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Abstract—How can GPU acceleration be obtained as a service
in a cluster? This question has become increasingly significant
due to the inefficiency of installing GPUs on all nodes of
a cluster. The research reported in this paper is motivated
to address the above question by employing rCUDA (remote
CUDA), a framework that facilitates Acceleration-as-a-Service
(AaaS), such that the nodes of a cluster can request the
acceleration of a set of remote GPUs on demand. The rCUDA
framework exploits virtualisation and ensures that multiple
nodes can share the same GPU. In this paper we test the
feasibility of the rCUDA framework on a real-world application
employed in the financial risk industry that can benefit from
AaaS in the production setting. The results confirm the fea-
sibility of rCUDA and highlight that rCUDA achieves similar
performance compared to CUDA, provides consistent results,
and more importantly, allows for a single application to benefit
from all the GPUs available in the cluster without loosing
efficiency.

Keywords-rCUDA; GPU computing; virtualisation;
Acceleration-as-a-Service; CUDA

I. INTRODUCTION

Hardware accelerators have found a prominent role
in modern High-Performance Computing (HPC) solutions
ranging from supercomputers to clusters. A number of su-
percomputers listed in Top5001 and Green5002 are supported
by accelerators. For example, as of November 2014, two out
of top six supercomputers listed on Top500 and the top ten
supercomputers listed on Green500 have GPU accelerators.

In HPC clusters, accelerators play an important role in
allowing for heterogeneity of using both regular processors
with accelerators [1], [2]. One way to set up such clusters
would be to incorporate a GPU on each node of the cluster.
While this set up can easily accelerate the computations
of each node, it is not efficient because of relatively high
performance/cost ratio of GPUs, higher power consumption
of a node hosting GPUs [3], and the under utilisation of
GPUs when located on all nodes of the cluster.

An alternate and efficient cluster set up is to use fewer
GPUs and provide nodes of the cluster access to the GPUs
on-demand [4], [5]. The node can be treated as a client

1http://top500.org
2http://www.green500.org

requesting Acceleration-as-a-Service (AaaS) from a GPU
server within the cluster. This results in one node receiving
acceleration of multiple GPU servers as well as multiple
nodes sharing the same GPU. Consequentially, the total
power consumed in the cluster is lower than the former set
up and increases the utilisation of GPUs in the cluster [6].

Numerous challenges arise when developing multi-
tenancy GPU frameworks, of which two are considered in
this paper. Firstly, ‘how can GPUs on a server be made
available as a service?’ Virtualisation technologies of GPUs
can be used to bring this to fruition. The research we
report in this paper explores the use of a framework that
virtualises GPUs on a server and provides them as a service
to nodes requesting them. The feasibility of the framework
is tested on a real-world case study employed in the financial
industry.

Secondly, ‘how can GPUs be efficiently shared between
nodes?’ The cluster set up would not be efficient if vir-
tualised GPUs could not be used concurrently and had
to be exclusively locked for accelerating computations of
a requesting node. In the research reported in this paper,
acceleration can be requested as a service by any node in the
cluster and concurrent access of a GPU by multiple cluster
nodes is possible.

The above challenges are addressed by the use of the
rCUDA framework [7] which is reported in this paper.
rCUDA facilitates placing requests for Acceleration-as-a-
Service from a client node without a GPU to a server
node that actually hosts the physical GPU. The feasibility
of the framework is tested on an application relevant to
the financial risk industry. The application typically runs in
a cluster environment, but can hugely benefit from GPU
acceleration when it can be requested as a service for
deriving important risk metrics in real-time. Experimental
studies are performed on a cluster and the key result is that
(i) rCUDA achieves near to similar performance as that of
CUDA as there are very few overheads associated with using
rCUDA over CUDA, (ii) consistent results can be obtained
from rCUDA with negligible standard deviation, and (iii)
multiple virtual GPUs can be used to provide acceleration
to an application in order to boost performance.



