
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

3-23-2012

A Novel 3-D Segmentation Algorithm for
Anatomic Liver and Tumor Volume Calculations
for Liver Cancer Treatment Planning
Mohammed Goryawala
Florida International University, mgory001@fiu.edu

Follow this and additional works at: http://digitalcommons.fiu.edu/etd

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
Goryawala, Mohammed, "A Novel 3-D Segmentation Algorithm for Anatomic Liver and Tumor Volume Calculations for Liver Cancer
Treatment Planning" (2012). FIU Electronic Theses and Dissertations. Paper 617.
http://digitalcommons.fiu.edu/etd/617

http://digitalcommons.fiu.edu?utm_source=digitalcommons.fiu.edu%2Fetd%2F617&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F617&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F617&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F617&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/etd/617?utm_source=digitalcommons.fiu.edu%2Fetd%2F617&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu


 
 

FLORIDA INTERNATIONAL UNIVERSITY 
 

Miami, Florida 
 
 
 
 
 
 
 

 

A NOVEL 3-D SEGMENTATION ALGORITHM FOR ANATOMIC LIVER AND 

TUMOR VOLUME CALCULATIONS FOR LIVER CANCER TREATMENT 

PLANNING 

 
 
 
 
 
 
 
 
 
 

A dissertation submitted in partial fulfillment of the 

requirements for the degree of 

DOCTOR OF PHILOSOPHY 

in 

BIOMEDICAL ENGINEERING 

by 

Mohammed Z. Goryawala 
 
 
 

2012 



ii 
 

To:  Dean Amir Mirmiran       
 College of Engineering and Computing     
 

This dissertation, written by Mohammed Z. Goryawala, and entitled A Novel 3-D 
Segmentation Algorithm for Anatomic Liver and Tumor Volume Calculations for Liver 
Cancer Treatment Planning, having been approved in respect to style and intellectual 
content, is referred to you for judgment. 

 
We have read this dissertation and recommend that it be approved. 

 
 

_______________________________________ 
Armando Barreto 

 
_______________________________________ 

Anthony McGoron 
 

_______________________________________ 
Wei-Chiang Lin 

 
_______________________________________ 

Malek Adjouadi, Major Professor 
 

 
Date of Defense: March 23, 2012 
 
The dissertation of Mohammed Z. Goryawala is approved. 

 
 
 
 

_______________________________________ 
Dean Amir Mirmiran 

College of Engineering and Computing 
 
 

_______________________________________ 
    Dean Lakshmi N. Reddi 

University Graduate School 
 
 
 

Florida International University, 2012  



iii 
 

ACKNOWLEDGMENTS 

First and foremost I would like to express my deepest gratitude to my advisor, Dr. Malek 

Adjouadi, for his infinite patience, hard work, advice, and support. I thank him for giving 

me the opportunity to work with him, which I have cherished more than anything during 

my graduate studies. He has not only supported and helped me in my course work but 

also in every facet of my life for becoming a better individual. 

I extend my appreciation to my committee members, Dr. Anthony McGoron, Dr. 

Armando Barreto, Dr. Wei-Chiang Lin and Dr. Seza Gulec. I thank you for all the help 

and support that you have provided throughout my career at Florida International 

University.  

I would like to thank my colleagues Dr. Mercedes Cabrerizo, Ana Guzman, Ruchir Bhatt, 

the team at JNMC, and all my friends for their help and support throughout the project. 

I would also like to thank the National Science Fondation under grants CNS-1042341, 

CNC-0959985, and HRD-0833093. My thanks also go the  University Graduate School at 

Florida International University for providing me with the Dissertation Year Fellowship. 

Finally and most dearly I would like to thank my entire family for their patience and 

undying support through the period of my Ph.D. 



iv 
 

ABSTRACT OF THE DISSERTATION 

A NOVEL ALGORITHM FOR ANATOMIC LIVER AND TUMOR VOLUME 

DETERMINATION FOR LIVER CANCER SIRT PLANNING  

by 

Mohammed Z. Goryawala  

Florida International University, 2012 

Miami, Florida 

Professor Malek Adjouadi, Major Professor 

Three-Dimensional (3-D) imaging is vital in computer-assisted surgical planning 

including minimal invasive surgery, targeted drug delivery, and tumor resection. 

Selective Internal Radiation Therapy (SIRT) is a liver directed radiation therapy for the 

treatment of liver cancer. Accurate calculation of anatomical liver and tumor volumes are 

essential for the determination of the tumor to normal liver ratio and for the calculation of 

the dose of Y-90 microspheres that will result in high concentration of the radiation in the 

tumor region as compared to nearby healthy tissue. Present manual techniques for 

segmentation of the liver from Computed Tomography (CT) tend to be tedious and 

greatly dependent on the skill of the technician/doctor performing the task. 

This dissertation presents the development and implementation of a fully integrated 

algorithm for 3-D liver and tumor segmentation from tri-phase CT that yield highly 

accurate estimations of the respective volumes of the liver and tumor(s). The algorithm as 

designed requires minimal human intervention without compromising the accuracy of the 

segmentation results. Embedded within this algorithm is an effective method for 
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extracting blood vessels that feed the tumor(s) in order to plan effectively the appropriate 

treatment.  

Segmentation of the liver led to an accuracy in excess of 95% in estimating liver volumes 

in 20 datasets in comparison to the manual gold standard volumes. In a similar 

comparison, tumor segmentation exhibited an accuracy of 86% in estimating tumor(s) 

volume(s). Qualitative results of the blood vessel segmentation algorithm demonstrated 

the effectiveness of the algorithm in extracting and rendering the vasculature structure of 

the liver.  Results of the parallel computing process, using a single workstation, showed a 

78% gain. Also, statistical analysis carried out to determine if the manual initialization 

has any impact on the accuracy showed user initialization independence in the results. 

The dissertation thus provides a complete 3-D solution towards liver cancer treatment 

planning with the opportunity to extract, visualize and quantify the needed statistics for 

liver cancer treatment. Since SIRT requires highly accurate calculation of the liver and 

tumor volumes, this new method provides an effective and computationally efficient 

process required of such challenging clinical requirements.  
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CHAPTER I 

INTRODUCTION 

The American Cancer Society estimates that nearly 18,000 people are diagnosed with 

liver cancer annually.  This unfortunately makes 1 out of 183 individuals born today 

susceptible to liver cancer at some point during their lifespan.  Liver cancers and 

colorectal cancers amount up to 140,000 of the estimated new cancer cases identified in 

the Unites States only (Siegel et al., 2011).  The number of new cases of liver and 

colorectal liver metastases (CRLM) amount to more than a million cases throughout the 

world.  Also, liver cancer and CRLM are responsible for about 79000 deaths in males and 

60000 deaths in females.  

1.1. Treatment Options for CRLC 

The most common conventional treatment options for treating liver cancers and CRLM 

include surgery, radiation therapy and chemotherapy (Scheele et al., 1997).  The choice 

of the treatment is determined mainly by the extent of the disease and the health of the 

individual.  Below we describe some of the common conventional treatment options 

along with some new and more recent development in the field of treatment of liver 

cancer and CRLM. 

1.1.1. Surgical Strategies 

Surgery is the one of the oldest method for treating liver cancers.  Although surgery has 

been around for a long time, advances in the past three decades have resulted in 

increasing significantly the chances for patient survival (Hughes et al., 1986).  Resection 

of the tumor is done by the removal of the affected region or the organ.  A partial 
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hepatectomy is the result of the removal of a part of the liver which is affected whereas a 

total hepatectomy is where the entire liver is removed to be substituted by a donor liver.  

With the advent of segment-based resection, the resection of multiple and bilateral liver 

tumors has now become possible (Ballantyne and Quin, 1993). Techniques like vascular 

occlusion, total vascular exclusion and caval clamping have been developed in modern 

era to reduce the blood loss during surgery (Lau et al., 2010; Wang et al., 2011).  Also 

new research in prosthetic grafts and perfusion techniques has provided surgeons with 

added potential for surgical success (Hardwigsen et al., 2001; Lau et al., 2010).  

1.1.2. Radiation Therapy 

Radiation therapy is a one of most widely used form of treatment for liver cancer 

(Geoghegan and Scheele, 1999).  Radiation therapy utilizes high energy rays such as x-

rays or gamma rays for the destruction of the unhealthy tumor cells.  The radiation may 

completely destroy the tumor or lessen the size of the tumor in order to reduce pain or 

make the patient eligible for surgery. 

