is generated 

and, through the use of full-recourse techniques, an implementable solution is obtained for each group 

of scenarios at each stage along the planning horizon. 

As a consequence of the size of the resulting problems, and the special structure of their constraints, 

these models are particularly well-suited for the application of decomposition techniques, and the 

solution of the corresponding subproblems in a parallel computation environment. An Augmented 

Lagrangian decomposition algorithm has been implemented on a distributed computation environment, 

and a static load balancing approach has been chosen for the parallelization scheme. given the 

subproblem structure of the model. Large problems -9000 scenarios and 14 stages with a deterministic 

equivalent nonlinear model having 166000 constraints and 230000 variables- are solved in 15 minutes 

on a cluster of 4 small (16 Mflops) workstations. An extensive set of computational experiments is 

reported; the numerical results and running times obtained for our test set, composed of large-scale 

real-life problems, confirm the efficiency of this procedure. 
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This paper presents a parallel computation approach for the efficient solution of very large multistage linear 
and nonlinear network problems with random parameters. These problems result from particular instances 
of models for the robust optimization of network problems with uncertainty in the \'alues of the right-hand 
sicle and the objecti\'e function coefficients. The methodology considered here models the uncertainty using 
,cf'nario> to characterize the random parameters. A scenario tree is generated and, through the use of 
full-recourse techniques. all implement able solution is obtained for each group of scenarios at each stage 
along the planning horizon. 

As a consequence of the size of the resulting problems, and the special structure of their constraints, 
these models are particularly well-suited for the application of decomposition techniques, and the solution 
of the cOITesponding subproblems in a parallel computation environment. An Augmented Lagrangian 
decomposition algorithm has been implemented on a distributed computation environment, and a static 
luad balancing approach has ueen chosen for the parallelization scheme, given the subproblem structure 
uf tll<' Illude!. Large problems-gOOO scenarios and 14 stages with a deterministic equivalent nonlinear 
nlOdf'1 ha\'ing 166000 constraints and 230000 variables-are solved in 1·5 minutes on a cluster of 4 small (16 
\lflups) wlOrkslal ions. An extensive set of computational experiments is reported; the numerical results and 
running times obt ained flOr lOur test set. composed of large-scale real-life problems, confirm the efficiency of 
lhis procedure. 

1 Introduction 

III this paper we are concerned with the application of a parallel computation approach to the solu­
t ion of lllUlt istage stochastic linear and non linear network problems obtained from the formulation of 
l1f't\\'ork problems with uncertainty both in the right-hand side of the constraints and in the objective 
fUllct iOIl copfficiE'nts. This class of problems is among the most intractable in numerical computation. 
Our lllf't hodology can be extended in a straightforward manner to the case when the uncertainty also 
appear~ in the constraint matrix coefficients. 

In contrast to traditional mathematical programming approaches, we have chosen to model the 
uncE'rtainty using scenarios to characterize the random parameters in the objective function and the right­
llancl sidp. A scenario tree is generated and, through the use of full-recourse techniques, an implementable 
solution is obtained for each group of scenarios at each stage along the planning horizon. 

\\-hen this approach is used, the so-called deterministic equivalent (DE) model has a huge number 



LF. Escudero et al. I Parallel computation and multistage networks 2 

of variables and constraints, and very often the network structure is lost as a consequence of the need to 
impose additional conditions on the values of the variables, to ensure the coherence of the decisions taken 
at. different time stages. Practical problems can easily have in excess of 100,000 variables and constraints; 
also, Yery frequently the function to optimize is a nonlinear function of the variables. 

Decomposition techniques are particularly suitable for this class of models, by careful choice of the 
approximation scheme, given the very large size of the resulting problems, and their ability to recover 
the network structure in the subproblems. 

Once the problem has been decomposed, a reasonable and efficient procedure to compute a solution 
is to treat the different subproblems in parallel, where each subproblem is composed of one or more nodes 
of thf' scenario tree. We have chosen a static load balancing scheme, as the subproblem structure is not 
modified within the decomposition procedure, and the relative effort required to solve the subproblems 
remains fairly constant throughout the algorithm. 

This approach has been tested, and shown to be very efficient, on a collection of large test problems 
obtailH'd from real-life long-term hydropower generation planning applications. The tests have compared 
both the sequential and parallel versions of our implementation of the decomposition algorithm, and this 
algorit hm with other alternatives for the direct solution of the DE modeL 

The paper is organized as follows: in Section 2 we present the model of interest, and we comment on its 
special stl'Ucture. Sections 3 and 4 discuss the two approaches, Benders decomposition and augmented 
Lagrangian df'composition. that we have considered as most suitable for the parallel solution of the 
prohlf'lll. Sf'ction:) presents the parallelization of the algorithms, and describes the details involved in 
this paralldizatioll. Section 6 shows results obtained from the application of these techniques to three 
sets of wry real-world test problems. Finally, in Section 7 we draw some conclusions from our 
t'Xlwrience on the application of this approach. 

2 Model description 

Consider the following deterministic linear problem: 

~ _ mm eT x 

S.t. Ax = b 
x,2:0 

(1) 

I\' here c i", an /I-column vector, A is the In x Tl constraint matrix, b is an m-column vector and x is the 
lI-column Yector of the nonllegative unknowns. We are particularly interested in the solution of planning 
problems. where time plays a significant role in the definition of the variables and the structure of the 
constraints. If we consider a planning problem over several time periods, we may partition the variables 
into :;('ts corresponding to information concerning just one stage (a period or set of periods to be treated 
jointly in the model). and to the information carried over from one stage to the next. Similarly, we may 
partition the constraints into subsets related to the limitations imposed on the operation of the system 
in each 

III our case of interest we shall assume that the structure of the constraints is similar for all periods, 
and that all constraints can be treated as pertaining to a single stage (and the variables representing the 
information shared between stages). Under these assumptions, the structure of the constraints is that of 
a collection of models for each stage, linked by terms related to the variables carrying information from 
"adl stagi:' to t hi:' next. 

In order to lllustrate this structure, consider a case with three time where the variables Xr 

represent the information related to stage 7", and the variables Xr.r+l correspond to the information carried 
OWl' from r into stage l' + l. In this case, the system Ax = b can be written as: 

AjXl + .4bx12 
AI2x 12 + A 2 X 2 + A~3X23 (2) 

A~3X23 + A3 X 3 
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There exists a broad range of application fields for stage programs of this form, such as electric­
ity/water/gas distribution, financial planning, exchange rate management ,,,ith currency arbitrage, pro­
duction planning, input-output tables in macroeconomic analysis, design and operation of communica­
tions networks. road networks, etc. See [1], [2], [6], [13], [17], [18], [21], [22], [24], [27], [33], [34], [36], [42], 
[47]. [48]. [49], [,50]' among others. In many such cases A in (1) is an m x n node-arc incidence matrix 
for some directed graph G = (V, E), where V denotes the set of nodes with m == lVI, and E denotes the 
set of arcs with n == IEI. 

':.1 Cl/certainty 

The real-life problems that have motivated this paper fit model (1) and (2) introduced above, but in 
order to obtain a sufficiently accurate representation of the operation of the real system, we must expand 
this model by taking into account explicitly that some elements of the matrix A or the vectors c and b 
may not he known with certainty. 

In these cases. one needs to consider two additional features. In the first place, one must model the 
a\'aila hility of information over time, alld state what sort of decisions can be made at each of the various 
stages. Secondly. to compute an optimizer any proposed solution will have to be compared with other 
candidate solutions but. in the stochastic setting, the criteria by which this comparison can be performed 
are much less clear. Tints. we need all approach to model the uncertainty in the problem data. The 
tra(1itional approach is to make distributional assumptions. estimate the parameters from historical data 
cllld tlwll c!p\plop an ,;tocbastic model to take the uncertainty into account. Such approach may not be 
"ppropriate if only limitf·d information is available. On the other hand. in many applications it is often 
nf'Chsary anci possible to takp into account information that is not reflected in the historical data. In 
lllany such cases we may employ a technique called "scenario analysis" . where the uncertainty is modelled 
\'iCl Cl st'! ofscpnClrios. say,S'. (See ['23] for a description ofa methodology for the estimation of the number 
of sCPlwrios: spp also ["2:")] for a ~Ionte Carlo importance sampling approach for the generation of the 
Clpl'ropriate set of scenarios.) 

for example. in our model (1) the vectors for the right-hand side and the objective function coefficients 
may take different values for different scenarios, say b' and c' for s E S, respectively. vVe also introduce 
\I'eights lC' representing the likelihood that the decision maker (modeler) associates with each scenario 
-' E ,,:">'. 