The remainder of this paper is organised as follows.
Section II presents the rCUDA framework. Section III
considers a financial risk application that is used to test
the feasibility of rCUDA for providing Acceleration-as-a-
Service in an HPC cluster. Section IV presents the platform
and the experiments performed using the platform, and
summarises the key results obtained. Section V describes
the related work in the area of HPC solutions for financial
risk and virtualisation of GPUs. Section VI concludes this
paper by presenting future work.

II. THE RCUDA FRAMEWORK

The rCUDA framework, otherwise referred to as remote
CUDA, is a middleware that facilitates the virtualisation of
a CUDA3 (Compute Unified Device Architecture) compat-
ible hardware accelerator, such as a GPU. The framework
supports remote access to GPUs from a node of a cluster
that does not have a physical hardware accelerator on it
for accelerating computations of applications that run on
it. In other words, acceleration is obtained as a service
seamlessly to a requesting node without being aware of
accessing remote GPUs. Furthermore, the source code of
an application does not need any modification to reap the
benefits of using rCUDA. The framework is freely available
from http://rcuda.net/.

The main benefits of rCUDA are: (i) Acceleration can
be provided to an application as a service when requested.
This is useful in enhancing on-demand computing seen
in commodity clusters. A single application (running on a
Virtual Machine (VM) or on a node of a cluster without a
hardware accelerator) using rCUDA may benefit from the
acceleration of a remotely located single GPU or multiple
GPUs to reduce execution time, and (ii) increase the rate
of GPU utilisation since multiple applications can access
the same GPU. This in turn reduces the number of GPUs
that need to be installed by an institution, and reduces the
cost spent on energy consumption, cooling, physical space
and maintenance, usually referred to as the Total Cost of
Ownership (TCO).

In this section, we consider the architecture of rCUDA and
the communication sequences in providing Acceleration-as-
a-Service (AaaS).

A. Architecture

The rCUDA framework aims to achieve a distributed
acceleration architecture and is designed in keeping with
the terminology familiar to the parallel and distributed
computing communities. As shown in Figure 1, the rCUDA
framework is a client-server architecture. Numerous Clients
executing applications that can benefit from hardware accel-
eration can concurrently access Servers that have physical
GPUs on them. The client makes use of the remote GPU

3http://www.nvidia.com/object/cuda home new.html

Figure 1: Distributed acceleration architecture facilitated by
rCUDA

Figure 2: rCUDA client and server software/hardware stack

to accelerate part of the software code of the application,
referred to as kernel, running on it. The framework trans-
parently handles the data management and the execution
management; the transfer of data between the local memory
of the client, the local memory of the server and the GPU
memory, and the remote execution of the kernel.

Figure 2 shows the hardware and software stack of the
client and the rCUDA server. A proprietary API is used
for communications across the network, using either regular
TCP/IP sockets or the InfiniBand Verbs API when this high
performance interconnect is available in the cluster. The
rCUDA client and server will be considered later.



(a) An application with multiple threads accessing the same GPUs

(b) An application with a single thread accessing multiple GPUs

(c) An application with multiple threads each accessing multiple GPUs

Figure 3: Different scenarios served by rCUDA

rCUDA can serve different scenarios as shown in Figure 3.
In the first scenario, a multi-threaded application on the
client can request for acceleration, and if there is only one
GPU in the cluster, then all threads are accelerated by the
same GPU (Figure 3a). It is noteworthy that a GPU is
not exclusively locked to a thread and hence concurrent
usage of the GPU is possible. In the second scenario, a
single-threaded application on the client can request for
acceleration, and if there are multiple servers hosting GPUs
in the cluster, then the thread can leverage on using multiple
GPUs (Figure 3b). The third scenario (Figure 3c) is a hybrid
of the former scenarios, in which multiple threads of the
same application are executed on single/multiple GPUs.