Radiation therapy has been adopted as a standalone liver cancer treatment or in 

conjunction with chemotherapy.  Various new techniques have been developed for 

radiation therapy, all with the main goal of delivering higher radiation doses to the tumor 

while minimizing the damage to healthy liver tissue. 

The radiation techniques commonly used in the clinical environment include Intensity 

Modulated Radiation Therapy (IMRT), 3-D Conformal Radiation, and External Beam 

Radiation Therapy (EBRT). 
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1.1.2.1. Intensity Modulated Radiation Therapy (IMRT) 

Intensity Modulated Radiation Therapy (IMRT) is one of the widely used technique in 

radiation therapy treatment (Swanson et al., 2012).  IMRT uses Computed Tomography 

(CT) and based on the patient’s tumor size, shape and location a plan is set for the 

delivery of the radiation dose in three dimensions.  IMRT utilizes a modulated beam of 

radiation to deliver radiation at a pin-point location with extremely high accuracy.  IMRT 

has the advantage over conventional radiation therapy to deliver the dose more accurately 

and enable higher doses to be delivered to the tumor region albeit at a higher cost. 

1.1.2.2. Three-dimensional (3-D) conformal radiation therapy (3DCRT) 

Three-dimensional (3-D) conformal radiation therapy (3DCRT) is an extension of the 

IMRT technique which uses multiple radiation beams to deliver higher doses of radiation 

to the tumor region.  3DCRT offers a higher does more accurately by focusing the beams 

of radiation to conform to the contour of the tumor.  It also prevents excessive damage to 

surrounding tissue by focusing the beams to the tumor region only and deliver higher 

doses per tissue weight to the tumor (Swanson et al., 2012). 

1.1.2.3. External Beam Radiation Therapy (EBRT) 

External Beam Radiation Therapy (EBRT) is the most commonly used radiation 

treatment procedures adopted in the U.S.A. since the treatment is mainly an outpatient 

procedure with reduced risks than surgery.  EBRT reduces surgical risks such as 

bleeding, post-operative pain and risk of heart attacks and stroke.  EBRT uses a high 

energy external radiation beam to deliver radiation to the tumors.  The energy of the 

radiation beam is mainly governed by the depth and position of the tumor.  Liver cancer 
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treatment uses Megavoltage X-rays to deliver radiation to the diseased regions of the 

liver.  

1.1.2.4. TomoTherapy® Highly Integrated Adaptive Radiotherapy 

TomoTherapy® Highly Integrated Adaptive Radiotherapy (HI-ART) is an advanced 

radiation therapy treatment option usually used in situations where an individual has 

reached their maximum tolerated radiation dose or when the tumor is located in a very 

hard-to-reach place.  HI-ART uses enhanced Computed Tomography (CT) to track and 

locate the tumor’s exact shape, size and position and deliver the radiation from 360° 

position all around the patient as contrasted to IMRT and EBRT.  TomoTherapy allows 

the physician to deliver maximum radiation dose to the liver while reducing the amount 

of radiation delivered to the surrounding tissue. 

1.1.3. Chemotherapy 

Only 20-25 percent of the patients affected by liver cancer are estimated to have 

resectable disease.  Generally, as a rule of thumb the maximum resectable size of the 

tumor is considered to be 5 cm in diameter (Cai and Cai, 2012).  For the non-resectable 

cases neoadjuvant treatments are believed to be providing the means necessary to reduce 

the size of tumor to make the tumors resectable.  Various studies have reported the use of 

chemotherapy drugs such as 5-fluorouracil (5-FU), 5-FU-α-interferon, 5-FU-cisplatin-

doxorubicin, 5-FU-pirubicin, 5-FU-leucovorin-oxaliplatin and others, all for down-

staging the resectability for patients with colorectal liver metastases (Scheele et al., 

1997).  Studies carried out by  Bismuth et al. have demonstrated a 5 year survival rate of 

around 40%(Bismuth et al., 1996). 
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Chemotherapy drugs are usually administered intravenously using injection or orally.  In 

advanced cases chemotherapy drugs are sometimes also administered directly in to the 

artery that forms the primary blood supply to the tumor.  Such a technique called intra-

arterial chemotherapy provides higher doses of the drug to be delivered to the tumor as 

well as reducing the effect of the drugs on healthy tissue (Seront and Van den Eynde, 

2012).  

Chemoembolization is a combination of chemotherapy and embolization techniques.  For 

chemoembolization a radiologist directs microspheres combined with chemotherapy 

drugs through a catheter into the artery feeding the tumor to block the supply of blood to 

the diseased tissue.  Chemoembolization allows high doses of chemotherapy drugs to be 

delivered to the tumor as well as blocking the flow of blood to the tumor region.  The 

reduction of blood flow to the tumor restricts the tumor from obtaining the necessary 

nutrients resulting  in the reduction of the size and extent of tumors (Ho et al., 2012). 

Chemotherapy however results in various side effects such as neurotoxicity, nausea, 

vomiting, hair loss and mouth sores among others.  In order to reduce these side effects of 

chemotherapy, Fractionated Dose Chemotherapy has been utilized. Fractionated Dose 

Chemotherapy delivers the total dose of the anticancer drugs in smaller amounts over 

longer period of time.  Fractionated Dose Chemotherapy not only offers the advantage of 

reducing the side effects but also increases the effectiveness of the therapy by working 

for a longer period of time (Frei and Canellos, 1980). 
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1.1.4. Immunotherapy 

Immunotherapy is being used as an exciting treatment modality for patients with liver 

cancer and colorectal liver metastases.  Immunotherapy is generally used as an adjuvant 

therapy in conjunction with either chemotherapy or surgery.  Immunotherapy includes the 

development of vaccine, cytokines as well as monoclonal antibodies to develop tumor-

specific treatment.  Various studies have shown immunotherapy to be an effective 

adjuvant therapy in increasing the survival of patients following resection (Elias et al., 

1995).  Although immunotherapy has been deemed as tumor specific treatment with few 

side effects long term studies have shown immunotherapy to have various side effects.  

These side effects range from minor conditions such as skin depigmentation to severe 

conditions affecting vital organs such as liver, bowel, and lungs (Amos et al., 2011). 

1.1.5. Brachytherapy 

Brachytherapy involves the use of a short-ranged radiation source very close to the tumor 

site.  The radiation dose is delivered to the tumor site either using capsules or a wire that 

allows the radiation to impact only the tumor while avoiding the healthy liver regions.  A 

key feature of brachytherapy is that it allows for a very high dose of irradiation to be 

delivered to the tumor in a short interval of time since the irradiation is localized to only a 

small region.  Various studies have shown that brachytherapy have demonstrated similar 

cancer survival rates as compared to surgery or EBRT, and in some cases higher survival 

rates when it is combined with other therapy options(Armstrong et al., 1994; Ricke and 

Wust, 2011). 
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1.1.6. Cryotherapy and Radiofrequency Ablation 

Cryotherapy also known as cryosurgery or cryoablation therapy uses extreme cold to 

freeze and destroy the cancer cells.  Cryotherapy which is a minimally invasive technique 

has not been established primarily as a curative technique for liver cancer treatment but 

has been widely used in conjunction with surgery for liver resection.  Cryotherapy studies 

have shown local recurrence rates of around 12-39% with a mean 5 year survival rate of 

17% (Adam et al., 1997; Pathak et al., 2011).  Radiofrequency Ablation uses a high 

frequency alternating current to generate the heat necessary to destroy liver cancer cells.  

The radio frequency alternating current is delivered to the tumor region with the use of a 

needle like probe to increase the temperature of the surrounding region and destroy the 

tumor.  Radio frequency ablation is widely used as an outpatient procedure.  Radio 

frequency ablation studies have showed local recurrence rates of around 10-31% with a 

mean 5 year survival rate of 24%(Pathak et al., 2011). 

1.2. Selective Internal Radiation Treatment (SIRT) 

Selective Internal Radiation Treatment (SIRT) is a liver directed therapy which delivers 

the radiation for the treatment of the cancer via intrahepatic arterial administration.  The 

treatment delivers microspheres laden with yttrium 90 (Y-90) which is a high energy beta 

particle-emitting radio-isotope.  