One wily to deal wi t h the uncert ainty is to obtain the solution x that best tracks each of the scenarios. 
\\·Ilil,> "Cltisf~'ing the constraints for each scenario. see [13], [:32]. This can be achieved by obtaining 
Cl soil! t iOIl t ha t minimizes t he weighted upper difference between the proposed solutioll value and the 
optimal solution value for each scenario. see [1]. [2], [13], [26], [32]. The resulting model does not increase 
the number of variables of the original formulation, but now there are mlSI constraints. Unfortunately, 
t hi,., representat ion of the model does not preserve the structure of the deterministic model (1) (for 
,'xalllple. in the case of network models we have two nonzero constraint entries for each variable, at most, 
and one of them is +1), and the objective function is no longer linear; see in [1] and [2] some procedures 
to overcome this difficulty. nIodels of this form are known as scenario immunization models, or SI models 
for short. 

As an alternative goal, we could minimize the expected value of the objective function, and in this 
CCl";P lllodel (1) becomes 

min L'ES w'(c'f x 
S.t. .4,1: = b' Vs E S (3) 

.r 2: O. 

\ote that (:3) gives an implementable policy based on the so-called simple recourse, that is, the whole 
\"ector of decision variables is anticipated at stage 1. 



L.F. Escudero et al. / Parallel computation and multistage networks 4 

) ,) SOli-anticipative policies 

Scenario immunization models anticipate decisions in x that for multistage applications may not be 
needed at stage r = 1. Frequently, the decisions for stage r = 1 are the only decisions to be made, since 
at stage r = 2 one may realize that some of the data has been changed, some scenarios vanish, etc. In 
this case. the models will usually be reoptimized in a rolling planning horizon mode. When only spot 
decisions (i.e .. decisions for stage r = 1) are to be made, the information about future uncertainty is only 
takE'n into account for a better spot decision making. This type of approach is termed full recourse. 

Let R denote the set of stages, and X
S denote the arc flows under scenario s, for s E 5. The following 

nonanticipativity principle has been stated in [37], see also [45]. 
"If t\\·o different scenarios s and s' are identical up to stage r on the basis of the information available 

about them at stage r. then the values for the x-variables must be identical up to stage r for rE R". 
This condition guarantees that the solution obtained by the model is not dependent at stage r on 

information that is not yet available. To illustrate this concept, consider Figure 1: each node in the figure 
rE'presents a point in time where a decision can be made. Once a decision is made, contingencies can 
happen (in this example, the number of contingencies is three for all nodes), and information related to 
these contingencies is available at the beginning of the next stage. This information structure is visualized 
in figure 1 as a tree. where each root-to-leaf path represents one specific scenario and corresponds to one 
realization of the objective function coefficient vector c and right-hand side b. In our example we have 
tin!"''' stages: tbe elements of \'ectors Cl and b1 can take one value each for all scenarios. but the elements 
of \'ectors c~ and b'.! can each take three different \·alues. one for each realization of the uncertainty in 
stage '2. The elements of \'ectors C3 and b3 can then take each three different values for each value of C2 

and b~. :'\ ote that in this case \ye have a total of 151 = 9 different scenarios. 
In order to introduce this condition into our model, let N denote the set of solutions that satisfy the 

,,-o-called 1I01l(lllticlpativity constraints. That is, 

,r E .v == {.1: 8 I .r s = J.'s' for all s and s' that are identical up to stage r}. (4) 

These constraints must be added to model (1), to obtain the deterministic equivalent (DE) model 

nlll1r LwscsT,rs 
sES 

S.t. --I.,rs=bs VsES' (5) 
,r E N 
X

S ~ 0 Vs E 5. 

\\"e can also visualize the full recourse approach by introducing the scenario group concept. For each 
"t age /. \\"e define a set of groups of scenarios G r such that all scenarios having the same realizations of 
thE' ullcertainty up to stage /' belong to a given group 9 of scenarios, for 9 E G r . For example, in Figure 
I we ha\'e that G I is composed of a single group of scenarios (all scenarios are identical in stage 1, as no 
realization of the uncertainty has yet taken place), G 2 is composed of three sets of scenarios, with three 
scenarios belonging to each set. and G3 is composed of nine sets of scenarios, each one including a single 
,,;cPllario. The nonanticipativity principle then requires a single solution value for each group of scenarios 
ill each stage. that is. a single value x~ for each 9 E G, .. Let 5g denote the set of scenarios that belong 
to group !I for S'y ~ S. y E G r and/' ER. Using this notation, we can reformulate condition (4) as 

'E.\'-{Sl s_ s x , = X Xr - Xr 

, 
VS, s' E 5g , Vg E Gr , Vr ER}. (6) 

\ote also that the scenario tree is defined by the set of nodes UrERGr and the set of directed arcs E, 
where (1.'.1) E E for I.' E G, .. lE G r + 1 and 51 ~ 5k. 

\lodd (;")) has a nice structure that we may exploit. Two approaches can be used to represent the 
nonanticipativity constraints (6). One approach is based on a compact representation, where (6) is used 
to eliminate variables, and to reduce model size, so that there is a single variable x~ for each 9 E G r , but 
any special structure of the constraints in (1) (e.g.: any network type structure) is destroyed. The other 
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Stage: r=l 2 3 Scenario 

10 blO 
c3 ' 3 

11 bll 
c3 ' 3 

12 bl2 
c3 ' 3 

13 bl3 
c3 ' 3 

Figure 1: Scenario Tree 
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approach is based on a splitting variable representation. If we denote the variables associated with each 
stage as ,rf. for 9 E C r and I' E R, and X~,r+1 denotes the connecting variables between stages, then we 
can usp a single variable xf. for each g E C,., as in the preceding case, as this reduction does not affect 
t lie network structure. On the other hand, we may introduce more than one variable x~ +1 to represent l,r 

tlIP conuecring variables for s E 59 and a given 9 E Cr; in this case. the nonanticipativity condition is 
then enforced by explicitly including the corresponding constraints from (6) as part of the model, but 
the network structure is preserved. 

3 Compact representation 

1.1 The model 

The compact representation of the full reCOUfse model (5) requires modifying the model example (2) by 
int ro( Itlring t lIP following variables to take into account the uncertainty in the data: 

'('1 alld ·I'L' \vitll thp sal1IP meaning as ,tl and J']2 in (2), respectively . 

. I'~ and .I'~;3 \vitll the same meaning as J'2 and X23 in (2), respectively, but now related to each group of 
scenarios I, E C 2 · 

.l·!, with the same meaning as ,r3 in (2). but now related to each group of scenarios lE C 3 . 

Let tlIP vectors (CI.C]2,C~,C~3'C~) and (bl,b~,b~) denote the objective function coefficients and right­
hand side parameters, partitioned according to the scenario tree and variable partitioning scheme indi­
cated above. 

For tile case \vith three stages. our representation of model (5) is as follows: 

mill er x] + ci'2J'!2 + L (c~)T x~ + L (C~3)T X~3 + L (d)T x~ 

~.t . .-1 1 .1'1 + .-1: 2 .1'12 

.-IL.l'12 + 

kEG o kEG o IEG3 

+ A~3X~" 
A~3:r~3 

= b] 
= b? \lk E G 2 

+ Ihx~ = b~ \I(k, /) E E, 
k E C 2 

X~ 2: o. 

(7) 

Sil1ll1lpx based procedures. with crash ad hoc starting solution techniques. can be used to solve (7), as 
\n·1I as interior point methods. The first approach gives good results, provided the number of scenarios 
is small (say 25-50), and the loss of the special structure in (1) is not a big inconvenience. 

The disadvantages of using interior point methods are emphasized in [10], [29], and result from the 
fill-in in the computation of the Choleski factor required for the solution of a system of linear equations 
in Pilch iteration. 

TIIP 2-stage wrsion of (7). the so-called block angular problem, has been extensively studied in the 
litnaturp. c.;ewral SllPcial-purpose algorithms for solving linear problems with this structure haw been 
d,'wloppd. inc I uding the L-shaped method described in [44]. among others. Interior point methods applied 
to these problems have been discussed in [8]. [9] an~ [46], where decomposable algorithms amenable to 
parallpl computing approaches have been proposed. The basic idea is to decompose the system of linear 
p(luations to solve at each iteration. using versions of the Sherman-vVoodbury-Morrison formula. This 
procPdurp takes advantage of the structure in the 2-stage version of (7), and obtains the solution of the 
systPl1l from the solution of 151 smaller systems. 