The rCUDA client and server shown in Figure 2 are now
considered.

rCUDA Client: The client nodes that execute the appli-
cation (shown in Figure 1), make use of the rCUDA Client
Library, which is a wrapper around the CUDA Runtime and
Driver APIs. The library is responsible for (i) intercepting
calls made by the application to a CUDA device, (ii) pro-
cessing them for forwarding the calls to the remote rCUDA

server, and (iii) retrieving the results of the calls from the
rCUDA server.

Every client discovers the remote GPUs it can access in
the cluster as if it were connected to its own PCIe port.
When the wrapper is loaded on the client by the system
dynamic linking loader, a connection to the server(s) is
automatically established (which server(s) are specified in
an environment variable). When the wrapper is unloaded
the previously established connection to the server(s) are
automatically closed and the resources which were required
by the wrapper are released.

For every CUDA call that is made by the application,
the following tasks are performed by the rCUDA client to
facilitate remote execution on the server. Firstly, function
dependent local checks are performed, followed by mapping
operations, such as assigning identifiers to pointers or to
locally store information that is retrieved later on. A function
identifier is used to pack the arguments of the function, and
the execution request is then sent to the server. In the case
of synchronous function calls, the client waits for a server
response.

rCUDA Server: Each GPU server has an rCUDA daemon
running on it which receives CUDA requests. The daemon
then interprets the request and executes them on the physical
GPU. For executing all requests from one client application
on the GPU a new process is created on the server using a
prefork technique as an independent GPU context. Hence,
time-multiplexing on the GPU (or time sharing) is achieved
by spawning a new server process for each remote execution
over a new GPU context. In contrast to a multi-threaded
solution, the rCUDA approach ensures that when a job
is assigned to different GPUs, all co-processors can be
safely shared by different jobs (provided there is sufficient
device memory to run all applications concurrently). The
proprietary device driver of NVIDIA manages the concurrent
execution of active contexts using its own scheduler.

The prefork technique works as follows: (i) the parent
server is started, (ii) a child server is created by a parent
server which will serve all requests from a single remote
execution, (iii) a connection request from a client is received
by the child server, (iv) the parent server is notified when
the connection is accepted by the child server, (v) the parent
server then spawns another child server to serve subsequent
requests from other clients, and (vi) child servers terminate
after connection is closed by respective clients.

B. CUDA Management on rCUDA

A CUDA program is similar to a C program executed
on the CPU (host) and in addition contains functions exe-
cuted on the GPU (device). The CUDA programming API
provides functions similar to C as well as CUDA exten-
sions. For example, CUDA functions such as cudaMalloc,
cudaMemcpy and cudaFree are C like functions and



the kernel launch using kernel_name<<<blocks,
threads>>>(parameters) is a CUDA extension.

A CUDA program is compiled using the NVIDIA nvcc
compiler. Fragments of code that need to be executed on the
device are compiled separately. During compilation a num-
ber of references to functions and structures are inserted into
the host code. However, these functions and structures are
not referenced in the CUDA documentation, which makes
it almost impossible to create tools that will need to replace
the NVIDIA CUDA Runtime Library. Solutions to mitigate
this problem include the reimplementation of undocumented
functions, for example, in GPU Ocelot [8]. However, these
may not be compatible with future NVIDIA libraries since
they are subject to change without notification.

The rCUDA framework needs to manage the use of the
aforementioned undocumented functions. The initial releases
of rCUDA dealt with these undocumented functions in a
very naive way: they were just not supported. This limited
the use of rCUDA given that most CUDA applications
use CUDA extensions to C. A compile-time workaround
was created in later versions of the rCUDA framework [9],
which transformed the CUDA extensions to C into regular C
code, thus avoiding the use of the undocumented functions.
However, although this approach was fully functional, the
users were required to compile and execute the source code
of applications for using rCUDA. The rCUDA framework
was further developed to provide binary compatibility with
CUDA applications; existing application binaries can be
used with rCUDA without recompiling the source.

