347 research outputs found

    Evolving Neural Networks to Solve a Two-Stage Hybrid Flow Shop Scheduling Problem with Family Setup Times

    Get PDF
    We present a novel strategy to solve a two-stage hybrid flow shop scheduling problem with family setup times. The problem is derived from an industrial case. Our strategy involves the application of NeuroEvolution of Augmenting Topologies - a genetic algorithm, which generates arbitrary neural networks being able to estimate job sequences. The algorithm is coupled with a discrete-event simulation model, which evaluates different network configurations and provides training signals. We compare the performance and computational efficiency of the proposed concept with other solution approaches. Our investigations indicate that NeuroEvolution of Augmenting Topologies can possibly compete with state-of-the-art approaches in terms of solution quality and outperform them in terms of computational efficiency

    Tabu Search: A Comparative Study

    Get PDF

    Approximate Methods For Solving Flowshop Problems

    Get PDF
    The flow shop scheduling problem is a classical combinatorial problem being studied for years. The focus of this research is to study two variants of the flow shop scheduling problem in order to minimize makespan by scheduling n jobs on m machines. A solution approach is developed for the modified flow shop problem with due dates and release times. This algorithm is an attempt to contribute to the limited literature for the problem. Another tabu search-based solution approach is developed to solve the classical flow shop scheduling problem. This meta-heuristic (called 3XTS) allows an efficient search of the neighboring solutions leading to a fast solution procedure. Several control parameters affecting the quality of the algorithm are experimentally tested, and certain rules are established for different problem instances. The 3XTS is compared to another tabu search method (that seems to be a champion) in terms of solution quality and computation time

    Quantum algorithms for process parallel flexible job shop scheduling

    Get PDF
    Flexible Job Shop Scheduling is one of the most difficult optimization problems known. In addition, modern production planning and control strategies require continuous and process-parallel optimization of machine allocation and processing sequences. Therefore, this paper presents a new method for process parallel Flexible Job Shop Scheduling using the concept of quantum computing based optimization. A scientific benchmark and the application to a realistic use-case demonstrates the good performance and practicability of this new approach. A managerial insight shows how the approach for process parallel flexible job shop scheduling can be integrated in existing production planning and control IT-infrastructure

    A Survey of League Championship Algorithm: Prospects and Challenges

    Full text link
    The League Championship Algorithm (LCA) is sport-inspired optimization algorithm that was introduced by Ali Husseinzadeh Kashan in the year 2009. It has since drawn enormous interest among the researchers because of its potential efficiency in solving many optimization problems and real-world applications. The LCA has also shown great potentials in solving non-deterministic polynomial time (NP-complete) problems. This survey presents a brief synopsis of the LCA literatures in peer-reviewed journals, conferences and book chapters. These research articles are then categorized according to indexing in the major academic databases (Web of Science, Scopus, IEEE Xplore and the Google Scholar). The analysis was also done to explore the prospects and the challenges of the algorithm and its acceptability among researchers. This systematic categorization can be used as a basis for future studies.Comment: 10 pages, 2 figures, 2 tables, Indian Journal of Science and Technology, 201

    A survey of AI in operations management from 2005 to 2009

    Get PDF
    Purpose: the use of AI for operations management, with its ability to evolve solutions, handle uncertainty and perform optimisation continues to be a major field of research. The growing body of publications over the last two decades means that it can be difficult to keep track of what has been done previously, what has worked, and what really needs to be addressed. Hence this paper presents a survey of the use of AI in operations management aimed at presenting the key research themes, trends and directions of research. Design/methodology/approach: the paper builds upon our previous survey of this field which was carried out for the ten-year period 1995-2004. Like the previous survey, it uses Elsevier’s Science Direct database as a source. The framework and methodology adopted for the survey is kept as similar as possible to enable continuity and comparison of trends. Thus, the application categories adopted are: design; scheduling; process planning and control; and quality, maintenance and fault diagnosis. Research on utilising neural networks, case-based reasoning (CBR), fuzzy logic (FL), knowledge-Based systems (KBS), data mining, and hybrid AI in the four application areas are identified. Findings: the survey categorises over 1,400 papers, identifying the uses of AI in the four categories of operations management and concludes with an analysis of the trends, gaps and directions for future research. The findings include: the trends for design and scheduling show a dramatic increase in the use of genetic algorithms since 2003 that reflect recognition of their success in these areas; there is a significant decline in research on use of KBS, reflecting their transition into practice; there is an increasing trend in the use of FL in quality, maintenance and fault diagnosis; and there are surprising gaps in the use of CBR and hybrid methods in operations management that offer opportunities for future research. Design/methodology/approach: the paper builds upon our previous survey of this field which was carried out for the 10 year period 1995 to 2004 (Kobbacy et al. 2007). Like the previous survey, it uses the Elsevier’s ScienceDirect database as a source. The framework and methodology adopted for the survey is kept as similar as possible to enable continuity and comparison of trends. Thus the application categories adopted are: (a) design, (b) scheduling, (c) process planning and control and (d) quality, maintenance and fault diagnosis. Research on utilising neural networks, case based reasoning, fuzzy logic, knowledge based systems, data mining, and hybrid AI in the four application areas are identified. Findings: The survey categorises over 1400 papers, identifying the uses of AI in the four categories of operations management and concludes with an analysis of the trends, gaps and directions for future research. The findings include: (a) The trends for Design and Scheduling show a dramatic increase in the use of GAs since 2003-04 that reflect recognition of their success in these areas, (b) A significant decline in research on use of KBS, reflecting their transition into practice, (c) an increasing trend in the use of fuzzy logic in Quality, Maintenance and Fault Diagnosis, (d) surprising gaps in the use of CBR and hybrid methods in operations management that offer opportunities for future research. Originality/value: This is the largest and most comprehensive study to classify research on the use of AI in operations management to date. The survey and trends identified provide a useful reference point and directions for future research

    Intelligent systems in manufacturing: current developments and future prospects

    Get PDF
    Global competition and rapidly changing customer requirements are demanding increasing changes in manufacturing environments. Enterprises are required to constantly redesign their products and continuously reconfigure their manufacturing systems. Traditional approaches to manufacturing systems do not fully satisfy this new situation. Many authors have proposed that artificial intelligence will bring the flexibility and efficiency needed by manufacturing systems. This paper is a review of artificial intelligence techniques used in manufacturing systems. The paper first defines the components of a simplified intelligent manufacturing systems (IMS), the different Artificial Intelligence (AI) techniques to be considered and then shows how these AI techniques are used for the components of IMS
    • 

    corecore