J.l B( 11 ders decomposition 

I Ll"tead of using a direct method to solve the DE model (7), the multistage stochastic program represented 
ill (7) can he solwd using a Benders decomposition [3] approach. It has the property that if the values of 
Ill<' \ariilhles ,1'];:> and ,!'t3 are fixed. then the optimal values for the remaining variables can be obtained 
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from the solution of separable subproblems. 

A schel11f' for the solution of problem (7) that computes first the values of the variables XI2 and x~3' 
and then thp valups of all other variables, can be obtained after rewriting the problem as 

Hllll Cf2Xl2 + 
s.t X12, 

(8) 

where we have isolated the complicating variables, and all other variables are treated through the function 
y. This function is defined as 

;P(XI2' i~3) 
nun cr XI + I:dc~f x~ + I:1(c~)T x~ 
s.t A.1Xl 

> O. 

't/k E G2 

't/(k, l) E E, 
k E G2 

(9) 

Once the values of the varia bles ;1'1:! and are fixed, we obtaill a Illodel that is separable in the varia bles 
.1' ~. ·!t and .t~. 

Tll~' function..; can also be defined in terms of the dual of (9), 

T\k "" (I AJ k )T\l 
) "2 + Lk,l b3 - '231:23 "3 

(10) 

I'rolll I his ddiuitioll we can deri\'e a characterization for ":(XI2. J'~3) to b,:' used in (8). The 
,.,olu t ions for t hp opt imization problems in (9) and (10) will be attained at some extrellle point. More 
Slwcifically. let A denote the set of extreme points of the feasible region in (10), Xi E A for any extreme 
pOInt ..\, \"[JPre 

alld Id I IJP index set corresponding to a complete enumeration of these extreme points, Then (10) is 

Illlll, :: 

s.t. :: ~ (b 1 
( 11) 

+ 
alld till,.. cilaractprization can be introduced in (8) to obtain the following equivalent problem 

mill + I:k(C~3)T X~3 + 8 

,.;( (xrl.-l.b+(L),~,)TA.i2)1'12+ L (('\UTA~3+( L '\~,)TA~3)X~3+8~(, ViE! (12) 
kEG, k€G2 q(k,I)€E 

.rn. X~3 ~ O. 

where (i == Xfi bl + I:kEG,(X~;)Tb~ + (X~ifb~. 
As the number of extreme points problem (10) can be very large, we must introduce some 

pl'o('pdure that requires the use of a limited number of them in (12). 
Tlte ,",olutioll proce"" for problem (7) llsing Benders decomposition would proceed through the fol­

Im\'iu;!, rough algorithm, 
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ALGORITH!'.I A-I. BENDERS DECOMPOSITION ALGORITHM 

Start with an initial value for the variables X12 and x~3' Set i = 1. Step 0 

Step 1 'Vith the last. values for Xl2 and X~3 solve (10), and obtain the corresponding multiplier vector 
).i. 

Step 2 Add a constraint of t.he form (11) to the master problem (12), and sol ve this problem to obtain 
a new value for the variables X12, x~3 and (J. 

Step 3 lf the value of (J lies within a prespecified tolerance t of the best value of IO(X12, X~3)' then 
terminate. Otherwise, let i = i + 1 and go to step 1. 

The procedure is guaranteed to terminate in a finite number of iterations, as there is only a finite 
llumjwr of extrenlP points for problem (10). 

Thp L-shaped method mentioned above was extended in [5] to the multistage setting by nesting several 
Ip\p]" illside one another. Other nested Benders decomposition approaches are described in [14], [20] and 
[:Fi]: parallelized versions are given in [7], [15]. Other parallelizations of the Benders decomposition 
IllPthod for the t\\'o-stage stochastic linear program are given in [11], [24]. 

4 Splitting variable representation 

.{.l T/i, llIodtl 

:\n altprnative to the compact representation of the full-recourse model (5) can be obtained after splitting 
the coupling variables between stages . .L'12 and x~3' in the case of our example (7). A new set of variables 
.rL for /.. E (;2 are then added and equated to X12, and also a set of variables x~3 for / E G3 are added 
cmd "qualed to the corresponding .r}3 for (k, /) E E. 

The resulting represent.ation takes the form: 

min c[ Xl + C[21'12 

~.t. ,-tIII +,-1: 2 .1'12 
k 

I12 

,-1i21'~2 + A2I~ 

+Ll(C~)TX~ 

X&3 
A~3X~3 + 

xL, 

=b l 

=0 
=b~ 
=0 
=b~ 
~O. 

Vk 
Vk 
VI 
VI 

(13) 

for ,1 circular-link represpntation of the nonanticipativity constraints, say X;,-;:~l = X~,r+l' see [6], [28], 
[:3~ll Thp advantages of thp splitting variable representation over the compact representation for solving 
lllP [ull recourse model (5) using interior point methods have been explored in [2£1], see also [10]. In [19] 
a computational comparison of different strategies for interior point methods and the Simplex method 
\\'ith ancl \\'ithout crash procedures can be found. The results of these studies do not all go in the same 
direct ion. but none of them analyze decomposition procedures. A Dantzig-vVolfe decomposition scheme, 
ilnd (it;; dual) a Benders approach to the solution of(13) have been presented in [2], but no computational 
rbldt,.; ,uP rpported: the authors claim they are not good enough. 

I ) 
./. - Augmtnted Lagrangian decomposition 

.-\ llglllPllted Lagrangian met.hods proceed by moving the nonanticipative constraints (6) into the objective 
[ullction to generate a problem with independent sets of constraints, one per node in the scenario tree, 
'0O t ha t pach su bset keeps any special structure that might be present in the original problem (1). 

If" this procedure is applipcl to (13). the resulting problem becomes 

(14) 
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w here the function D p (7r) is defined as 

Dp(7r) = min LW'(c'f x' + Lk(7r~2f(XI2 - X~2) + L(k,I)(7r~3f(x;3 - X~3) 
.ES 

s.t. 
+ ~ Lk IIxl2 - x~2112 + L(k,l) Ilx;3 - x~3112) 

x' EX 

(15) 

and we have used the notation 
(16) 

the feasible set X is defined as 

Vk 
VI 
}, 

(17) 

,,=: ("i'2' "~3) is the vector of dual variables for the constraints (6), and p> 0 is a penalty parameter. 
A rough algorithm to solve (14) is as follows: 

ALGORlTH:\[ A-2. Al:G:\[E1\TED LAGRA;'\GIAN DECO:\[POSITION ALGORITHi\[ 

Step 1 

Step 2 

Step 3 

For a given multiplier vector "i available at iteration i, solve problem (15). Let x: be the 
solution of this problem. 

If for some tolerance parameter t > 0, 

holds, then stop; the optimal solution for (15), and for the original problem (7), has been 
found. 

Othenyise, reduce by an adequate amount the penalty parameter p, and update the dual 
multipliers" according to 

7r7 - ;3(XI2 - xt2) Vk E G2, 
7r; - ;3(X~3 - X~3) V(k,l) E E, 

(18) 

where ;3 > 0 is an appropriate steplength. 

It is well known that if (14) has a solution, then algorithm A-2 converges in a finite number of 
iterations-see [4], for example. 

III order to obtain decomposable subproblems, we still need to address the fact that the objective 
function in (15) is not linear but quasi-separable quadratic. A description of several frameworks to 
decompose the objective function in (1.5) can be found in [2]. 