C. Acceleration-as-a-Service Communication Protocol

An efficient communication protocol is developed for
seamless execution between rCUDA clients and servers.
This protocol is designed to provide lightweight support
to the remote CUDA operations provided by the exter-
nal accelerator. The CUDA commands intercepted by the
rCUDA client wrapper are encapsulated into messages in the
form of one or more packets that travel across the network
towards the rCUDA server. The format of the messages
depends on the specific CUDA command transported. In
general, the messages have low network overheads. Every
CUDA command forwarded to the remote GPU server is
followed by a response message, which acknowledges the
success/failure of the operation requested on the remote
server.

D. Sample Communication Sequence

In this section, the communication sequences between
an rCUDA client application and an rCUDA server is
illustrated. Matrix multiplication on a GPU is chosen as an
example; consider two matrices, A and B that need to be
multiplied and stored into matrix C.

Figure 4 shows the communication sequence between the
client application and the rCUDA daemon executing on the

Figure 4: Sample communication sequence between an
rCUDA client and server for matrix multiplication

remote server. The seven step protocol is as follows:
Step 1 - Initialise: The client establishes connection

with the remote server automatically, and the request for
acceleration services is intercepted and the GPU kernel along
with related information such as statically allocated variables
are sent to the server.

Step 2 - Allocate Memory: Based on the client request
memory is allocated on the GPU for data that will be
required by the GPU kernel. Device memory is allocated



for the three matrices, A, B and C on the remote server.
Therefore, three cudaMalloc requests are intercepted by
the client and forwarded to the remote server.

Step 3 - Transfer Data to Device: All data required by
the kernel is transferred from the host to the remote device.

Step 4 - Execute Kernel: The GPU kernel is executed
remotely on the rCUDA server.

Step 5 - Transfer Data to Host: After the execution of
the kernel on the remote server the data is transmitted back
to the host.

Step 6 - Release Memory: The memory allocated on the
remote device is released.

Step 7 - Quit: In this final step the client application stops
communicating with the remote server. The rCUDA daemon
executing on the server stops servicing the execution and
releases the resources associated with the execution.

III. A FINANCIAL RISK CASE STUDY

In this section, we demonstrate the feasibility of the
rCUDA framework. For this we require a candidate applica-
tion that can benefit from Acceleration-as-a-Service (AaaS)
in HPC clusters. In this section, we present such an appli-
cation employed in the financial risk industry, referred to as
‘Aggregate Risk Analysis’ [10] for validating the feasibility
of rCUDA. The analysis of financial risk is underpinned
by a simulation that is computationally intensive. Typically,
this costly analysis is periodically performed on a routine
basis on production clusters to derive important risk metrics.
Such a set up is sufficient when the analysis does not need
to be performed outside routine. However, risk metrics will
need to be obtained in real-time settings, such as in online
pricing, in addition to routine executions. In this context,
the acceleration offered by virtual GPUs in a HPC cluster
can be leveraged to develop a faster application fit for use
in real-time settings. The rCUDA framework suits such an
application because minimal changes need to be brought
about to the production cluster and the acceleration required
for the analysis is obtained as a service from a remote host.
The analysis has previously been investigated in the context
of many-core architectures [11], but we believe virtual GPUs
can be a better option.

Aggregate risk analysis is performed on a portfolio of
risk held by an insurer or reinsurer and provides actuaries
and decision makers with millions of alternate views of
catastrophic events, such as earthquakes, that can occur and
the order in which they can occur in a year. To obtain
millions of alternate views, millions of trials are simulated
with each trial comprising a set of possible future earthquake
events and the probable loss for each trial is estimated.
Three data tables are required for the analysis, which are
as follows:

Year Event Table: This is a database of pre-simulated
occurrences of events from a catalogue of stochastic events
that is denoted as Y ET . Each record in a YET called a

‘trial’, denoted as Ti, represents a possible sequence of event
occurrences for any given year. The sequence of events is
defined by an ordered set of tuples containing the ID of
an event and the time-stamp of its occurrence in that trial
Ti = {(Ei,1, ti,1), . . . , (Ei,k, ti,k)}.

