1,072 research outputs found

    Storage Solutions for Big Data Systems: A Qualitative Study and Comparison

    Full text link
    Big data systems development is full of challenges in view of the variety of application areas and domains that this technology promises to serve. Typically, fundamental design decisions involved in big data systems design include choosing appropriate storage and computing infrastructures. In this age of heterogeneous systems that integrate different technologies for optimized solution to a specific real world problem, big data system are not an exception to any such rule. As far as the storage aspect of any big data system is concerned, the primary facet in this regard is a storage infrastructure and NoSQL seems to be the right technology that fulfills its requirements. However, every big data application has variable data characteristics and thus, the corresponding data fits into a different data model. This paper presents feature and use case analysis and comparison of the four main data models namely document oriented, key value, graph and wide column. Moreover, a feature analysis of 80 NoSQL solutions has been provided, elaborating on the criteria and points that a developer must consider while making a possible choice. Typically, big data storage needs to communicate with the execution engine and other processing and visualization technologies to create a comprehensive solution. This brings forth second facet of big data storage, big data file formats, into picture. The second half of the research paper compares the advantages, shortcomings and possible use cases of available big data file formats for Hadoop, which is the foundation for most big data computing technologies. Decentralized storage and blockchain are seen as the next generation of big data storage and its challenges and future prospects have also been discussed

    Data Mapping for XBRL: A Systematic Literature Review

    Get PDF
    It is evident the growth of the use of eXtensible Business Reporting Language (XBRL) technology in the context of financial reports on the Internet, either for its advantages and benefits or by government impositions, however, the data to be transported by this language are mostly stored in structures defined as database, some relational other NoSQL. The need to integrate XBRL technology with other data storage technologies has been growing continuously, and research is needed to seek a solution for mapping data between these environments. The possible difficulties in integrating XBRL with other technologies, relational database or NoSQL, CSV files, JSON, need to be mapped and overcome. Generating XBRL documents from the database can be costly, since there is no native alternative that the database manager system exports from the database manager system, the data in XBRL. For this, specific third-party systems are needed to generate XBRL documents. Generally, these systems are proprietary and have a high cost. Integrate these different technologies adds complexity, since these documents do not connect to the database manager system. These difficulties cause performance and storage problems and in cases of large data, such as data delivery to government agencies, complexity increases. Thus, it is essential to study techniques and methods that allow us to infer a solution to perform this integration and/or mapping, preferably in a generic way, that includes the XBRL data structure and the main data models currently used, i.e.  Relational DBMS, NoSQL, JSON or CSV files. It is expected, in this work, through a systematic literature review, to identify the state of the art concerning the mapping of XBRL data

    06472 Abstracts Collection - XQuery Implementation Paradigms

    Get PDF
    From 19.11.2006 to 22.11.2006, the Dagstuhl Seminar 06472 ``XQuery Implementation Paradigms'' was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Semantic Integration of Coastal Buoys Data using SPARQL

    Get PDF
    Currently, the data provided by the heterogeneous buoy sensors/networks (e.g. National Data Buoy center (NDBC), Gulf Of Maine Ocean Observing System (GoMoos) etc. is not amenable to the development of integrated systems due to conflicts in the data representation at syntactic and structural levels. With the rapid increase in the amount of information, the integration of heterogeneous resources is an important issue and requires integrative technologies such as semantic web. In distributed data dissemination system, normally querying on single database will not provide relevant information and requires querying across interrelated data sources to retrieve holistic information. In this thesis we develop system for integrating two different Resource Description Framework (RDF) data sources through intelligent querying using Simple Protocol and RDF Query Language (SPARQL). We use Semantic Web application framework from AllegroGraph that provides functionality for developing triple store for the ontological representations, forming federated stores and querying it through SPARQL

    Construction of a nasopharyngeal carcinoma 2D/MS repository with Open Source XML Database – Xindice

    Get PDF
    BACKGROUND: Many proteomics initiatives require integration of all information with uniformcriteria from collection of samples and data display to publication of experimental results. The integration and exchanging of these data of different formats and structure imposes a great challenge to us. The XML technology presents a promise in handling this task due to its simplicity and flexibility. Nasopharyngeal carcinoma (NPC) is one of the most common cancers in southern China and Southeast Asia, which has marked geographic and racial differences in incidence. Although there are some cancer proteome databases now, there is still no NPC proteome database. RESULTS: The raw NPC proteome experiment data were captured into one XML document with Human Proteome Markup Language (HUP-ML) editor and imported into native XML database Xindice. The 2D/MS repository of NPC proteome was constructed with Apache, PHP and Xindice to provide access to the database via Internet. On our website, two methods, keyword query and click query, were provided at the same time to access the entries of the NPC proteome database. CONCLUSION: Our 2D/MS repository can be used to share the raw NPC proteomics data that are generated from gel-based proteomics experiments. The database, as well as the PHP source codes for constructing users' own proteome repository, can be accessed at

    The Family of MapReduce and Large Scale Data Processing Systems

    Full text link
    In the last two decades, the continuous increase of computational power has produced an overwhelming flow of data which has called for a paradigm shift in the computing architecture and large scale data processing mechanisms. MapReduce is a simple and powerful programming model that enables easy development of scalable parallel applications to process vast amounts of data on large clusters of commodity machines. It isolates the application from the details of running a distributed program such as issues on data distribution, scheduling and fault tolerance. However, the original implementation of the MapReduce framework had some limitations that have been tackled by many research efforts in several followup works after its introduction. This article provides a comprehensive survey for a family of approaches and mechanisms of large scale data processing mechanisms that have been implemented based on the original idea of the MapReduce framework and are currently gaining a lot of momentum in both research and industrial communities. We also cover a set of introduced systems that have been implemented to provide declarative programming interfaces on top of the MapReduce framework. In addition, we review several large scale data processing systems that resemble some of the ideas of the MapReduce framework for different purposes and application scenarios. Finally, we discuss some of the future research directions for implementing the next generation of MapReduce-like solutions.Comment: arXiv admin note: text overlap with arXiv:1105.4252 by other author
    • …
    corecore