If the quadratic terms of the form Ilxi - Xi 112 in (15) are expanded, and the cross-product terms xT Xi 
are approximated by using a suggestion from [41]-see also [30], [31], [38], [39], it results that for the 
variables .ri, xi, and some particular values of these variables Xi, Xi' we can write 

II.ri - xil1
2 

xT Xi 

11.1:i - xil1
2 

IIxil12 + IIxil12 - 2x; Xi 

-X;Xi + x; Xi + xfxi + (Xi - xif(xi - Xi) 

~ IIxil12 + IIXi 112 + 2x; Xi - 2x; Xi - 2xf Xi, 

where we assume that the terms of the form (Xi - Xi)T(xi - Xi) are negligible compared to IIxil12 and 

11.r j 112 . 
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("sing this result, the objective function in (15) can be approximated by 

F(x, 7r, p) T . T '" (( k )T k (k)T k (k)T k ) gl .rl + gl2 x l2 + LA gl2 x l2 + g2 x2 + g23 x 23 

II'here 

:\ OIl' t hp prohlem 

+ LI((g~3)T X~3 + (g~f x~) 

+ ~ (11.r·dI 2 + Lk(llx~2112 + Ilx~3112) + Llllx~3ln + t, 

gl = Cl 

gl2 = CI2 - Lk( 7r t2 + pi~2) 
gt2 = 7rt2 - pil2 

g3' = c~ 
93'3 = c33 - L{Ii(k.I)EE}(7r~3 + pX~3) 
g~3 = 7r~3 - pi~3 
g~ = c~ 
f = p(il".! Lk i~2 + Lk i~3 L{lI(k,I)EE} i~3)' 

F(x,7r,p) 
X E X, 

Vk E G2 

Vk E G2 

Vk E G 2 

V(k, I) E E 

VI E G3 

10 

(19) 

(20) 

(21) 

,dlPre .\ is defined as in (1 i), can be decomposed into quadratic subproblems with linear constraints 
t Ilat preserve the original st.ructure. a network structure. for example. Our rough algorithm for so!l'ing 
( 1·1) \la separa ble quadratic approximations is as follows: 

Let i be a given iteration of algorithm A-2 and 7ri and Xi be the dual multipliers and current I'alue 
of t he variables. respectively. Replace step 1 of algorithm A-2 with the following algorithm: 

.-\ L(;Of{ !TB\l A-3. AI 'G\IE:-\TED LAGRA\,GI.-\r\ I;-":0:ER ITERATION 

Shop 0 

St.ep 1 

Step 2 

Lpt 7r = 7ri. iim = .ri and m = 1. 

Solw (;Z1) with i = i/Tn. to obt.ain a new point Xim. 

If Ilxim - i'n" II :s (, then stop. Otherwise, set 

where ~, is all appropriate steplength. increase m by one and go to step 1. 

III some of the computational experiments to be described in Section 6, the value of the penalty 
pClrampter (I in (19) has been kept constant for all iterations, but in other cases the value of p has been 
Cldj listed in the algorithm according to the following heuristic rules: 

·\LC;ORIl H\J A--t. PENALTY PARA:\IETER UPDATE 

Step 0 

Step 1 

At the start of the algorithm define two problem dependent constants, Cp and CF, where CF 
should be a lower bound on the optimal value of the objective function. 
For the test problems in Section 6 we have used Cp = 1Q5 n , where n denotes the number of 
variables in (21), and CF = O. 

In each iteration i of Algorithm A-2, compute the values 

:Hi max (11 (.rdi - (Xi2)dICO' II(x~3)i - (X~3)&)J ' 

Ni L II(xdi - (xt2)iI12 + L II(x~3)i - (x~3)dI2' 
k (k,l) 
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Step 2 The new value Pi+I is obtained from the value Pi as 

5 Parallel implementation 

1.5pi 
Cp/N; 

10:! (F(x;) - GF ) 

if Mi ~ 1, 
if Ali < 1 and Gp/Ni < IQ:! (F(Xi) - GF ), 

otherwise. 

11 

From the preceding description of the Augmented Lagrangian algorithm, it follows that step 1 in algorithm 
.-\-:3 ('an be carried out by solving a collection of quadratic sub problems having very similar structure 
and ('omplexity. The additional computational work required in step 3 of algorithm A-2, and step 2 of 
algorithm A-:3 is a very small fraction of the total computational effort required by the decomposition 
algorithm. 

Similar observations can be made for algorithm A-I, where step 1 requires the solution of a set of 
illd('IWndpnt lineal' programs. although ill this case the computational cost of step 2 can be significant 
cOllqlilrpd to tllP total computational co'St of the algorithm. 

Taking advantage of this favorable structure, \ye have developed a parallel implementation of the 
algorithms presented in the preceding sections. hI this implementation, the computations required in step 
1 of algorithm A-I and step 1 of algorithm A-2 are conducted over a distributed network of computers 
(nocles) . 

for the rest of this section we will concentrate on the description of the procedure for the Augmented 
Lagrangian algorithm. as the gelleral structure is similar for both cases, and this second algorithm has 
been shown to be much more efficient in practice for the problems of interest, see Section 6. 

For a different approach to the parallelization of the Augmented Lagrangian decomposition method, 
spp [:31]. [:30]. The similarly mot ivated row-action parallelization scheme is presented in [34] for the 
t\vo-stage problem. 

The A ugmentt'cl Lagrangian parallel implementation that we have developed follows a master/slave 
"Iralt'!2;Y with ",tati(' load balan(,illg. Givell this structure. the execution flow of the program ('an be 
>'lllllnl<Hized a~ follows: 

ALC;OHITH:\! A-J. DI5TRlBl'TED CODE EXECCTION FLOW 

Stpp 1 The mastpr program is loaded onto a node of the parallel computer, or distributed net\vork of 
('omputers. 

Step 2 The master program load::: the data for the problem, determines the subtasks to be performed 
by the slaves, and allocates these subtasks to the nodes in the system, according to the 
procedure described in Section 5.3. 

Step 3 The master program loads the slave programs (where the computationally intensive part of 
t he algorithm is implemented) onto the remaining nodes of the computer (or network). 

Stpp 4 TllP illformation required to complete the allocated tasks (step 2 in Algorithm A-3) in a given 
iteration is sent to the slaves. 

Step 5 The slaves perform the allocated tasks. Once these tasks are complete, the results are returned 
to the master program. 

Step 6 The parameters in step 3 of Algorithm A-2 and step 2 of Algorithm A-3 are updated by the 
master program. 

Step 7 \Yith these new values of the parameters, new tasks are generated and allocated to the slaves 
by the master program. 

Step 8 Steps 4-7 in this procedure are repeated until the master program determines that the termi­
nation conditions in step "2 of Algorithm A-2 have been satisfied. 
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5.1 Load balancing 

In our implementation of the decomposition algorithms, we have chosen to define each subproblem as 
cOlTesponding to one stage and one scenario group. This choice implies that all subproblems are similar 
in sizp and structure. and simplifies the allocation of tasks to processors. Other allocation schemes are 
pos"ihlp: for example, if tllP efficiency in the solution of the subproblems is an important consideration, it 
may bp \\'ort h assigning to each subproblem the largest number of stages for which the network structure 
is preserved. 

For this choice, and as the number of subproblems to solve in each iteration is known and fixed 
in advance, we have chosen to follow a static load balancing scheme. As a consequence, the allocation 
of su hproblems to tasks and the assignment of the individual tasks to the nodes is done once at the 
beginning of the execution. 

If the network connecting the computer nodes is not heavily loaded then a static load balancing 
scheme is the most efficient choice, as for our decomposition approaches the load remains fairly constant 
throughout the execution (the solution times for the different subproblems in a given iteration, measured 
as a fraction of the total elapsed time for the iteration, do not change significantly from iteration to 
iteralinn). and tllP o\'E'rheads associated \\'ith dynamic schemes are avoided. 

101' Iht' Ip,.;ts \\,p ha\'p conducted in our cOlllPutational experiments, \\'e have made use of a homo­
~ellPc!lI" allocation of subproblems to tasks. In this sense, all tasks that we generate are in principle 
P'lui\-alpnt regarding their associated computational load, a reasonable choice for dedicated machines of 
roughly similar computing pO\\-er. i\evertheless, our implementation is also able to generate nonhomoge­
lWOUS allocations, based on a priori knO\dedge of the processing capabilities of the different nodes in the 
(nonholllogeneous) net\\'ork. or on some estimate of the expected load of the nodes. In these cases it is 
assumed t hat this load \\'ill remain sufficiently stable that our static load allocation does not become too 
inefficient. 

5.} Communications betlreen processors 

(; i n'lI t ha t t he program has t\\'o or more separate parts (master and slaves), one of our main concems has 
1)('(-'11 10 PlI"lIrl' the pfficiellCY of the procPllul'es to communicate the information for the variables shared by 
('adl part Tile SI)Pcific design of these communication tasks between programs llas a significant impact 
011 the o\prall efficiency of the parallel algorithm, and the speedup that can be achieved with regard to 
tllP ,.;('qlIPntial version. 

In ollr implelllelltation. this communication is performed at different points in the execution of the 
prO;':'I',l111: 

• Initially, immediately after the master program loads the slave to each of the nodes (step 3 in 
Algorithm A-5), all the information that will not change throughout the execution of the algorithm 
is sent to each slave. 