The set is ordered by ascending time-stamp values. A
typical YET may comprise thousands to millions of trials,
and each trial may have approximately between 800 to
1500 ‘event time-stamp’ pairs, based on a global event
catalogue covering multiple perils. The representation of
the YET is shown in Equation 1, where i = 1, 2, . . . and
k = 1, 2, . . . , 1500.

Y ET = {Ti = {(Ei,1, ti,1), . . . , (Ei,k, ti,k)}} (1)

Event Loss Tables: This is a representation of collections
of specific events and their corresponding losses with respect
to an exposure set denoted as ELT . Each record in an ELT is
denoted as ELi = {Ei, li} and the financial terms associated
with the ELT are represented as a tuple I = (I1, I2, . . . ).

A typical aggregate analysis may comprise 10,000 ELTs,
each containing 10,000-30,000 event losses with exceptions
even up to 2,000,000 event losses. The ELTs can be repre-
sented as shown in Equation 2, where i = 1, 2, . . . , 30, 000.

ELT =

{
ELi = {Ei, li},
I = (I1, I2, . . . )

}
(2)

Portfolio: A Portfolio, denoted as PF contains a
group of Programs, denoted as P represented as PF =
{P1, P2, · · · , Pn} with n = 1, 2, . . . , 10.

Each Program in turn covers a set of Layers, denoted
as L, cover a collection of ELTs under a set of layer
terms. A single layer Li is composed of two attributes.
Firstly, the set of ELTs E = {ELT1, ELT2, . . . , ELTj},
and secondly, the Layer Terms, denoted as T =
(TOccR, TOccL, TAggR, TAggL).

A typical Layer covers approximately 3 to 30 individual
ELTs and is represented as shown in Equation 3, where j =
1, 2, . . . , 30.

L =

{
E = {ELT1, ELT2, . . . , ELTj},
T = (TOccR, TOccL, TAggR, TAggL)

}
(3)

Given the above three inputs, Aggregate Risk Analysis is
shown in Algorithm 1. The data tables, Y ET , ELT and
PF , are loaded into memory.The analysis is performed in
four steps for each Layer and for each Trial in the YET and
a Year Loss Table (Y LT ) is produced.

In the first step, each event of a trial and its corresponding
event loss in the set of ELTs associated with the Layer is
determined (line 6). In the second step, a set of contractual
financial terms are applied to each loss value of the Event-
Loss pair extracted from an ELT to the benefit of the layer
(line 7). For this the losses for a specific event’s net of
financial terms I are accumulated across all ELTs into a
single event loss (line 8). In the third step, the event loss for



Algorithm 1: Aggregate Risk Analysis

Input : Y ET , ELT , PF
Output: Y LT

1 for each Program, P , in PF do
2 for each Layer, L, in P do
3 for each Trial, T , in Y ET do
4 for each Event, E, in T do
5 for each ELT covered by L do
6 Lookup E in the ELT and find

corresponding loss, lE
7 Apply Financial Terms to lE
8 lT ← lT + lE
9 end

10 Apply Occurrence Financial Terms to lT
11 Apply Aggregate Financial Terms to lT
12 end
13 end
14 end
15 end
16 Populate Y LT using lT

each event occurrence in the trial, combined across all ELTs
associated with the layer, is subject to occurrence terms (line
10). In the fourth step, aggregate terms are applied (line 11).

The financial terms applied on the loss values combined
across all ELTs associated with the layer are Occurrence and
Aggregate terms. Two occurrence terms, namely (i) Occur-
rence Retention, denoted as TOccR, which is the retention or
deductible of the insured for an individual occurrence loss,
and (ii) Occurrence Limit, denoted as TOccL, which is the
limit or coverage the insurer will pay for occurrence losses
in excess of the retention are applied. Occurrence terms are
applicable to individual event occurrences independent of
any other occurrences in the trial. The occurrence terms
capture specific contractual properties of ’eXcess of Loss’
[12] treaties as they apply to individual event occurrences
only. The event losses net of occurrence terms are then
accumulated into a single aggregate loss for the given trial.
The occurrence terms are applied as lT = min(max(lT −
TOccR), TOccL).