1.2.1. Selectiveness of SIRT 

The treatment is based on the notion of preferential deposition of microspheres in the 

tumor which yields a high concentration of the radiation in the tumor region as compared 

to nearby healthy tissue.  The primary reason for the selectiveness is the transfemoral 
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injection of the microspheres in the hepatic artery from which the tumor blood supply is 

derived.  Since the radio-isotope β-radiation has a mean range of only 2.5 mm the 

primary effect of the radiation is seen only in regions having the tumor or the near 

vicinity (Gulec and Fong, 2007).  This provides the selectiveness which renders very 

little radiation to be delivered to the healthy liver tissue.  Thus SIRT has been determined 

as a liver cancer treatment which delivers maximum radiation dose to the tumor and 

minimum toxicity to the surrounding healthy tissue which has been one of the major 

challenges in clinical practice.  

1.2.2. Development of SIRT 

Treatment with Y-90 microspheres was first demonstrated by Ariel et al for a single 

patient with colorectal cancer liver metastases (Ariel and Padula, 1978).  Later, further 

studies published by the same group used SIRT with conventional chemotherapy to 

extend the life of the patients by about 28 months (Ariel and Padula, 1982).  Thereafter, 

Gray et al. demonstrated that the optimal size for the microspheres is around 30-35 µm 

with 4000 microspheres per gram of the liver tissue for the administration of the effective 

dosage for the treatment of the cancer without inducing toxicity (Gray et al., 1990). 

Various studies have described clinical trials using SIRT with Y-90 microspheres for 

treatment of CRLM.  The major studies published include a phase 3 study using hepatic 

artery chemotherapy (HAC) with floxuiridine, a phase 2 trial using chemotherapy with 

the without SIRT, a phase 1 study with oxaliplatin, a phase 1 study with irinotecan 

hydrochloride and a pre-operative SIRT treatment for tumor downsizing (Gray et al., 

2001; Gulec et al., 2010; Sharma et al., 2007; Van Hazel et al., 2004).  



9 
 

1.2.3. Dose calculations for SIRT 

In the first studies published by Ariel et al. a dose of 3.7-5.5 Gbq of Y-90 resin 

microspheres is suggested (Ariel and Padula, 1978).  The calculation of the dose of the 

Y-90 microspheres is based on the Committee on Medical Internal Radiation Dose 

(MIRD) approach.  It is estimated that out of the total dose delivered to the patient about 

120-180 Gy is delivered to the liver (Gulec et al., 2006). For the calculation of this dose it 

is required to calculate the fractional liver uptake, fractional tumor uptake and the lung 

uptake (Gulec et al., 2006).  To determine the fractional liver and tumor uptake it is 

necessary to obtain the mass of the liver and tumor.  Since mass can be directly related to 

the volume, volume calculation of the liver and tumor from anatomic information is of 

prime importance in calculation of the fractional uptake of the tumor and liver. Volumes 

of various organs under investigation can be obtained either through anthropomorphic 

phantoms, modeling using Monte Carlo simulation or through imaging techniques such 

Computed Tomography (CT) or Magnetic Resonance Imaging (MRI) (Barot et al., 2010; 

Gulec et al., 2010). 

1.3. Objectives of the study 

Present techniques for the determination of the anatomic volume of the liver and tumor 

involve manual segmentation of the liver from the CT scans. The number of slices in a 

CT dataset vary from 200-400, which makes the task of computing the volume of the 

liver manually excessively time consuming. Also, the task is greatly dependent on the 

skill and proficiency of the technician/doctor, which contributes to human error affecting 

the results.   
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To overcome this major drawback, this dissertation core objective was to develop a new 

and effective semi-automatic algorithm for the segmentation of the liver and tumor from 

Computed Tomography (CT) scans which results in accurate calculations of the volume 

of the liver for SIRT treatment.  The study aimed at incorporating a semi-automatic 

approach to segment the blood vessels in the liver. 

The successful implementation of the algorithm serves to ensure a better outcome for the 

SIRT based liver cancer treatment, and provides the following advantages: 

i. Requirement of less user interaction resulting in both time and labor saving. 

ii. Reduction in the user to user variability and error in volume calculation. 

 
Furthermore, a primary objective of the study was to enable the rendering of the liver in 

3-D for the end-user to visualize the location as well as extent of the liver in the body 

cavity. Moreover, since the 3-D rendering aimed to provide a complete solution of the 

underlying disease the study incorporates the tumor and blood vasculature of the liver 

embedded within the liver. The rendering thus aimed to provide the end-user the needed 

information about the position, size, and extent of the tumor along with the blood 

vasculature feeding it.  

1.4. Outline of the dissertation 

Chapter 2 introduces the various imaging techniques that are used in the treatment of 

CRLM.  It also provides the details of the instrumentation and the datasets used for the 

study.  
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Chapter 3 describes the development of a semi-automatic algorithm for segmenting the 

liver from 3-D liver CT scans.  The chapter describes the progression of the various 

versions of the algorithm in order to develop an optimal liver segmentation process to 

significantly reduce human interaction while maintaining high accuracy in the results. 

Chapter 4 provides a summary of the advances in the field of tumor and blood vessel 

segmentation followed by a description of the developed in-house semi-automatic 

methods for the segmentation of tumor(s) and blood vessels from CT scans.  

Chapter 5 describes the development of the parallel processing architecture to reduce the 

computational burden of the liver segmentation process  It also provides the results of the 

performance on testing the developed MatLab based technique for various benchmarking 

processes. 

Chapter 6 provides the results obtained using the liver segmentation process.  Volumes 

obtained by the proposed segmentation approach are compared  to the manually obtained 

volumes. The chapter also provides the results obtained for the tumor and blood vessel 

segmentation algorithms.   

Finally, chapter 7 highlights the novelties in the features of the developed algorithms.  

Chapter 7 provides some insight into the merits and limitations of the liver segmentation, 

parallel computing, tumor segmentation and the contextual blood vessel extraction with 

respect to the tumor location.  
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CHAPTER II 

IMAGING IN CRLM 

Various imaging modalities have been developed in recent times for anatomical and 

functional imaging of cancer.  This chapter introduces some of the commonly used 

modalities for imaging liver cancers and CRLM with the aim to provide a brief overview 

of the advantages and disadvantages of each modality.  Also, this chapter introduces the 

imaging technique used in the study and the various datasets it is applied to for validation 

purposes.  

2.1. Imaging Modalities 

The commonly used imaging techniques, which have been adopted across the nation for 

the diagnosis of CRLM, include contrast-enhanced ultrasound (CEUS), Computed 

Tomography (CT), magnetic resonance imaging (MRI), liver specific contrast enhanced 

MRI, and positron emission tomography/ computed tomography (PET/CT) (Xu et al., 

2011). 

2.1.1. Contrast-enhanced ultrasound (CEUS) 

Contrast-enhanced ultrasound (CEUS) is a powerful technique for imaging focal liver 

lesions.   Perfusion mapping with the aid of contrast agents allows mapping the focal 

lesions for their eventual characterization.  Bernatik and his colleagues have 

demonstrated that the diagnostic yield of CEUS as compared to CT was about 97% 

(Bernatik et al., 2001).  CEUS is widely used in CRLM imaging for preoperative 

assessment of the disease.  Further use of CEUS in staging and monitoring the disease is 

limited due to various shortcomings.   These include but are not limited to operational 
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issues requiring a highly skilled technician for its proper use, misleading diagnosis of 

patients with fatty liver due to chemotherapy, and difficulty in visualization of segmental 

distribution and three-dimensional (3-D) analysis (Hiraoka et al., 2010). 

2.1.2. Computed Tomography (CT) 

Computed Tomography (CT) has been established as the mainstay for follow-ups of 

patients with CRLM.  The features of CT, which places it at the forefront of imaging 

CRLM, include sub-millimeter resolution, large coverage enabling imaging the entire 

abdomen in a single scan, and isotropic pixel sizing for 3-D visualization and volumetric 

analysis. Also, high-resolution scans with maximum intensity have enabled the 

development of 3-D rendering techniques for accurate localization and segmentation of 

the tumor region (Kamel et al., 2003).  CT has also enabled imaging the hepatic arterial 

and portal venous anatomy as a substitute to conventional angiography for surgical liver 

cancer resections (Sahani et al., 2004). 