• I lllnlPdiately before a slave must begin processing a particular task, the master sends all information 
",,('rine to this task (step 4 in Algorithm A-5). 

• If lilt' "child" of a given subproblem has been allocated to a different node, the values corresponding 
to the common variables for the subproblem and its child are sent to the corresponding node 
illlllledia tely after sol ving the su bproblem. 

• The \'alues of the multiplier vectors for the shared variables between subproblems are updated from 
I he ne\\' values for tile connecting variables (step 3 in Algorithm A-2) immediately after solving 
both subproblems. If the "parent" for a given subproblem has been allocated to a different node, 
t lit' ne\\' values for the multipliers are not sent to the corresponding parent node until the end of the 
(,lIlTent iteration, that is, until all the tasks currently allocated to the node have been completed. 

• Omp a slave finishes a given task, the results generated are sent to the master program, in order 
to check tlJe optimalit.y conditions and to decide on the need to conduct a new iteration. 
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:'\ote that the amount of information to be sent to a slave depends on the structure of the subprobJems 
assigned to it. For example, in order to solve a subproblem whose "parent" has been allocated to the 
,~ame node no additional information is required. 

The most likely cause for a node having to wait to start solving a given subproblem is the need to 
recein' i nfol:mat ion from anot her node (the results from solving the parent of the current subproblem). 
and the wait for the master to send the information to process a task to a given slave. As a consequence, 
in order to attain a high speedup it is necessary that the task allocation algorithm both balances the load 
between processors, and minimizes the total time a slave must wait for information from another slave. 

5 . .] Task allocation 

As \\'e mentioned above, the allocation of subproblems to tasks has been performed so that all tasks 
require a similar computational effort, and the information exchange required between slaves is limited. 
This allocation is performed by the master program immediately after reading all input data and starting 
the sla\'es in all a\'ailable nodes. 

Task allocation is conducted according to the following algorithm: 

AiC;C)HITH\! A-6. TASE ALLOCATIO\' TO PROCESSORS 

Step 1 

Step 2 

Step 3 

Once the input data has been loaded, the scenario tree is anaJyzed, 
Let 11 " denote the number of different scenario groups associated with stage 1'. that is. 11" = 
IG"I, and let .Y be the number of llodes a\'aiJable in the parallel computer. or the network, 
find an I~ such that .Y :::::: 411", 
This last \'alue has been chosen to ensure that a sufficiently well-balanced first assignment 
can be made for the subproblems corresponding to that stage, without having to consider any 
later stages, 

All subproblems in stage 1~ are assigned to one of the nodes, 
Let Sy. !J = 1. .. ,. /I, •• denote each of the subproblems in stage f. \Ve define one subproblem 
for pach scenario group at each stage, Also. let. n 5 • denote the total number of sub problems 
ill Jat er st ages associated wit h su bproblem 5 g , then 11 5. denotes the total number of nodes in 
t he scenario tree from node 9 to the leafs for 9 E Gr . 

A gi\'en set of ratios for each computer node. Ili" k = 1."" N, satisfying Lk 1tk = 1, and 
representing a measure of the a\'ailability of each processor. or the speed of the processor, is 
specified in acl\'ance, 
Each subproblem 8 g together with its associated subproblems is assigned to one of the com­
puter Hodes, If \'k denotes the set of sub problems in stage f assigned to node 1.:. the assignment 
is conducted so that Ila - tll is minimized. where 

ak = L 11 5 " 

i:s.E\'k 

tk=Uk L 11 5 ., 

'.19EG. 

Illat is. (J denotes the \'ector of assigned loads to each computer node. and t denotes the \'ector 
of de:;ired loads for each computer node, obtained from the prespecified ratios Ilk and the total 
Humber of subproblems to be allocated. We attempt to minimize the distance between the 
actual and the desired assignments, 
In our case. we ha\'e used tlk = 1/N. 

The subprobJems corresponding to stages 1,2, . , '. f -1 are sequentiaJly assigned to one of the 
nodes. according to the following rules: 

Step 3.1 Rank the unassigned sub problems starting with stage f - 1 and proceeding to 
stage 1, \\,ithin each stage use any ordering for the subproblems, ~Iake the first 
subproblem in this list the current one. 

Step 3.2 For the current subproblem, the number of children already assigned to each node, 
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h" for node k, are determined and ranked. Let kl denote the node having the 
largest number of children, k2 the second largest, etc. Let I denote the number of 
nodes having a number of children assigned equal to hkl , that is, let 

1= max{i::::: 1 : h", = h",}. 

Step 3.3 If I = 1 then the current subproblem is assigned to node kl . 

Step 3.4 If I > 1, then the current subproblem is assigned to node kj, where j is taken from 

j E arg max(ik - ak ), 
i~l I I 

that is, the node having the greatest difference between the required and actual 
load is selected from all nodes having the largest number of children. 

Step 3.5 i\Iake the next subproblem the current one, and go to step 3.2. 

Thi" "ehpllIp has the ach'antages of being fairly simple to implement. and producing a reasonably 
\\'('II-I)a la need assignment. while red lIcing the amount of information to be exchanged between slaves (see 
Spct ion :).2). l\ ote that t he exact amount of effort. to sol ye a given subproblem will \'ary during the 
solution process, and cannot be known in advance; so it does not seem efficient to try to compute an 
"optimar allocation scheme. 

Figurp 2 shows an illustration of the behavior of Algorithm A-6. In this figure we indicate the 
partitioning of the subproblems generated by this algorithm for the case of having 4 stages and 27 
scenarios. \Ye also show the communications that need to be established between slaves to intel'cahnge 
information in each iteration, and the connections between subproblems that require these interchanges. 
'\otp that there are two different. types of communication involved in the solution process. The continuous 
arro\\"s c1pnote the communication between slaves. taking place in one direction as the values for the 
COml1101l \ ariahles for the sub problems are sent from parent to child during the iteration. The broken 
aITO\\"'" d,'notp the (bidirectional) comlllunications between master and slaves. involving the slaves sending 
tu tlw Illastpl' information on tllP "allies of the \'ariables and multipliers at the end of the iteration (in 
orclpr to p\'aluat.e the satisfaction of the termination conditions), and the master sending to the slaves the 
IW\\' vallles for the multipliers of the complicating constraints at the beginning of the new iteration. 

In Tahles 1 and :2 we present results of the application of these procedures to some of the test problems 
d!'"cri iwd in SPctiOll 6. In Table 1 we indicate the number of subproblems assigned to each slave, and also 
tlIP totalllumber of data interchanges that must be conducted between slaves in each major iteration. 

Thps" \'alues should gi\'e an indication of the performance of Algorithm A-6, that is. if Algorithm 
:\-6 ]wha\'es as expected. then the number of subproblems allocated to each processor, a measure of the 
load balancing between processors. should be roughly equal for all precessors. Also, the number of data 
intprchanges should be small (it has to be at least N - 1) in order to minimize delays for processors 
\\'aiting, to rpcei\'e information before being able to start solving their assigned sub problems. 

\ot(' that a smaller number of data interchanges is closely related to a less homogeneous assignment. 
It ,.!t01l Id hp noted that the structure of the scenario tree for all these problems is highly nonhomogeneous, 
\\'ith parts of the tree ha\'ing a significantly larger number of scenarios than others, and very different 
n umbrrs of ou t comes (children) for different stages and scenarios. 

In order to evaluate the practical behavior of Algorithm A-6 it is important to consider also the 
practical rpsults of the allocation as. in addition to the factors included in Table 1, the final speedup 
acllil'Ypd by the algorithm will also be affected by the total waiting time in each of the slaves. Table 2 shows 
tlIP time the slaves wait to receive information from the master at the beginning of each iteration, plus 
the till1P spent waiting for information from other slaves, accumulated for all iterations in the algorithm. 