Two aggregate terms, namely (i) Aggregate Retention,
denoted as TAggR, which is the retention or deductible
of the insured for an annual cumulative loss, and (ii)
Aggregate Limit, denoted as TAggL, which is the limit or
coverage the insurer will pay for annual cumulative losses
in excess of the aggregate retention are applied. Aggregate
terms are applied to the trial’s aggregate loss for a layer.
Unlike occurrence terms, aggregate terms are applied to
the cumulative sum of occurrence losses within a trial and
thus the result depends on the sequence of prior events
in the trial. This behaviour captures contractual properties

as they apply to multiple event occurrences. The aggregate
loss net of the aggregate terms is referred to as the trial
loss or the year loss. The aggregate terms are applied as
lT = min(max(lT − TAggR), TAggL).

The output of the analysis is a loss value associated with
each trial of the YET. A reinsurer can derive important
portfolio risk metrics such as the Probable Maximum Loss
(PML) [13] and the Tail Value-at-Risk (TVaR) [14] which
are used for both internal risk management and reporting to
regulators and rating agencies. Furthermore, these metrics
flow into a final stage of the risk analytics pipeline, namely
Enterprise Risk Management, where liability, asset, and
other forms of risks are combined and correlated to generate
an enterprise wide view of risk.

Additional functions can be used to generate reports that
will aid actuaries and decision makers. For example, reports
presenting Return Period Losses (RPL) by Line of Business
(LOB), Class of Business (COB) or Type of Participation
(TOP), Region/Peril losses, Multi-Marginal Analysis and
Stochastic Exceedance Probability (STEP) Analysis.

IV. EXPERIMENTAL STUDIES

In this section the experimental platform, implementation
and the results obtained are presented.

The experimental platform employed in this research com-
prises 1027GR-TRF Supermicro nodes. Each node contains
two Intel Xeon E5-2620 v2 processors, each with six cores,
operating at 2.1 GHz and 32 GB of DDR3 SDRAM memory
at 1600 MHz. Each node has a Mellanox ConnectX-3 VPI
single-port InfiniBand adapter (InfiniBand FDR) as well as
a Mellanox ConnectX-2 VPI single-port adapter (InfiniBand
QDR). The nodes are connected either by a Mellanox switch
MTS3600 with QDR compatibility (a maximum rate of
40Gb/s) or by a Mellanox Switch SX6025, which is com-
patible with InfiniBand FDR (a maximum rate of 56Gb/s).
One NVIDIA Tesla K20 GPUs is available for acceleration
on each node. Additionally, one Supermicro server with
identical processors was populated with 4 NVIDIA Tesla
K20 GPUs for the purpose of comparison. The CentOS 6.4
operating system is used, and the Mellanox OFED 2.1-1.0.0
(InfiniBand drivers and administrative tools) was used at the
servers along with CUDA 6.0.

The financial risk case study was implemented as follows.
A single thread was employed for the computations of each
trial of the application. ELTs corresponding to a Layer were
implemented as direct access tables to facilitate fast lookup
of losses corresponding to events. In our implementation,
each ELT is considered as an independent table; therefore,
in a read cycle, each thread independently looks up its events
from the ELTs. All threads within a block access the same
ELT. The device global memory stores all data required for
the analysis. Chunking, which refers to processing a block
of events of fixed size (or chunk size) for the efficient use of
shared memory is employed to optimise the implementation.



