5 research outputs found

    Parallel MATALAB Techniques

    Get PDF
    In this chapter, we show why parallel MATLAB is useful, provide a comparison of the different parallel MATLAB choices, and describe a number of applications in Signal and Image Processing: Audio Signal Processing, Synthetic Aperture Radar (SAR) Processing and Superconducting Quantum Interference Filters (SQIFs). Each of these applications have been parallelized using different methods (Task parallel and Data parallel techniques). The applications presented may be considered representative of type of problems faced by signal and image processing researchers. This chapter will also strive to serve as a guide to new signal and image processing parallel programmers, by suggesting a parallelization strategy that can be employed when developing a general parallel algorithm. The objective of this chapter is to help signal and image processing algorithm developers understand the advantages of using parallel MATLAB to tackle larger problems while staying within the powerful environment of MATLAB

    Parallel Mutant Execution Techniques in Mutation Testing Process for Simulink Models, Journal of Telecommunications and Information Technology, 2017, nr 4

    Get PDF
    Mutation testing – a fault-based technique for software testing – is a computationally expensive approach. One of the powerful methods to improve the performance of mutation without reducing effectiveness is to employ parallel processing, where mutants and tests are executed in parallel. This approach reduces the total time needed to accomplish the mutation analysis. This paper proposes three strategies for parallel execution of mutants on multicore machines using the Parallel Computing Toolbox (PCT) with the Matlab Distributed Computing Server. It aims to demonstrate that the computationally intensive software testing schemes, such as mutation, can be facilitated by using parallel processing. The experiments were carried out on eight different Simulink models. The results represented the efficiency of the proposed approaches in terms of execution time during the testing process

    A Novel 3-D Segmentation Algorithm for Anatomic Liver and Tumor Volume Calculations for Liver Cancer Treatment Planning

    Get PDF
    Three-Dimensional (3-D) imaging is vital in computer-assisted surgical planning including minimal invasive surgery, targeted drug delivery, and tumor resection. Selective Internal Radiation Therapy (SIRT) is a liver directed radiation therapy for the treatment of liver cancer. Accurate calculation of anatomical liver and tumor volumes are essential for the determination of the tumor to normal liver ratio and for the calculation of the dose of Y-90 microspheres that will result in high concentration of the radiation in the tumor region as compared to nearby healthy tissue. Present manual techniques for segmentation of the liver from Computed Tomography (CT) tend to be tedious and greatly dependent on the skill of the technician/doctor performing the task. This dissertation presents the development and implementation of a fully integrated algorithm for 3-D liver and tumor segmentation from tri-phase CT that yield highly accurate estimations of the respective volumes of the liver and tumor(s). The algorithm as designed requires minimal human intervention without compromising the accuracy of the segmentation results. Embedded within this algorithm is an effective method for extracting blood vessels that feed the tumor(s) in order to plan effectively the appropriate treatment. Segmentation of the liver led to an accuracy in excess of 95% in estimating liver volumes in 20 datasets in comparison to the manual gold standard volumes. In a similar comparison, tumor segmentation exhibited an accuracy of 86% in estimating tumor(s) volume(s). Qualitative results of the blood vessel segmentation algorithm demonstrated the effectiveness of the algorithm in extracting and rendering the vasculature structure of the liver. Results of the parallel computing process, using a single workstation, showed a 78% gain. Also, statistical analysis carried out to determine if the manual initialization has any impact on the accuracy showed user initialization independence in the results. The dissertation thus provides a complete 3-D solution towards liver cancer treatment planning with the opportunity to extract, visualize and quantify the needed statistics for liver cancer treatment. Since SIRT requires highly accurate calculation of the liver and tumor volumes, this new method provides an effective and computationally efficient process required of such challenging clinical requirements
    corecore