One of the major questions in setting up an imaging protocol using CT is the number of 

CT scans a patient has to undergo to ensure accurate and complete determination of the 

extent of the disease.  Portal-venous phase CT is the most commonly adopted practice in 

clinical environments.  However, portal-venous phase CT fails to image the presence of 

calcified tumors, which are more easily and better seen in unenhanced CT scans.  Also, 

small CRLM are seen as hyperattenuating during the hepatic arterial phase scans whereas 

large tumor show the presence of a hyperattenuating rim and a hypoattenuating center in 

similar scans (Miles et al., 1993).  Large lesions are often seen as hypoattenuating lesions 

during the portal venous phase (Kopp et al., 2002). Often an equilibrium phase is added 
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to the study to eradicate the drawbacks of the other phase CTs. The study under 

consideration here uses a multi-phase CT for better determination of the tumor regions.  

Several studies have also been reported for assessing the optimal slice thickness for the 

CT scans.  Studies have shown that 2.5 mm and 3.75 mm slice thickness were 

considerably superior than 5, 7.5 or 10 mm in imaging the disease (Weg et al., 1998).  

Also, studies have demonstrated that lowering the slice thickness to 1 mm added no value 

towards lesion detection due to the increase in image noise  (Kulinna et al., 2001).  Slice 

thickness of 2-4 mm is viewed as a recommended setting for axial viewing (Xu et al., 

2011).  Although CT has been established as the backbone imaging technique in every 

oncology program, it should be noted that up to 25% of the liver metastases are often 

missed in CT scans (Scott et al., 2001; Valls et al., 2001).   

2.1.3. Magnetic Resonance Imaging (MRI) 

Magnetic resonance imaging (MRI) is on the rise for the imaging of CRLM.  MRI based 

studies generally include unenhanced T1- and T2- weighted and contrast enhanced pulse 

sequences.  T1-weighted MR imaging enable the physician to assess the parenchyma for 

infiltration of fatty deposits as well as any diffused fatty infiltrates (Schima et al., 1997).  

T2-weighted images provide images with suppressed fatty deposits, which make it 

difficult to differentiate them from tumor masses.  Also, heavily T2-weighted images 

with echo time of 160-180 milliseconds (msec) offer the possibility to differentiate solid 

and no-solid lesions (Bennett et al., 2000).  Following the acquisition of unenhanced 

images, contrast enhanced pulse sequences are always obtained.  Generally, a set of non-
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specific gadolinium chelates based contrast image and a liver specific contrast based 

images are obtained. 

Blyth et al. have suggested adopting MRI as the “gold standard” for pre-operative 

imaging in CRLM studies due to the high sensitivity in tumor detection (Blyth et al., 

2008).  MRI however cannot be employed in cases where pacemakers, implantable 

defibrillators or other metallic foreign bodies are present.  Also, MR imaging is limited in 

anatomic coverage due to increased time and cost of acquisition of whole body scans.  

Newer multichannel MR scanners are planned to provide fast and increased coverage for 

scanning the abdomen and chest regions.  MR imaging provides better soft tissue contrast 

making it ideal for liver imaging, however the adoption of MR images into clinical 

protocols is limited by the availability and cost of MR imaging. 

2.1.4. Positron emission tomography/computed tomography (PET/CT) 

PET/CT has been adopted recently at the forefront of imaging in CRLM (Gulec, 2007).  

PET/CT provides the unique opportunity to image not only the anatomy of the disease 

but the function extent of the disease as well.  PET/CT hybrid scanners provide the 

opportunity for seamlessly fusing high-resolution CT images with functional PET images 

showing the glucose uptake of the cells.  Since glucose uptake is directly related to the 

metabolism of the cells and since tumor cells have a higher uptake, PET images reveal 

these highly active tumor cells.  Functional imaging coupled with high-resolution 

anatomic imaging provides the advantage of clearly demarking the boundaries of the 

tumor, which is essential for the complete removal of the cancer. Studies by Kinkel et al. 

performed showed that for equivalent specificities, PET/CT showed higher sensitivities 
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than CEUS, CT or MRI in the detection of hepatic metastases (Kinkel et al., 2002) Also, 

other studies have shown that PET/CT displays a better trend than other previously 

mentioned modalities for the identification of CRLM (Bipat et al., 2005; Mainenti et al., 

2010). 

Although PET/CT shows great promise towards detection as well as staging of the tumor, 

its efficacy is not yet fully established in the field.  Its main drawbacks remain the limited 

availability, high costs of imaging studies, and exposure to radiation. PET/CT is however 

highly recommended in patients where the diagnosis is still uncertain with the use of 

other conventional diagnostic modalities.  Even with the advent of various imaging 

modalities studies have shown the failure of one or more techniques in detecting small 

tumors in the liver (Elizondo et al., 1991; Ward et al., 2003).  As a consequence of these 

drawbacks, diagnosis of liver cancer and colorectal cancer is often established as a multi-

modality imaging study to correctly image the boundaries of the cancer for total resection 

(Sica et al., 2000).  It is well established that improper and partial resection of liver 

metastases generally results in recurrence of the disease.   

2.2. Instrumentation and Image Acquisition 

The CT images acquired for the study in this dissertation are obtained using a GE 

Discovery LS whole-body PET/CT scanner developed by GE Healthcare (Milwaukee, 

US).  The GE Discovery LS provides registered and fused anatomical CT and functional 

PET images.   The scanner equipped with a crystal size of 4 x 8 x 30 mm, an axial field 

of view of 152 mm allowing imaging of the entire abdomen area in one or two bed 

positions, and is capable of capturing 2-D images, 3-D images and 4-D gated images. The 
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images acquired for the study are part of combined CT-angiogram (CTA) protocol, which 

involves a three-phase CT liver scan, and FDG PET/CT, carried out in a single study 

(Barot et al., 2010).  The protocol is structured for dosimetric measurements, which 

involve calculation of the anatomical liver volume, anatomical tumor volume and 

functional tumor volume.  The acquisition parameters for the CT datasets were 140 kVp, 

80 mA, 0.5 rotation time, and a 512x512 pixel matrix.  The images provided by the 

scanner are in Digital Imaging and Communication in Medicine (DICOM) format, which 

is considered the standard in medical imaging. 

2.3. Dataset Details 

Twenty datasets were used for testing the developed algorithm.  The clinical 

characteristics of the datasets used for the study are given in Table 2.1, summarizing the 

extent of the disease, the location of the tumors if any, and the number of CT slices in the 

dataset that encompass the liver completely.  It is seen that for most of the patients the 

disease is limited to the hepatic compartment with multiple metastatic tumors found.   

Table 2.1: Clinical Characteristics of the 20 datasets1 

Dataset Extent of disease Location of Tumor 
Number of 

CT Slices in 
Dataset 

1 NA 163 
2 NA 377 

3 
Hepatic+ extrahepatic 

(Left lateral neck) 

Right lobe of liver-segment VI -
multifocal (Primary site of tumor-

kidney) 

208 

4 Hepatic 
Right lobe of liver (Primary site of 

tumor-Colorectal) 
295 

                                                            
1 NA denotes non-availability of medical information. 
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5 
Hepatic 

One large lesion 3.3cm in left lobe 
small in rt lobe (primary colorectal) 

247 

6 Hepatic Multiple metastatic tumors in liver 189 

7 Hepatic Right lobe of liver (Primary site of 
tumor-Tonsillar ca) 

194 

8 Hepatic+ extrahepatic 
(Left Adrenal) 

Rt lobe of liver (primary 
gallbladder) 

192 

9 Hepatic Multiple metastatic tumors in liver 168 

10 
Hepatic+ Extrahepatic 

Multiple metastatic tumors in liver 
(Primary site of tumor-
Cholangiocarcinoma) 

169 

11 170 
12 Hepatic left lobe of live (Hepatocellular ca) 364 
13 NA 132 
14 NA 365 
15 Hepatic Not specified (Primary Colorectal) 189 
16 Hepatic (Lung) Multiple (primary colon) 176 
17 NA 230 

18 Hepatic 
Left lobe of live (Primary tumor 

site-Colon) 
324 

19 Hepatic Multiple metastatic tumors in liver 251 
20 NA 356 

 

The number of slices in the datasets varies anywhere between 132 and 377. Also, the 

pixel size for the datasets varies between 0.54 mm to 0.97 mm and the slice thickness 

varies between 0.6 mm and 5 mm.  Slice thickness in CT defines the spacing between 

two slices of the CT dataset, with lower slice thickness providing greater resolution for 

imaging.  However, it should be noted that reducing the slice thickness could introduce 

noise in the datasets.  Table 2.2 shows the information of the voxel dimensions of each of 

the 20 datasets.  