(a) Execution time on a single GPU using varying number of blocks per
thread

(b) Time for copying data on a single GPU using varying number of blocks
per thread

Figure 5: Experimental results from executing the financial
risk application on a single GPU

The computations related to the events in a trial and financial
terms are chunked. The financial terms are stored in the
streaming multi-processor’s constant memory. In this case,
chunking reduces the number of global memory update and
global read operations.

Aggregate risk analysis was executed on industry size

input to obtain the results presented in this paper. The YET
comprising one million trials, with each trial simulating
1,000 events on an average, and one layer with 16 ELTs was
employed. The results compare the time taken by CUDA
on physical (local) GPUs and by rCUDA on virtualised
(remote) GPUs using InfiniBand QDR and FDR. All timing
results are an average of five executions. We noted that when
using rCUDA the standard deviation was less than 0.002
seconds for the execution time and less than 0.004 seconds
for data transfer time. Such a low standard deviation high-
lights the robustness of the rCUDA framework in providing
consistent results on the experimental platform.

Figure 5 shows the execution of aggregate risk analysis on
a single GPU (physical if CUDA or virtualised if rCUDA).
As expected, the execution time decreases as the number
of blocks per thread are increased (refer Figure 5a). It is
interesting to note that the performance of virtualised GPUs
using rCUDA is very close to that offered by the physical
GPU. When 16 to 64 threads per block are employed, there
is only a 0.1% overhead, which is negligible, when using
rCUDA. Beyond 64 threads the rCUDA execution time is
very close to the CUDA time. The data transfer time from
the CPU to the GPU is shown in Figure 5b. Surprisingly,
the time taken to copy using rCUDA is faster by 20% over
CUDA. The reason is that rCUDA achieves a higher band-
width than CUDA for memory copies from host memory to
GPU memory when pageable memory is leveraged. This is
due to the use of internal pinned memory buffers between
the different stages of the rCUDA pipeline [7].

To further validate the feasibility of rCUDA on multiple
GPUs, aggregate risk analysis was executed on four GPUs.
In the case of CUDA, the node owning four GPUs was used.
In the case of rCUDA, four different GPU servers owning
one GPU each were leveraged. Again, the results shown in
Figure 6 bear resemblance to the results from a single GPU.
The performance of rCUDA is very close to that of CUDA.
There is only a 0.2% overhead introduced by rCUDA when
16 to 32 threads per block are employed, beyond which there
are no overheads (refer Figure 6a). The data transfer time
from the CPUs to the GPUs is shown in Figure 6b.

Figure 7a shows the timing results using 64 blocks per
thread when CUDA and rCUDA are employed. Similar to
results shown in Figure 6, CUDA executions were carried
out in the node with four GPUs whereas rCUDA executions
used four different servers with one GPU each. Figure 7a
shows that the overhead of using rCUDA is negligible when
compared to local CUDA. However, the results in Figure 7b
are interesting. Using rCUDA it is possible to provide a
single application with more GPUs than those available in
a single node. Here we note that with rCUDA it is possible
to assign a single application all the GPUs available in the
cluster. The financial risk analysis application is assigned
up to ten GPUs in ten different remote servers. It is evident
that the performance of the application continues to improve



(a) Execution time on four GPUs using varying number of threads per block

(b) Time for copying data on four GPUs using varying number of threads
per block

Figure 6: Experimental results from executing the financial
risk application on four GPUs

with additional GPUs. In this case, the application time is
brought down to less than 1 second, making it possible for
use in real-time settings, such as on-line pricing.

To summarise the results, the experimental studies on
aggregate risk analysis highlight that: (i) rCUDA achieves
near to similar performance as that of CUDA. In our
experiments, for 64 threads per block on a single GPU

(a) Execution time on four GPUs

(b) Execution time on varying number of virtualised GPUs

Figure 7: Experimental results from executing the financial
risk application on 64 threads per block

CUDA took 9.523 seconds, where as rCUDA required 9.533
seconds. The execution time indicates that for an industry
size simulation of the risk problem, there was an overhead of
only 0.01 seconds in rCUDA. (ii) Consistent results can be
obtained from rCUDA. The standard deviation of multiple
executions was negligible. (iii) rCUDA allows for the use
of as many virtual GPUs (as real GPUs) are available in the
cluster. This not only facilitates boosting the performance of
applications, but also the larger number of GPUs that can
be accessed over traditional CUDA.