It i" remarkable to note how small the total waiting time is compared to the total (sequential) 
.'xeClIl iOIl t imp. It is clear from these results that the communication delays are not very significant, and 
the load a,.;si<;lwd to each sla\'e is fairly well balanced. Also, the assumption that the solution times for 
t lw difl".'rPllt sllbproblems are wry similar is clearly supported by these results. 
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figul'E' 2: Task Allocation and Processor Communications 



L.F. Escudero et al. / Parallel computation and multistage networks 

Table 1 
Full recourse. Aug;mented Lagrangian decomposition. Sub problem allocation between processors 

Problem Total 

net 10-9-:30 3848 

Data interchanges 

net10-1.5-14 18448 

Dal a i Ilt prchanges 

38.5 

Data interchanges 

lIrt:)~-IjU-IO 4.586 

Oat a int erchanges 

Total 

x WS 
Data interchanges 

Table "2 

2 "VS 3 WS 4 \VS 

1892 1298 940 
19.56 1312 872 

1238 1008 
1028 

3 4 7 

9147 5618 4222 
9301 6402 4850 

6428 4681 
4695 

3 5 6 

188 128 96 
197 129 98 

128 9.5 
96 

2 9 8 

2269 1403 1051 
231, 1.594 116.5 

1589 1194 
1176 

4 6 10 

total number of subproblems 
(i.e.: cardinality of the scenario tree) 
number of subproblems allocated to each node for x nocles 
total number of information interchanges between nocles 
at each Lagrangian iteration 

T()tal pl-()rf'SSor waiting time (secs.) 

ProbleIll 

lid I (1- 1,)- 1-1 

net :3->-hU-7 

!let :),~-bU- 10 

Legend: 

m 

38480 

184480 

1347.5 

39.58.5 

Total 
x \VS 

" ISI 
# Snbp 

n 151 # Subp Total 

71·572 1.54 3848 691 

:3688.;0 923-5 18448 2477 

18420 233 38.5 267 

8770.5 .564 1131 1130 

total sequential solution time for the problem 
waiting time for each node. x nodes 
number of constraints 
number of variables 
number of scenarios 
tutal number of subproblems 

2 \VS 

13 

24 
2 

6 

39 
5 

3 \VS 

13 
10 
4 

52 
36 
4 

6 
3 
2 

69 
4.5 
4 

16 

4 WS 

SO 
16 
12 
2 

47 
43 
12 
2 

05 
05 
7 
3 

76 
054 
053 
7 
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6 Computational results 

In this section we present the results obtained from the implementation of the algorithm described in the 
preceding sections. Our test set, see below. is composed of real-life problems with network structure in 
the constraints. 'Ve have written a C code, SPNET, implementing the Augmented Lagrangian algorithm 
A-"2/A-:3. to run on a distributed computation environment. In order to solve the quadratic network 
subproblems generated in algorithm A-3, we have also developed a C code, QPNET, based on the 
preconditioned \"ariable reduction truncated Newton approach described in [12] and [16], see also [40], 
[42]. where the search direction is obtained from an approximate solution of the Newton equations by 
using a preconditioned conjugate gradient algorithm whose preconditioner has been obtained from the 
diagonal of the reduced Hessian matrix. The C codes use the HP-UX "cc" compiler, and the parallel 
code was prepared using PY\I version 3.3.7. 

The instances in the problem set are taken from the hydropower generation management field (see for 
,'x,llllple ["2]). In this case the matrices ...l.k correspond to the node-arc incidence matrix of a gi\"en basic 
lIPt\\"ork (representing the reser\"oir network of a river basin). that is replicated for a certain number of time 
periods. and the coefficients c and b are random parameters. The sizes of the basic and replicated networks 
for the test problems are shown in Table 3. There are three sets of problems, two sets corresponding to 
linear prohlem:',. and one set of nonlinear problems whose objective function is a polynomial function of 
degree 12 or higher. The parameter \"alues that we ha\"e used throughout our computational experiments 
(except "'here we indicate othen\"ise) are as foIlO\\"s: t = IQ-5. i3 = 1, AI = 1 and p = 1. 

The number of scenarios. the number of subproblems (i.e.: the cardinality of the scenario tree) and 
t he size of t he compact represent ation for model (5) corresponding to each test problem are shown in 
Table·1. All subproblems in the decomposition scheme ha\"e been defined so that each stage corresponds 
to Cl sing),. time period. 

Talll" .j sllO\\"s the compari~on for problem set 1 (linear problems) between an interior point code 
(() 13 I ["2t-']) for t he solution of t lw full recourse \"ersion (splitting \"ariable representation), our Benders 
d, 'colll[losi t ion algorit hm and our A ugmentecl Lagrangian algorithm. The comparison has been conducted 
running OBl on an HP 7:30 \\"ith :32 :\Ib of internal memory. and running the two decomposition imple­
nwntations on an HP 720 (16 :\Ib of internal memory). These workstations are rated at 23 and 17l\Ifiops 
respp('tiwly. TIlt' results show the superiority of the Augmented Lagrangian approach, and the good 
propert ies of t his approach as the dimension of the problem increases, both in terms of the storage space 
required. and the running time to compute a solution. 'Ye should also note the remarkable performance 
of OB1 \\"hile the dimensions of the problems are sufficiently small. For this table, the solution was 
computed to an accuracy of 5 correct decimal places. Results from a parallel implementation of the code 
on a network of:3 workstations (two HP 720 and one HP 730) are also included. 

Table (j shows additional experiments along the lines of comparing different procedures for soh'ing in a 
"f'qlWlIt ia I plI\'ironment tile full recourse model (5) with a splitting variable representation for problem set 
:2 (I i lIear programs). This comparison has been conducted to pro\"ide a reference for both the sequential 
and jlarallel wrsions of our Augmented Lagrangian decomposition algorithm, regarding the behavior of 
efficient codes for the sequential solution of our problems of interest. The sequential codes used have 
been LoQo (see [43]) and OBl. two efficient interior point codes. Simplex type algorithms seem to behave 
poorly on problems with the structure described in this paper. The termination conditions for all three 
codes \\"ere to stop when fi\"e significant digits in the objective function had been correctly determined. 
The comparison has been conducted on an HP 735/125 workstation (rated at 65 l\Ifiops) with 90 Mb 
of internal memory. from the results in the table it should be noted that, while the running times 
(as giwn in seconds) for the decomposition algorithm are in general larger than those for the interior 
point methods. they are within the same order of magnitude, and the differences tend to decrease with 
I'rohlelll sizp. TllP missing entries correspond to those cases that exceeded the resources (internal memory) 
a\·,lilald .. in tlIP workstation. In this sense. the decomposition code is far more parsimonious in the use 
"i" cUlIljlutational resources than both interior point codes. Note that problem netl0-15-14 (compact 
dimcnsions IJI = 184480 and 17 = 368850) was solved in less than 22 minutes by using our SLD approach. 

Tables 7 and 8 show the computational running times for both the sequential and parallel versions 
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Table :3 
Pl'<lLlelll specifications. Determinist ic version 

BN RN 

Problem m n T m n 

Set 1. Linear programs 

recl~-3-, 4 3 7 28 45 
red~-3-10 4 3 10 40 66 
recl~-3-30 4 3 30 120 206 
redlO-9-6 10 9 6 60 104 
recllO-9-, 10 9 7 TO 123 
redlO-9-14 10 9 14 140 256 
red 1 U-CI-:30 10 9 30 300 560 
n'dlO-9-.50 10 9 .50 .500 940 
recllO-I.5-14 10 1.) 14 140 340 
red2.5-:3.5-12 2-·0 3.) 12 300 695 
recl2.5-41-,5 2·0, 41 .s 125 305 
recl2.;-41-6 25 41 6 1.50 3,1 
recl2.5-41-7 25 41 -; 175 437 
red 2 .5- -11- 10 2·5 41 \0 250 635 
red2.5-41-1'2 2·) 41 12 300 767 
red:3.;- 'j 2-12 3.5 ·52 12 420 1009 
redTi-60-,5 3.5 60 5 1,,5 440 
red:3;-60-6 3', 60 6 210 ,535 
red:3.;-60-' 3.5 bO 7 245 630 
red3,)-60-10 3·5 bO 10 3.50 915 
red3 ;-15U-I:2 :3.; 60 12 420 110.5 

..... t'( ) Liut'lir progr£1lllS 

IH'I IU-~I-Ii 10 9 6 60 104 
net 1U-~1-7 10 9 -; ,0 123 
net IU-~I-:3U 10 9 30 300 .560 
net IU-U-.;U 10 9 50 500 940 
IWIIU-I';-1-1 10 1.5 14 140 340 
IWIIU-cl-11 10 9 14 140 256 
Iwl:3.;-\)U-.; 3·5 60 .5 1,5 440 
llet3.,·(iO·(j 3·5 60 6 210 53.) 
IIp.tTi-()U-7' 3·) 60 , 245 630 
[It>tTi-hU-IO 3.5 60 10 350 915 
lw{:3 -,-(iO-12 3.; 60 12 420 1105 
LlP{:3 -l- )2-12 3,5 .52 12 420 1009 