Figure 2.1 and Figure 2.2 show the distribution for the twenty datasets with respect to the 

number of slices and the slice thickness.  The distribution of the number of slices is 

important to observe the effect larger datasets have on the processing time of the 
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algorithm. It is seen from Figure 2.1 that the maximum number of slices for any dataset 

was 377 while the minimum was around 132.  Also, the median of the number of slices 

shown by the red line in Figure 2.1 is around 201 with the mean number of slices being 

around 237.  The above mentioned statistics provide an idea of the vast diversity in size 

seen within the acquired datasets. 

Table 2.2: Voxel Dimensions for the 20 liver CT datasets 

Dataset No 

Voxel Dimension  

x (mm) y (mm) 

z - Slice 
Thickness 

(mm) 
1 0.98 0.98 3.00 
2 0.90 0.90 0.60 
3 0.77 0.77 1.25 
4 0.77 0.77 1.25 
5 0.55 0.55 1.25 
6 0.74 0.74 5.00 
7 0.70 0.70 1.25 
8 0.70 0.70 2.50 
9 0.69 0.69 0.60 
10 0.70 0.70 1.25 
11 0.98 0.98 4.25 
12 0.75 0.75 0.63 
13 0.76 0.76 1.25 
14 0.76 0.76 0.60 
15 0.70 0.70 2.50 
16 0.76 0.76 1.25 
17 0.70 0.70 0.63 
18 0.78 0.78 1.25 
19 0.70 0.70 1.25 
20 0.63 0.63 0.60 

Minimum 0.55 0.55 0.60 
Maximum 0.98 0.98 5.00 

Mean 0.75 0.75 1.61 
Median 0.75 0.75 1.25 
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It is seen in Figure 2.2 that the average slice thickness for the 20 datasets was around 1.6 

while its median was around 1.25 as demonstrated by the red line.  Also, some datasets 

had a much higher slice thickness as marked by the red ‘plus’ equaling to 4.25 and 5 mm.  

Such variations in the slice thickness have to be kept in mind in designing the algorithm 

and also for 3-D rendering and volume calculations. 

 
Figure 2.1: Box-plot showing variation in number of slices for the 20 datasets 

 

 
Figure 2.2: Box-plot showing variation in slice thickness for the 20 datasets 
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CHAPTER III 

LIVER SEGMENTATION 

Selective Internal Radiation Therapy (SIRT) with Yttrium-90 (Y-90) microspheres has 

emerged as an effective liver-directed therapy (Lau et al., 1998).  SIRT dosimetry 

involves calculations of the dose to be delivered to the tumor as given by the fractional 

liver uptake and the fractional tumor uptake respectively.  This involves the accurate 

calculation of anatomical and functional tumor volumes and anatomical volumes of liver 

for the determination of the tumor to normal liver ratio and consequently for the 

calculation of the dose of Y-90 microspheres (Murthy et al., 2005) to be administered.  

Present techniques for the determination of the anatomic volume of the liver involve 

tedious manual segmentation of the liver from the Computerized Tomography (CT) 

scans.  The number of slices in a CT dataset varies from 200-400, which makes the task 

of computing the volume of the liver manually excessively tedious and time consuming.  

Also, the task is greatly dependent on the skill and proficiency of the technician/doctor, 

which could contribute to human error and skew the final segmentation results and 

consequently the volume calculations. 

This chapter describes the development of a semi-automatic algorithm for segmenting the 

liver from 3-D liver CT scans.  The chapter is divided into sections that describe the 

progression of the various versions of the algorithm in seeking an optimal liver 

segmentation algorithm based on a single slice initialization process.  The first version of 

the algorithm called version 1.0 (Ver. 1.0) achieved the segmentation using human 

initialization of multiple slices spaced equally throughout the liver dataset.  Version 2.0 
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(Ver. 2.0) developed following this initial approach aimed to reduce the amount of slices 

initialized by the user while maintain the accuracy of the liver segmentation results.  The 

last and final version of the algorithm version 3.0 (Ver. 3.0) was aimed at minimizing 

human intervention in the initialization phase to only a single slice.  This last version of 

the algorithm is capable of segmenting the liver with high accuracy while only a single 

slice is to be initialized by the user.  The segmentation processes along with the major 

steps and changes in the three versions are illustrated in Figure 3.1.  

This chapter begins by summarizing some of the significant approaches used for liver 

segmentation found in the literature followed by the detailed description of the three 

versions of the liver segmentation algorithm.  Since some of the portions of the 

segmentation algorithm are carried forward from one generation to the next, only those 

portions that undergo substantial changes are mentioned in the later versions. 

 
Figure 3.1: Overview of the three versions of the segmentation algorithm 
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3.1. Review of Liver Segmentation Techniques 

Image segmentation is an important preprocessing step in many image processing 

applications including complex task such as brain segmentation from MR images (Shu et 

al., 2009), lung segmentation from CT images (Jaffar et al., 2011; Kobashi and Hata, 

2010), and other medical image analysis (Deng et al., 2010; Tsai et al., 2010). Current 

automatic and semi-automatic procedures for liver segmentation are based on techniques 

that rely on (1) shape constrained segmentation using heuristic approaches (Kainmüller et 

al., 2007),  local shape models (Seghers et al., 2007), atlas based techniques (Furukawa et 

al., 2007; Rikxoort et al., 2007) or nonlinear models (Heimann and Meinzer, 2009; Saddi 

et al., 2007); (2) rule based segmentation(Schmidt et al., 2007); (3) gradient vector flow 

(Chi et al., 2007; Liu et al., 2005; Massoptier and Casciaro, 2008); and (4) two or three 

dimensional region growing (Lim et al., 2005; Ruskó et al., 2007).  

Kainmuller et al demonstrated a fully automatic liver segmentation algorithm based on a 

combination of a statistical deformable and a constrained free-form model (Kainmüller et 

al., 2007).  The model is based on the typical intensity distribution of the liver boundary 

and intensity of neighboring anatomical structures.  Seghers et al demonstrated a 

segmentation algorithm based on local shape models (Seghers et al., 2007) . The 

algorithm models the liver as a set of landmarks with local appearance models based on 

local shapes as contrasted to previous developed models based on global shape 

properties. 

Atlas-based techniques have performed quite well in the segmentation of the liver.  A 

method introduced by Furukawa et al. segments the liver based on maximum a posteriory 
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probability (MAP) estimation using a probabilistic atlas of the liver (Furukawa et al., 

2007).  A novel application of the so-called level set method prevents the extraction of 

muscles as a part of the liver for accurate liver segmentation.  A labeling approach that 

determines the probability of each voxel belonging to the liver based on various 

positional properties of each voxel has shown good performance (Rikxoort et al., 2007).  

A careful inspection of the results in the publication has nonetheless shown multiple local 

errors with inaccurate determination of liver boundaries, which is one of the major issues 

corrupting the performance of atlas-based techniques.  

Heimann et al. demonstrated the development of a fully automatic evolutionary algorithm 

for liver segmentation based on statistical shape modeling (SSM) and a deformable mesh 

(Heimann and Meinzer, 2009).  Training of the algorithm was based on 20 datasets to 

obtain the parameter of the SSM.  Testing on 10 liver datasets showed performance 

comparable to results obtained by a human segmentation with an average score of 59 

points based on a rating system developed at the MICCAI Grand Challenge workshop, 

2007. 

A two-stage algorithm developed by Saddi et al. performed the segmentation of the liver 

by first estimating the pose and global shape properties based on low dimensional space 

scanned training set and then performing a template matching algorithm to recover local 

deformations (Saddi et al., 2007). The method is semi-automatic requiring a single seed 

point in the initialization phase.  A rule-based technique using Cognitive Network  
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Technology was also demonstrated for the segmentation of the liver (Schmidt et al., 

2007). The technique based on classification of the pixels using a semantic knowledge 

base showed a mean overlap error of 16% in the segmentation of the liver.   

Gradient vector flow (GVF) based algorithms have been very successful in the 

segmentation of the liver in recent studies.  A method introduce by Chi et al. used a 

rotational template matching followed by local edge enhancement of the rib cage area 

with a GVF geometric snake (Chi et al., 2007).  The algorithm trained using 20 datasets 

and tested on 10 datasets, provided good accuracy towards the segmentation of the liver.  