V. RELATED WORK

High Performance Computing (HPC) solutions are ex-
ploited in the financial risk industry to accelerate the un-
derlying computations of applications. This reduces overall



execution times making such applications fit for real-time
use. Solutions range from small scale clusters [15], [16] to
large supercomputers [17], [18]. More recently, hardware
accelerators with multi-core and many-core processors are
employed. For example, financial risk applications are accel-
erated on Cell BE processors [19], [20], FPGAs [21], [22]
and GPUs [23], [24].

HPC clusters offering heterogeneous solutions by using
hardware accelerators, such as GPUs, along with processors
on nodes are feasible [1], [2]. One way to set up such clusters
would be to incorporate a GPU on each node of the cluster.
However, this set up will not be efficient because of (i)
relatively high performance/cost ratio of GPUs, (ii) higher
power consumption of a node hosting GPUs [3], and (iii)
under utilisation of GPUs when available on all nodes of
the cluster.

An alternate set up to the one considered above is to
employ fewer GPUs than the number of cluster nodes and ef-
ficiently share them between the nodes. Such a solution will
be appealing to the industry to reduce costs due to investing
in a lot of hardware and consequentially in maintenance,
space, cooling and power consumption. But this solution
poses the challenge of efficiently providing Acceleration-
as-a-Service (AaaS) to the nodes of a cluster when it
is requested for without significant loss of performance.
Virtualisation of GPUs [25], [26] lies at the heart of the
solution and efficiently using it can surmount the challenge.

A number of frameworks, such as rCUDA [7], [27],
V-GPU4, GridCuda [28], DS-CUDA [29], and Shadowfax
II [30] are available for GPU virtualisation. rCUDA features
CUDA 6.5 and provides specific communication support
for TCP/IP compatible networks as well as for InfiniBand
fabrics. V-GPU supports CUDA 4.0 and there are no publicly
available versions that can be tested. GridCuda supports
CUDA 2.3, an old version, and again is not publicly available
for testing. DS-CUDA supports CUDA 4.1 and includes
specific communication support for InfiniBand. However,
DS-CUDA is limited in that it does not support data transfers
with pinned memory. A stable version of Shadowfax II is
not available and is still under development. The information
available publicly does not reflect the current development
status.

The rCUDA framework reported in this paper facilitates
the set up in which fewer GPUs need to be used than the
number of nodes in a cluster environment. AaaS is achieved
such that acceleration can be requested as a service by any
node in the cluster and concurrent access of a GPU by
multiple cluster nodes is possible.

VI. CONCLUSIONS

An application can be easily accelerated in a cluster or
a supercomputer set up that has a hardware accelerator,

4https://github.com/zillians/platform manifest vgpu

such as a GPU, on each of its nodes. However, this is not
pragmatic since the GPUs will be under utilised in addition
to the high performance/cost ratio and power consumption.
An alternate set up is to use a fewer number of GPUs such
that acceleration can be requested on demand by a node. To
facilitate this, a framework that can efficiently handle the
virtualisation of GPUs is required.

In this paper, we employed the rCUDA framework as an
approach to obtain Acceleration-as-a-Service (AaaS) in a
cluster. Each node can request acceleration when required
and a virtual GPU is made available in response to the
request. The framework ensures that the physical GPU is not
locked exclusively to the node requesting acceleration but
can be shared through multiple virtual GPUs. The feasibility
of the framework was tested on a real-world application used
in the financial risk industry. The results are encouraging and
rCUDA achieves similar performance in comparison with
CUDA and an application can draw from a large pool of
GPUs to boost performance.
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