8 research outputs found

    Parallel Problem Solving from Nature – PPSN X 10th International Conference Dortmund, Germany, September 13-17, 2008 Proceedings

    Get PDF
    Drift analysis is a powerful tool used to bound the optimization time of evolutionary algorithms (EAs). Various previous works apply a drift theorem going back to Hajek in order to show exponential lower bounds on the optimization time of EAs. However, this drift theorem is tedious to read and to apply since it requires two bounds on the moment-generating (exponential) function of the drift. A recent work identifies a specialization of this drift theorem that is much easier to apply. Nevertheless, it is not as simple and not as general as possible. The present paper picks up Hajek’s line of thought to prove a drift theorem that is very easy to use in evolutionary computation. Only two conditions have to be verified, one of which holds for virtually all EAs with standard mutation. The other condition is a bound on what is really relevant, the drift. Applications show how previous analyses involving the complicated theorem can be redone in a much simpler and clearer way. Therefore, the simplified theorem is also a didactical contribution to the runtime analysis of EAs

    An Experimental Study of Adaptive Control for Evolutionary Algorithms

    Get PDF
    The balance of exploration versus exploitation (EvE) is a key issue on evolutionary computation. In this paper we will investigate how an adaptive controller aimed to perform Operator Selection can be used to dynamically manage the EvE balance required by the search, showing that the search strategies determined by this control paradigm lead to an improvement of solution quality found by the evolutionary algorithm

    Multi-objective operation optimization of an electrical distribution network with soft open point

    Get PDF
    With the increasing amount of distributed generation (DG) integrated into electrical distribution networks, various operational problems, such as excessive power losses, over-voltage and thermal overloading issues become gradually remarkable. Innovative approaches for power flow and voltage controls are required to ensure the power quality, as well as to accommodate large DG penetrations. Using power electronic devices is one of the approaches. In this paper, a multi-objective optimization framework was proposed to improve the operation of a distribution network with distributed generation and a soft open point (SOP). An SOP is a distribution-level power electronic device with the capability of real-time and accurate active and reactive power flow control. A novel optimization method that integrates a Multi-Objective Particle Swarm Optimization (MOPSO) algorithm and a local search technique – the Taxi-cab method, was proposed to determine the optimal set-points of the SOP, where power loss reduction, feeder load balancing and voltage profile improvement were taken as objectives. The local search technique is integrated to fine tune the non-dominated solutions obtained by the global search technique, overcoming the drawback of MOPSO in local optima trapping. Therefore, the search capability of the integrated method is enhanced compared to the conventional MOPSO algorithm. The proposed methodology was applied to a 69-bus distribution network. Results demonstrated that the integrated method effectively solves the multi-objective optimization problem, and obtains better and more diverse solutions than the conventional MOPSO method. With the DG penetration increasing from 0 to 200%, on average, an SOP reduces power losses by 58.4%, reduces the load balance index by 68.3% and reduces the voltage profile index by 62.1%, all compared to the case without an SOP. Comparisons between SOP and network reconfiguration showed the outperformance of SOP in operation optimization

    EvoFed: Leveraging Evolutionary Strategies for Communication-Efficient Federated Learning

    Full text link
    Federated Learning (FL) is a decentralized machine learning paradigm that enables collaborative model training across dispersed nodes without having to force individual nodes to share data. However, its broad adoption is hindered by the high communication costs of transmitting a large number of model parameters. This paper presents EvoFed, a novel approach that integrates Evolutionary Strategies (ES) with FL to address these challenges. EvoFed employs a concept of 'fitness-based information sharing', deviating significantly from the conventional model-based FL. Rather than exchanging the actual updated model parameters, each node transmits a distance-based similarity measure between the locally updated model and each member of the noise-perturbed model population. Each node, as well as the server, generates an identical population set of perturbed models in a completely synchronized fashion using the same random seeds. With properly chosen noise variance and population size, perturbed models can be combined to closely reflect the actual model updated using the local dataset, allowing the transmitted similarity measures (or fitness values) to carry nearly the complete information about the model parameters. As the population size is typically much smaller than the number of model parameters, the savings in communication load is large. The server aggregates these fitness values and is able to update the global model. This global fitness vector is then disseminated back to the nodes, each of which applies the same update to be synchronized to the global model. Our analysis shows that EvoFed converges, and our experimental results validate that at the cost of increased local processing loads, EvoFed achieves performance comparable to FedAvg while reducing overall communication requirements drastically in various practical settings

    関数最適化問題に対する適応型差分進化法の研究

    Get PDF
    学位の種別: 課程博士審査委員会委員 : (主査)東京大学准教授 福永 アレックス, 東京大学教授 池上 高志, 東京大学教授 植田 一博, 東京大学教授 山口 泰, 東京大学教授 伊庭 斉志University of Tokyo(東京大学

    Parameter Tuning and Scientific Testing in Evolutionary Algorithms

    Get PDF
    Eiben, A.E. [Promotor
    corecore