Another method based on GVF snake developed by Liu et al. demonstrated high accuracy 

of about 95% in estimating the liver volumes (Liu et al., 2005). The method is a 

combination of a GVF snake with canny edge detector and a modified concavity removal 

algorithm to extract the liver region. Massoptier et al. described a technique using a 

combination of a statistical model with a GVF active region-growing algorithm 

(Massoptier and Casciaro, 2008). The algorithm required no interaction between the user 

and analysis system and resulted in a volume overlap of more than 90%. 

Deformable contours have found a prominent niche in the field of liver segmentation due 

to their high accuracy with no requirement for a training phase.  An unsupervised 

deformable contour method for segmentation of the liver from CT images showed results 

comparable to those obtained by manual tracing using a combination of multilevel 

thresholds and multiscale morphological filters (Lim et al., 2005).  However, the 

algorithm was dependent on the prior knowledge about the location of the liver.  Based 

on region growing contours, another fully automated approach was able to segment the  
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liver parenchyma in several cases (Ruskó et al., 2007).  However, the presence of large 

tumors resulted in underestimated volume calculations. 

Although these techniques offer highly accurate results, the algorithms need to 

accommodate varying protocols, data from different sources, artifacts, and the presence 

of pathological structures such as tumors (Campadelli et al., 2009; Heimann et al., 2009).  

3.2. Liver segmentation based on multiple equidistant slice initialization process 

(Ver. 1.0) 

A new method for liver segmentation has thus been developed by integrating a multiple 

seed point K-means clustering process and the active contours algorithm. The 

implementation strategy is illustrated in Figure 3.2. The novelty in this algorithm is in the 

manner the modified K-means based segmentation is used in combination with a 

localized contouring algorithm. This K-means segmentation approach requires the 

identification of five separate regions of the input CT images, which is a corollary 

contribution to this method. A key contribution however is the development of a new 

localized contouring algorithm, based on local regional thresholds defined in a small 

region around a point of interest. Pixels in an image obtained by CT scanning are 

displayed in terms of relative radio density rather than the traditional gray level intensity. 

The CT images are segmented keeping the pixel values in the Hounsfield units (HU). The 

HU value will be used to identify the liver tissues in the CT images. Typically the liver 

window is defined between -40 HU and 180 HU. 
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Figure 3.2: General algorithm for 3D liver segmentation and rendering - Ver. 1.0 

Although reduced manual interaction is desired, the variations in the liver datasets seen in 

patients having tumor along with the need to obtain accurate volume determination for 

the SIRT treatment justify the use of the proposed semi-automatic method. For the 

version 1.0, the algorithm was designed to require the user to manually pick 5 points of 

varied intensity in the scan for the K-means segmentation as well as a rough outline of 

the liver in widely spaced slices throughout the given CT dataset. From this initialization 

process, the following automated steps of the modified K-means algorithm are thus 

considered. 
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3.2.1. Modified K-means algorithm and its suitability to liver segmentation 

This is a traditional clustering technique which tries to partition the given dataset points 

into various clusters whose means are similar (Kanungo et al., 2002; Pappas, 1992). The 

K-means algorithm as used here aims to minimize the squared Euclidean distance for 

clustering the data points to their respective groups. In the case of the images to be 

segmented, the data points are pixels which are to be clustered around the mean intensity 

or the pixels a priori chosen by the user.  The points are clustered based on the intensity 

of the selected points by minimizing the objective function U as defined in Eq. 1 U = ∑ ∑ (x − η )            (1) 

In this equation, k represents the number of clusters Si with i = 1, 2, … K, ηi is the 

intensity of the selected point, while xj represents each point that belongs to cluster Si (xj∈ 

Si). In the case of liver segmentation, the CT slices are portioned into five regions whose 

mean intensity levels can be given either by the user or preset. The five regions manually 

identified on each CT slice are: (1) Liver, (2) Surrounding organs, (3) Peripheral 

Muscles, (4) Ribs/Spinal cord, and (5) Outside of the body.  The segmentation algorithm 

using the K-means yields 5 masks namely M1 through M5 corresponding to the 

aforementioned 5 regions as depicted in Figure 3.3. 

Selection of the seed points for the K-means algorithm is an important feature for the 

algorithm. A random selection of seeds for the clusters as shown in Figure 3.4 results in 

the generation of incorrect masks. This is due to the clusters being formed around those 

random seeds which range from -1024 HU to 3000 HU for a typical CT slice. Since the 

liver was typically seen in the -40 HU to 180HU range random selection of seeds 
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provides very less probability to achieve the required feat. In case of uniformly selected 

points in the range of the CT acting as seeds, the centroids are centered around -1024 HU, 

-205HU, 614HU, 1433HU and 2252HU. These seeds fail to segment the regions 

containing the liver from the image as seen in Figure 3.4. An alternative would be to use 

uniformly selected seed points in the -40 HU to 180 HU liver range. Empirically 

however, such a selection of seeds yields centroids too close to one another for suitable 

segmentation. Also a large number of points below -40HU and above 180 HU were 

misclassified and marred the resultant masks.  

 
Figure 3.3: The 5 reference regions, M1 through M5, needed to apply the K-means based 

segmentation method on a liver CT dataset. 

 
Hence, the modified K-means approach as deployed in this study segments effectively 

the different regions of the CT slice around the user selected points which act as seeds for 
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each of the aforementioned five masks. The selection of the seeds, rather than a random 

selection or uniform selection of points in the entire intensity range of the image, yielded 

much better segmentation results as shown in Figure 3.4 for any given slice. These seed 

points clearly differentiate the various organs of interest as compared to the other two 

methods of seed selection where the liver region is not at all visible. 

Another important finding of this study is in determining that the first two masks namely 

liver (M1) and surrounding organs (M2) can be utilized to effectively segment the image. 

The masks M1 and M2 are in this case ORed (+) together to obtain the final mask (Mfinal) 

as shown in Eq. 2.  	 = 	 +	      (2) 

This final mask is what is applied on the CT slice for segmenting the liver region. Based 

on empirical results, it was determined that the optimal mask would require a 

combination of the first two identified regions since in some cases the entire liver is not 

seen in mask M1 due to the inhomogeneous intensity distribution across the entire liver 

region. Combining masks M1 and M2 ensures that no part of the liver is missed out. In 

order to demonstrate the merits of the modified K-means approach, Figure 3.5 shows the 

results of applying the modified K-means as compared to the traditional K-means 

approach for segmenting the liver. Part (A) of Figure 3.5 demonstrates the differences 

obtained in the masks M1 and M2 and the mask Mfinal for the input CT slice shown. Figure 

3.5 (a2-a4) shows the results obtained using the modified K-means, and Figure 3.5 (a5-

a7) show the results obtained using the traditional K-means approach. It is observed that 

Mfinal obtained using the traditional K-means overestimates the liver region.  
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Figure 3.4: Selection of seed-points for K-means based image segmentation step. 
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Figure 3.5: Comparison of the Modified K-means method and traditional K-means 
method. 
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An observation from Figure 3.5 (A) would indicate that only using mask M1 from the 

traditional K-means approach would yield the required liver region. In order to show that 

this is not actually the case for every slice, results for another slice of the dataset is shown 

in Part (B) of Figure 3.5. Figure 3.5 (B) demonstrates the need of using the mask Mfinal as 

obtained in Eq. 2. Note that by using only mask M1 for either the modified or the 

traditional K-means would results in the underestimation of the liver region. Segmented 

image S1 after the modified K-means is obtained by applying Eq. 3 as follows: =	 ∗ 	       (3) 

S1 is the image after the K-means clustering, and I is the CT image slice being analyzed. 

3.2.2. Initialization of the Localized Contouring Method Ver. 1.0 

The next step of the algorithm is the contour-based segmentation process.  One of the 

major issues that concern contour-based segmentation is the initialization of the contour.  

This considers a user defined mask as input for the initialization.  The user marks the 

approximate boundaries of the liver using a mouse pointer in slices that are widely apart 

from one another. 

Figure 3.6 below shows the initialization step of the process for a particular slice of the 

dataset. As can be the user marks the approximate boundaries of the liver by using a 

mouse pointer. The algorithm is thus to a great extent independent of the choice of this 

initial guess. The number of points to be selected is also user defined. The expectation is 

that the higher the number of points considered the better the results would be; however, 

we did not see this effect in the images we processed as long as a sufficient number of 

points delineating the boundary of the liver were used. Once the initial guess is fed, the 
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algorithm iteratively proceeds to determine the boundary of the liver without any more 

user interaction required. 