..... c·t :J. ,Yollfillt'<1I' progralll.':t 

nl~)-~-I U 9 8 \0 80 162 
nl'I-8-11 9 8 11 88 1,9 
nlC)-8-1:2 9 8 12 96 196 
nlol-8-1 :3 9 8 13 104 213 
nlol-8-14 9 8 14 112 230 
nl!:l- 1'3- 11 9 13 11 143 229 
nl'I-l.'l-12 9 13 12 156 251 
nl!:i-l.'3-13 9 13 13 169 273 
nW-13-14 9 13 14 182 295 
nl!:I-13-1.) 9 13 15 195 317 
nW-1:3-16 9 13 16 208 339 

Lf'gend: B;-'; Basic network 
R;-.; Replicated network 
l1i number of constraints (nodes) 

" 
number of variables (arcs) 

T number of periods 
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Table -1 
DE model specifications. Full recourse version (compact representation) 

Problem ISI # Subp m n nel 

Set L Linear programs 

red·I-3-7 233 38.5 1540 1765 4454 
red4-3-10 3625 6027 24108 27689 69874 
red4-3-30 154 3848 15392 26320 53252 
redl0-9-6 96 1.52 1520 1928 4806 
r('(llO· cl- 7 2:3:3 38.5 3850 4985 12290 
rNllO-9·H 923.5 18-148 184480 2.58162 608664 
!,pril 0- ,)-:30 1·54 .3848 38480 71572 144674 
l't>rllU·~l-.'U 1·5-1 bU28 69280 130092 261714 
red1O· 1.',·1-1 92:3.5 18·l-t8 184480 368850 830040 
!'N!:2.)-:35·12 2301 -1.586 114650 217635 492770 
r,'el2 j--1 1-,5 34 56 HOO 2846 6517 
r<:r\2,s·-1I·6 96 152 3800 7632 17639 
I'l"d2.o--11·7 233 385 962.5 19585 44970 
l'"d2."--11·1O 56-1 1131 2827.5 60.'}46 135167 
red 2,),,11- 12 2301 ·1.586 11-16.50 217635 457802 
rec\:3.') .. 52-12 2301 4586 160.510 318447 717394 
red:35-60~.5 1·5 32 1120 2515 5520 
l'ed3.')-GO-G 96 1.52 5320 11080 25485 
red:3.3-60-7 233 :.38·5 13475 28420 64960 
!wI3.;-I)O.1O .56-1 1131 39.58.5 8770,5 195115 
l'f'd3.;·GO-l '2 :2:301 -1586 160510 355135 790770 

"et :2. Lille,,/' prograln~ 

llellll·9-li £Itl 1·52 1520 1928 4806 
Ilf't 10-9-7 2:3:3 38,5 3850 498,5 12290 
Ilf't 1O-~)-:30 1.';4 38.-18 38480 71572 144674 
l1ellO-9-.50 [.';·1 6928 69280 130092 261714 
llel lU-l -,·1·1 tl2:3.5 18-148 18-1-180 368850 830040 
w'l I U· ';·11 9:23." H-i-t48 18-1480 258162 608664 
nel:3"-bU·?) 15 32 ll2U 2,515 .5,520 
lH'( ::5.)-HU-G 96 1·52 5320 11080 2548,5 
111't:3·')-tlO· , 2:33 385 13475 28420 64960 
llf'r:)."-I'iO·1U .51,-1 1131 3958.5 87705 19.511.5 
lH'IT'·!)0-12 2301 -1.586 160.510 355135 790770 
llel :1.; .. 32-12 23Ul -1586 160.510 318447 717394 

"';t'i S"Il/mear programs 

ni9-1'·1O ·')64 11:31 10179 141,51 33369 
nhi·S·ll 1154 2285 20565 28459 67295 
nI9-S-l2 23Ul 4·586 41274 57253 13.5206 
1119-8-1.3 4627 9213 82917 114978 271.590 
III~H;;·I-1 92:35 18448 166032 230501 544108 
1119- n·ll 311 7.51 6759 13723 30236 
u19·13-12 .569 1.320 11880 23919 .52950 
1119-1.3·1 997 2317 20853 42001 92966 
nW- }:3·1-1 1729 4046 36414 73451 162454 
nlD-13-1 ·5 3036 7082 63738 128480 284275 
1119-l.3-ltl 5296 12378 111402 224652 496959 

Legend: ISI number of scenarios 
# Subp total number of subproblems 
m number of constraints 
fl number of variables 
ne! number of nonzero entries in the constraint matrix 
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Table .5 
Compu! at ie)llal results, Full reCOlU'se 

OBl SBO SLO 

Problem NIT Time NIT Time NIT 

Set 1, Linear programs 

red-1-3- 'i 21 0:0, 11 1:30 1010 
red-1-3-10 906 
red-1-:3-:30 29 1 :,51 122 
l'edlO-9-lj 22 0:09 22 2:-15 910 
rf'cI J U-9-7 2·5 U:19 726 
r"cllU-~I- 1-1 1-130 
1'e(110-~I-:30 322 
re cl 10-9-·50 337 
red 10- 1')-1-1 254 
1'f'cl2·'i- 'j.';-11 871 
l'f'rl:n--ll- ') 27 U:18 69 13:42 214 
n"d'2';--11-b 28 0:.~7 468 
r"dr;--1l-7 33 3:22 266 
r ... d2-5--11-1O 321 
rf'd2'i--11c 12 443 
I'NI:3.'\·,)2-1-2 610 
J'f'c1:'5.")-60-.;l 28 0:2.; > 80 > 1:00:00 167 
1'N[:3:;-GU-h 31 1:-11 407 
l'f'(ITi.I)o.7 36 i}:31 319 
1'("(\:3:;.I;U- I U -163 
r<?d:3 'i-GO-12 408 

Leg~nd: SBO Bende1's decomposition 
SLO Sequential Augmented Lagrangian decomposition 
PLO Parallel Augmented Lagrangian decomposition 
:\IT :\umber of iterations 
Time Running time (hh:mm:ss) 

[:<1,[., Il 

c,,"que'lll ial comparisou, RUllning time for full reCOllrse. split ting variable representation 

Probklll 

Sd :2. Linear pr'ograms 

npIIU-~i.() 

11<'( IU-ct-7 
11<"11U-9·:3U 
lI<?tlO·9-';0 
lli'tl U- 1 5-1-1 
uN 10-9-1-1 
1Ie(:3.)-00-.:; 
11<:( ·'35-60-6 
n<?t .'3 il· llO- -; 
nN T~-liU-I U 
11<'( :3·'\-\'.U-12 
liP! :3~ .. i2-12 

SLO 

2'2.5 
-19.8 
26-1.2 
490.0 
1319.2 
5009.·S 
8.3 
-18.7 
102.8 
H6.6 
159U.2 
2G08.8 

LoQo 

2,8 
9.1 
129.9 

4.3 
48.8 
274.0 

OB1 

lA 
-1.7 
82.8 

2.4 
32.3 
125.8 

20 

PLO 

Time Time 

2:14 1:48 
30:49 13:00 
3:12 1:31 
2:42 1:54 
5:42 2:58 
8:49:23 4:54:38 
24:08 12:17 
45:08 22:34 
1:33:16 -15:48 
4:1-1:59 2:13:05 
0:46 0:29 
4:02 1:57 
6:21 3:08 
22:15 12:44 
2:03:23 1:14:23 
-1:31:57 2:32:32 
0:52 0:39 
5:-17 2:34 
11 :21 5:18 
-17:39 26:15 
2:.51 :24 1:31:31 
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Table 7 
Sequential vs. Parallel computation. Augmented Lagrangian code. Fixed p = 1 

