7 research outputs found

    Parallel Simulations for Analysing Portfolios of Catastrophic Event Risk

    Full text link
    At the heart of the analytical pipeline of a modern quantitative insurance/reinsurance company is a stochastic simulation technique for portfolio risk analysis and pricing process referred to as Aggregate Analysis. Support for the computation of risk measures including Probable Maximum Loss (PML) and the Tail Value at Risk (TVAR) for a variety of types of complex property catastrophe insurance contracts including Cat eXcess of Loss (XL), or Per-Occurrence XL, and Aggregate XL, and contracts that combine these measures is obtained in Aggregate Analysis. In this paper, we explore parallel methods for aggregate risk analysis. A parallel aggregate risk analysis algorithm and an engine based on the algorithm is proposed. This engine is implemented in C and OpenMP for multi-core CPUs and in C and CUDA for many-core GPUs. Performance analysis of the algorithm indicates that GPUs offer an alternative HPC solution for aggregate risk analysis that is cost effective. The optimised algorithm on the GPU performs a 1 million trial aggregate simulation with 1000 catastrophic events per trial on a typical exposure set and contract structure in just over 20 seconds which is approximately 15x times faster than the sequential counterpart. This can sufficiently support the real-time pricing scenario in which an underwriter analyses different contractual terms and pricing while discussing a deal with a client over the phone.Comment: Proceedings of the Workshop at the International Conference for High Performance Computing, Networking, Storage and Analysis (SC), 2012, 8 page

    Data Challenges in High-Performance Risk Analytics

    Full text link
    Risk Analytics is important to quantify, manage and analyse risks from the manufacturing to the financial setting. In this paper, the data challenges in the three stages of the high-performance risk analytics pipeline, namely risk modelling, portfolio risk management and dynamic financial analysis is presented

    Cloud Benchmarking for Performance

    Get PDF
    How can applications be deployed on the cloud to achieve maximum performance? This question has become significant and challenging with the availability of a wide variety of Virtual Machines (VMs) with different performance capabilities in the cloud. The above question is addressed by proposing a six step benchmarking methodology in which a user provides a set of four weights that indicate how important each of the following groups: memory, processor, computation and storage are to the application that needs to be executed on the cloud. The weights along with cloud benchmarking data are used to generate a ranking of VMs that can maximise performance of the application. The rankings are validated through an empirical analysis using two case study applications; the first is a financial risk application and the second is a molecular dynamics simulation, which are both representative of workloads that can benefit from execution on the cloud. Both case studies validate the feasibility of the methodology and highlight that maximum performance can be achieved on the cloud by selecting the top ranked VMs produced by the methodology.Comment: 6 pages, 6th IEEE International Conference on Cloud Computing Technology and Science (IEEE CloudCom) 2014, Singapor

    Acceleration-as-a-Service: Exploiting Virtualised GPUs for a Financial Application

    Get PDF
    'How can GPU acceleration be obtained as a service in a cluster?' This question has become increasingly significant due to the inefficiency of installing GPUs on all nodes of a cluster. The research reported in this paper is motivated to address the above question by employing rCUDA (remote CUDA), a framework that facilitates Acceleration-as-a-Service (AaaS), such that the nodes of a cluster can request the acceleration of a set of remote GPUs on demand. The rCUDA framework exploits virtualisation and ensures that multiple nodes can share the same GPU. In this paper we test the feasibility of the rCUDA framework on a real-world application employed in the financial risk industry that can benefit from AaaS in the production setting. The results confirm the feasibility of rCUDA and highlight that rCUDA achieves similar performance compared to CUDA, provides consistent results, and more importantly, allows for a single application to benefit from all the GPUs available in the cluster without loosing efficiency.Comment: 11th IEEE International Conference on eScience (IEEE eScience) - Munich, Germany, 201

    A MapReduce Framework for Analysing Portfolios of Catastrophic Risk with Secondary Uncertainty

    Get PDF
    AbstractThe design and implementation of an extensible framework for performing exploratory analysis of complex property portfolios of catastrophe insurance treaties on the Map-Reduce model is presented in this paper. The framework implements Aggregate Risk Analysis, a Monte Carlo simulation technique, which is at the heart of the analytical pipeline of the modern quantitative insurance/reinsurance pipeline. A key feature of the framework is the support for layering advanced types of analysis, such as portfolio or program level aggregate risk analysis with secondary uncertainty (i.e. computing Probable Maximum Loss (PML) based on a distribution rather than mean values). Such in-depth analysis is not supported by production-based risk management systems since they are constrained by hard response time requirements placed on them. On the other hand, this paper reports preliminary experimental results to demonstrate that in-depth aggregate risk analysis can be realized using a framework based on the MapReduce model

    Cloud Benchmarking for Maximising Performance of Scientific Applications

    Full text link
    corecore