 

Figure 3.6: Contour Based Liver Segmentation Initialization Process 

In this version of the algorithm (Ver. 1.0), the user is presented with various slices that 

are equidistant apart in the dataset for initialization.  Typically an inter-slice distance of 

five is selected for the analysis, i.e. the user initializes every fifth slice of the dataset.  The 

determination of the inter-slice distance was based on an error analysis whereby the error 

in calculation of the volume of the liver was carried out with different inter-slice 

distances.  It was seen that for up to an inter-slice distance of 5 the error was within the 

10% clinical bounds.  An increase in the inter-slice distance resulted in larger errors.  A 

detailed description of this error analysis is presented in the results section. 
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3.2.3. Localized-region-based active contouring algorithm  

Once the initialization for all the slices of the dataset is obtained interactively, a 

localized-region-based active contouring algorithm is deployed. Localized region 

growing algorithms are more robust than contouring algorithms not based on global 

energies for segmenting heterogeneous objects like the liver (Lankton and Tannenbaum, 

2008).  Let C denote the closed contour, such that C = {x|ф(x) =0} is a set of zero level 

for the signed distance function. The interior and the exterior of the contour are defined 

using the smoothened approximation of the Heaviside function in Eq. 4. The interior of 

the closed contour C is thus defined as follows: 

( ) = 1,																																																				 ( ) < 	−0,																																																					 ( ) > 	1 + +	 sin ( ) ,													 ℎ   (4) 

In reference to Eq. 4, the exterior of closed contour C can then be expressed as {1 – 

Hф(x)}. In order to calculate only the local energies, a masking parameter α is introduced 

in the algorithm. The parameter defines the radius of the circle around the contour which 

has to be masked in order to calculate the local energies. This localization radius is 

defined in terms of the size of the image and its value is calculated as shown in Eq. 5. 

=	 ( + )     (5) 

where Pr is the number of rows in the image and Pc is the number of columns in the 

image. The mask generated by using the above value of α is given by Eq. 6. 

	= 1													 | − | <0																		 ℎ     (6) 
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The algorithm incorporates the well-known Chan–Vese energy paradigm to model the 

interior and the exterior of the contour for segmentation(Chan et al., 2000). The localized 

version of the Chan-Vese energy function is given by Eq. 7, 

=	 ф( )( ( ) − μ ) +	 (1 − ф( ))(( ( ) − μ ) 	   (7) 

where	μ   and μ 	are the mean intensities of the interior and exterior regions of 

the contour, respectively. The localized versions of the mean intensities are obtained by 

restricting the field of view only to the masked region given by masking the image 

with	 . 

Figure 3.7 shows the iterative process of segmentation for a particular slice of the dataset.  

The red lines in the Figure 3.7 show the locations where the contour is trying to compress 

and the blue regions show the locations where the contour is trying to expand.    

 

Figure 3.7: Contour Based Segmentation (in progress) 
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Figure 3.8 (a) shows the initial contour selected by the user, whereas Figure 3.8(b) shows 

the result of the completed localized contouring process. 

 
(a)               (b) 

Figure 3.8: Liver Segmentation example (a) User initialization shown in red (b) Final 
output of the algorithm after localized contouring step 

The extracted contour of the liver is as shown in Figure 3.9. These results show a very 

good segmentation of the liver as portrayed in Figure 3.13, where the contour is 

overlapped with the input slice. A key note to be added is here that since the first 

algorithm (K-means) works on the basis of discrepancies in the image intensities of the 

different organs and the since the second algorithm (contour based) works on the basis of 

extracting edge information the combined algorithm has the advantage of providing more 

detailed information and better segmentation results. Also since the algorithms provided 

in the document are independent of the type of image and feature to be segmented we can 

also use the same algorithm for delineating tumors from CT or PET data sets. 

 
Another example of the process for a different dataset is shown in Figure 3.11 through 

Figure 3.14. Figure 3.11 shows the slice of the dataset to be segmented, Figure 3.12 
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shows the initial and final contours, Figure 3.13 shows an overlay of the final obtained 

contour on the liver slice and Figure 3.14 shows the boundaries of the liver segmentation. 

 

Figure 3.9: Extracted Liver 

 

Figure 3.10: Extracted Liver with Contour Displayed 
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Figure 3.11: Original Image 

 

Figure 3.12: Result of the Algorithm 

 



40 
 

 

Figure 3.13: Extracted Liver with Contour Displayed 

 

Figure 3.14: Extracted Liver 
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As mentioned earlier, Ver. 1.0 of the algorithm requested a user to initialize the contour 

in equidistantly spaced slices.  The major impetus for further development of the 

algorithm was to reduce the number of slices selected by the user while maintaining the 

high accuracy of the results.  With this in mind, Ver 2.0 was developed to reduce human 

intervention by using an information- based slice selector to enumerate the slices 

automatically for human initialization. 

3.3. Algorithm (Ver. 2.0) with information-based slice selection for contour 

initialization  

In Ver. 2.0 of the algorithm, the major and most important change is the manner in which 

the slices that are to be marked by the user for initialization are automatically selected.  In 

this section we first elucidate the changes that are made to the K-means based 

segmentation and then describe the changes made with regards to the contour 

initialization process.  The general flow diagram of the Ver. 2.0 algorithm is as shown in 

Figure 3.15. 

3.3.1. Changes to the modified K-means algorithm 

The K-means segmentation approach tries to partition the given dataset points into 

various clusters whose means are similar.  Since the process is statistical in nature, in 

order to obtain more robust segmentation results, the algorithm for each image is 

replicated 3 times to achieve better results. The intersection of the results of the 3 

segmentation runs for each image slice is taken as the final segmentation. Selection of the 

intersection of the 3 runs provided results which were free of misclassifications 

experienced using single runs. Lastly, the modified K-means is operated on a so called 



42 
 

‘online update mode’ where the sum of distances is calculated with the movement of 

every pixel to a different cluster. Although this step is slightly more time consuming than 

when using a batch update, higher accuracies are guaranteed since the local minima of 

the distance function can be calculated more accurately. 

 

Figure 3.15: General algorithm for 3D liver segmentation and rendering for Ver 2.0 
algorithm 

3.3.2. Initialization of the Contouring-Based Segmentation 

The next step of the algorithm is the contour-based segmentation process. One of the 

major issues that concern contour-based segmentation processes is the initialization of the 

contour. This contour-based segmentation algorithm takes a user-defined mask as input 

for the initialization algorithm. The user marks the approximate boundaries of the liver 
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using a mouse pointer in slices that are widely apart from one another. Moreover, the 

selection of the slices in which the user picks the initial contour depends on the change in 

information (presence of liver) from slice to slice. This is obtained by first dividing the 

entire image S1 into blocks of 16x16 pixels as shown in Figure 3.16. The selection of 

blocks of 16x16 pixels was determined empirically to be the best solution.   

 

Figure 3.16: Division of liver CT image in blocks of sizes (a) 64x64 (b)32x32 (c) 16x16 
(d) 8x8 

Inside each block, the pixels that fall in the abdominal CT window of -40HU to 180HU 

were counted. A block was marked as being part of the liver region if at least more than 

half of the pixels were found in the abdominal CT window as described in Eq. 8. Thus, 

	 = 	 1							 	 	≥ 0.50														 ℎ     (8) 
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Elements n and N are the number of pixels in the abdominal window and the total 

number of pixel elements in the block, respectively. Recall that N = 16x16 was the 

window size selected for segmentation of the liver datasets presented in the results 

section. 

Figure 3.17 shows a typical profile curve for dataset 1 which displays the number of 

blocks belonging to the liver window as a function of the slice number in a particular 

dataset, along with the slices used to calculate the value of the curve at some particular 

instant of time. Such a curve gives an estimate of the changes in the size as well as the 

potential extent of the liver region seen across slices, providing as a consequence the 

information needed to select those slices that most probably contain a large portion of the 

liver region.   