Problem NIT Seq Par.2WS SpUp Par.3WS SpUp Par.4WS SpUp 

Sec 2. Linear programs 

net 10-9-6 910 0:01:0-1 0:00:45 1.42 0:00:37 1.73 0:00:32 2.00 
net 10-9- 7 726 0:02:17 0:01 :20 1.71 0:01 :01 2.25 0:00:48 2.85 
net 10-9-30 322 0:11:32 0:06:20 1.82 0:04:20 2.66 0:03:24 3.39 
netl0-9-50 337 0:21 :35 0:11 :52 1.82 0:08:03 2.68 0:06:19 3.42 
netl0-l·5-14 255 0:41 :42 0:22:39 1.84 0:15:43 2.65 0:11:33 3.61 
net 10-9-14 1430 3:41 :53 1 :58:21 1.87 1 :22:11 2.70 1 :00:10 3.69 
net 3·5-60-.5 :265 0:00:20 0:00:16 1.25 0:00:13 1.54 0:00:10 2.00 
Ill't :J.;-hU-I) -107 0:02:0S 0:01 :14 1.73 0:00:53 2.42 0:00:41 3.1:2 
net 35·60-7 :319 0:04:2S 0:02:26 1.8-1 0:01 :41 2.65 0:01 :17 3.48 
net35-60-10 463 0:IS:.53 0:10:0.5 1.S7 0:07:01 2.69 0:05:13 3.62 
net 35-60-12 -IOS 1:09:00 0:35:37 1.94 0:24:53 2.77 0:18:45 3.68 
net:35-52-12 610 1:.51:09 0:56:23 1.97 0:39:01 2.S5 0:29:26 3.78 

Legend: :\IT number of major (Lagrangian) iterations 
Seq running time for the sequential code 
Par.xWS running time for the parallel code on X workstations 
Spl:p Speed-up factor for the corresponding number of workstations 

of t Iw Auglllentpci Lagrangian cocle. on problem set 2 (linear programs). The sequential results were 
ohtaillPci 011 iln HP 720 \yorkstation. while the parallel version uses three HP 720's and one HP730 (this 
Ia"t \\'orkstatioll was used only for the results in the Par. 4 \YS column). The t\\'o tables correspond to 
differellt strategies for the updating of the parameters, and the termination tolerance. In Table 7 the 
yalue of p was kept constant throughout the algorithm, and the solution was computed to a relative 
precision of:) decimal places in the objective function. In Table 8 the strategy to modify the penalty 
parallleter described in Section 4.2 has been used. and the solution process has been terminated after 
I IrQ COrl'pct digits had been identified for the objective function. 

Thesp results. and in particular the closeness of the speedup ratios for the large problems to the 
tllPoretical maximum. pro\'e that a parallel implementation can be very efficient for using Augmented 
Lagrangian decomposition approaches to solve large stochastic network problems. Note also that a com­
parison of the times in Tables 7 and 8 implies a clear advantage for the parallel code over any sequential 
altprnati\·e. particularly for large problems, even when just two processors are used. Finally, it is impor­
t ant 10 consider t ha t t IlP ,.;equentia I nature of the interior point codes offers far less scope for tlleir efficient 
I'CHallel impleIllentation than the decomposition codes that we have described in the paper. l\"everthe­
les::,. a computational comparison between OUl' Augmented Lagrangian decomposition (LD) approach and 
rf'cpnt approaches for the two-st age stochastic problem, [8], [9], [46], based on decomposing the system 
of linpar equations to be solved at each interior point iteration would be useful for a comprehensive 
assessment of the LD performance. 

finally. Table 9 shows the computational running times for both the sequential and parallel versions 
of tlw Augmented Lagrangian code for problem set 3 (nonlinear problems) described ill Table 4. The 
computer environment for Tables 7 and 8 is used again for this table, Here the value of p has been 
kept constant. and the convergence criterion has been to stop when two significant digits in the objective 
function have been computed. l\"ote that the speedup ratio is very close to the theoretical maximum for 
II Lt' IY hole "et of problems. 

7 Conclusions 

In t his paper \re have presented a procedure for the solution of linear and nonlinear problems under 
uncertainty. where this uncertainty is treated via scenario analysis and a splitting variable representation 
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Table 8 
Sequential \"s. Parallel computation. Augmented Lagrangian code. Variable p 

Problem NIT Seq Par.2WS SpUp Par.3WS SpUp Par.4WS SpUp 

Set 2. Linear programs 

netlO-9-6 44 0:00:06 0:00:05 1.20 0:00:04 1.50 0:00:04 1.50 
netlO-9-7 62 0:00:21 0:00:12 1.75 0:00:09 2.33 0:00:07 3.00 
netlO-9-30 3.5 0:03:26 0:01:55 1.79 0:01:23 2.48 0:01:02 3.32 
netlO-9-50 33 0:06:01 0:03:20 1.81 0:02:22 2.54 0:01:50 3.28 
netl 0-1.5-14 25 0:09:36 0:05:52 1.64 0:04:02 2.38 0:03:02 3.16 
netlO-9-14 96 0:25:34 0:13:48 1.85 0:09:42 2.64 0:07:15 3.53 
net35-60-5 24 0:00:08 0:00:07 1.14 0:00:05 1.60 0:00:04 2.00 
net3.5-60-6 42 0:00:38 0:00:22 1.73 0:00:17 2.24 0:00:13 2.92 
net3.5-60-7 53 0:01:49 0:01:00 1.82 0:00:43 2.53 0:00:33 3.30 
net3.5-60-10 41 0:0.5:24 0:02:57 1.83 0:02:05 2.59 0:01:36 3.38 
net3.5-60-12 50 0:23:37 0:12:31 1.89 0:08:54 2.65 0:06:43 3.52 
net35-.52-12 79 0:35:57 0:18:07 1.98 0:12:28 2.88 0:11:38 3.09 

Legend: NIT number of major (Lagrangian) iterations 
Seq running time for the sequential code 
Par.xWS running time for the parallel code on x workstations 
SpUp Speed-up factor for the corresponding number of workstations 

Table 9 
Sequential \"s. Parallel computation. Augmented Lagrangian code. Fixed p = 1 

Problem l\"IT Seq Par.2\\'S SpUp Par.3\\'S SpUp Par.4WS SpUp 

Set 3. Sonlinear programs 

n19-8-1O 88 0:0.5:56 0:03:01 1.97 0:02:07 2.80 0:01:34 3.79 
1119-8-11 86 0:10:.50 0:0.5:41 1.91 0:04:01 2.70 0:02:59 3.63 
nI9-8-12 113 0:28:49 0:14:13 2.03 0:09:58 2.89 0:07:23 3.90 
nI9-8-13 121 0:.58:18 0:35:54 1.62 0:20:50 2.80 0:15:48 3.69 
n19-8-14 179 2:49:18 1:25:57 1.97 1:00:02 2.82 0:45:09 3.75 
nI9-13-11 47 0:10:20 0:05:42 1.81 0:04:11 2.47 0:03:12 3.23 
n19-13-12 54 0:20:42 0:11:30 1.80 0:08:02 2.58 0:06:22 3.25 
n19-13-13 59 0:37:24 0:19:37 1.91 0:14:24 2.60 0:10:36 3.53 
nI9-13-14 68 1:06:27 0:35:53 1.85 0:25:14 2.63 0:19:27 3.42 
nI9-13-1.5 80 2:04:48 1:06:38 1.87 0:47:08 2.65 0:35:52 3.48 
1119-13-16 71 3:46:36 1:49:29 2.07 1:17:17 2.93 0:57:28 3.94 

Legend: NIT number of major (Lagrangian) iterations 
SeC) running time for the sequential code 
Par.x\VS running time for the parallel code on x workstations 
SpUp Speed-up factor for the corresponding number of workstations 
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of the model. This methodology results in a huge deterministic equivalent (DE) model (with hundreds of 
thousands of variables and constraints) where the constraint structure has been lost. Nevertheless, some 
blocks of constraints still retain this structure. 

A decomposition framework is considered for the solution of these models, based on an Augmented 
Lagrangian decomposition approach, allowing the solution of the model via separable quadratic (or general 
nonlinear) approximations of the subproblems (of small to moderate size) that retain the structure in the 
constraints. 

The separability of the subproblems, and the reduced overhead required for the parameter updating, 
have motivated the development of a parallel version of the decomposition code. This code (and its 
seqllPntial version) has been tested on a collection of large problems obtained from the hydropower 
mctnagement field. and compared to efficient alternatives for the solution of the DE model. 

The results show the sequential version of the decomposition approach to be comparable to the LP 
codes that solve the DE model. and the parallel version to be significantly superior. Also, we show that 
the efficiency of the parallelization is very high. as measured by its speed up factor, particularly for very 
large problems. 

In summary. we have shown that for a family of problems (linear and nonlinear networks under 
uncertainty) a solution method of choice seems to be the application of an Augmented Lagrangian de­
composition approach on a distributed environment. 

Some issues still remain to be studied in greater detail, such as the improvement of certain aspects 
of om Augmented Lagrangian algorithm (updates of parameters), and the development of alternatives 
for the static load balancing scheme for heavily loaded networks or shared (non dedicated) computers. 
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