The first slice of the CT dataset was always selected for manual contour initialization. In 

this algorithm, in order to minimize the number of slices considered for contour 

initialization, a subsequent slice would need to show a 5% change in the number of 

blocks marked as in Eq. 8 with respect to its predecessor. The intermediate slices that are 

not selected for manual initialization used the same initial contour as the slice closest to it 

in the dataset. This approach yielded around 4-5% of the entire dataset to be initialized by 

the user, rather than the time consuming slice by slice contouring of the entire dataset that 

is used in clinical practice. This led to good segmentation results and the volume 

measurements at were highly accurate. As an example, the slices chosen for manual 

initialization are marked by the black bars in Figure 3.17 for a particular dataset.  
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Figure 3.17: Generation of dataset profile curve depicting the slices corresponding to the 

marked points on the dataset profile curve. 
 

The automatic slice selection algorithm aims at determining the slices that are to be 

manually initialized for the contouring algorithm. This algorithm calculates the change in 

the extent and structure of the liver shown across the slices by counting the number of 

blocks belonging to the liver as expressed by the range of -40 HU to 180 HU. This 

generates a profile curve for a particular dataset like the one shown earlier in Figure 3.17.  

Since block size is a parameter that gauges the accuracy of the algorithm, experiments 

were carried out using different block sizes. The performance of the algorithm is 

evaluated using a new parameter Ψ as defined in Eq. 9, 

= |	 − 	͞ |      (9) 
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Element p represents the number of the slice manually selected, and ͞p is the number of 

the slice picked by the algorithm.  Figure 3.18 shows the parameter Ψ plotted as a 

function of the block size.  

 

Figure 3.18: Selection of block size based on Ψ performance 

Since Ψ represents the distance between the true largest slice obtained manually and the 

largest slice obtained by the algorithm, a smaller value of Ψ would indicate a better 

performance. Results in Figure 3.18 show that the lowest values of Ψ are consistently 

seen for block size 16x16. Also dataset 5 shows a very high value for block size of 

64x64. This can be attributed to the presence of several smaller sized objects in the CT 

images such as duodenum whose intensity distribution is similar to that of the liver. Once 

the initialization for all the slices of the dataset is obtained interactively, the localized-

region-based active contouring algorithm is employed as described in section 3.2.3. 
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Consequently, Ver. 2 of the algorithm relied on fewer slices that were automatically 

selected based reasoned information change from slice to slice. 

With the challenging goal of reduce the number of slices used in the initialization phase 

to a single slice, Ver. 3.0 was developed based on the selection of the manual contour of 

the slice with the largest extent of the liver in the dataset.  

3.4. Liver segmentation algorithm using single slice contour initialization (Ver. 3.0) 

The Ver. 3.0 of the algorithm incorporates the K-means based segmentation algorithm 

form Ver. 2.0.  Also, the localized contouring algorithm is carried forward in the new 

version of the algorithm with no changes to the core process.  The major contribution of 

this version is in determining an initialization process that would rely on using only one 

CT slice and two seed points or end points to fulfill the segmentation process. In this 

section we describe the changes that were made towards this contour initialization 

approach for single slice initialization.   The general flow diagram of Ver. 3.0 algorithm 

is shown in Figure 3.19.  

3.4.1. Contour Initialization 

The most important issue that affects the performance of any contouring algorithm is the 

initialization of the contour, especially in situations like liver segmentation where various 

organs of similar intensity distributions are seen. This unique contour initialization 

process is achieved in a four-step process to reduce both human intervention and extent 

of error due to subtle variations in CT scans.  
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Figure 3.19: Structure of the algorithm Ver. 3.0 for 3D liver segmentation and rendering 
 

3.4.1.1 Anisotropic Diffusion Filter 

A Perona-Malik anisotropic diffusion filter is first applied to all the slices containing the 

liver in the dataset (Perona and Malik, 1990). The significance of the anisotropic 

diffusion filter is to reduce spurious and speckle noise effects seen in the liver CT images. 

For the diffusion filter, a 2D network structure of 8 neighboring nodes is considered for 

diffusion conduction. The considered neighbors are the north, south, east, and west, 

northeast, northwest, southeast and southwest directions. The conduction coefficient 

function used for the filter as applied on the liver slices aims to privilege wider regions 
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over smaller ones based on the fact that the liver is the largest organ seen in the 

abdominal cavity. The conduction coefficient function is given by Eq. 10 where ∇  is 

calculated for the 8 directions and K is the gradient modulus threshold controlling the 

conduction. C(x, y, t) = ||	∇ 	||      (10) 

3.4.1.2. Intensity based Region Growing 

Intensity based region growing process works by accepting a seed point and expanding 

the region of interest based on the intensity of the neighboring region. The region is 

iteratively grown by comparing all unallocated neighboring pixels to the region. The 

difference between a pixel's intensity value and the region's mean is used as a measure of 

similarity. The pixel with the smallest difference measured this way is allocated to the 

respective region.  This process stops when the intensity difference between region mean 

and new pixel become larger than the selected threshold. The neighborhood for the 

algorithm is a region of 4 pixels around the point under consideration. Since the intensity 

based region growing algorithm works by accepting only those points in the 

neighborhood which fall in the intensity window, a fixed threshold will provide 

inaccurate results in case of liver scans where the intensity distribution differs from scan 

to scan. As a result, the threshold is devised in terms of the standard deviation of the 

image under consideration. Since the intensities considered for the algorithm are in 

Hounsfield units, a threshold of 5% of the standard deviation of the image is used. 



50 
 

The last and most important feature governing the operation of the intensity-based region 

growing algorithm is the selection of the seed points. Since the algorithm is designed to 

provide a solution with minimal user intervention, a linear interpolation method is used. 

The user is asked to select a single point belonging to the liver in the first and last slice in 

which the liver is seen. These two points act as the end points of a line which contain the 

seed points for the region growing algorithm. The intersection point of the line and the 

image slice is used as the seed point for the region growing algorithm for that slice.  

The choice of linear interpolation was based on the fact that the structure of the liver does 

not change abruptly from slice to slice. In support of this last assertion, linear 

interpolation yielded the best results. Figure 3.20 shows the different views of the seed-

line for a particular dataset, with arrows pointing to the position of the two selected seed 

points. The 3D rendered liver shown is the result after the entire segmentation process is 

completed. 

 

Figure 3.20: Different views showing the seed-line in a given dataset 
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3.4.1.3. Volume of Interest Based Correction or Three View Correction 

Region growing algorithms based on intensity tend to incorporate some portions of 

neighboring regions like the spleen and the stomach. To overcome this challenge, a 

correction which utilizes information from all the different views namely coronal, 

transverse, and sagittal is taken into consideration. The correction algorithm is based on 

the idea that a voxel is considered to belong to the liver in the 3D space only if it is 

marked by the preceding steps of the algorithm in at least two of the three views.  

The 3D masks generated (by assembling various 2D image masks) by the process are 

combined in a logical configuration as described by Eq. 11.  

M =	M ∙ 	M +	M ∙ 	M + M ∙ 	M    (11) 

Where M  is the 3D corrected mask and	M ,	M  and	M are the 3D coronal, 

sagittal and transverse masks, respectively, as obtained by the process outlined in section 

2.2.1.1 and 2.2.1.2. The ‘ ’ and ‘+’ operators are the pixel-by-pixel AND and OR 

operations, respectively. The results of this correction process are shown in Figure 3.21 

where in part (e) the falsely detected voxels have been eliminated.  

3.4.1.4. Single Slice Selection 

The final step in the initialization process is the masking of the results obtained from the 

aforementioned region growing algorithm with the mask of the largest slice. In the 

context of the algorithm the largest slice is defined as the slice in which the liver is seen 

to be the largest. In order to extract automatically the largest slice, the Automated Large 

Slice Selection (ALSS) algorithm developed in house is utilized. The ALSS algorithm 
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begins by first dividing each slice into blocks of 16x16 pixels. The 16x16 pixels size was 

empirically determined to be the best solution.  

 

Figure 3.21: Volume-of-Interest based correction results (a) Original slice (b) Coronal 
Mask (c) Sagittal Mask (d) Transverse Mask (e) Corrected Mask 

 

Inside each block, the pixels that fall in the abdominal CT window of -40HU to 180HU 

were counted (Ruskó et al., 2007). A block was marked as being part of the liver region if 

at least more than half of the pixels were found in the abdominal CT window as described 

by Eq. 12.  

block	marked = 	 1							if	 n N 	≥ 0.50														otherwise    (12) 

where n is the number of pixels in the abdominal window and N = 16x16 is the total 

number of pixel elements in the block.  
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Figure 3.22 shows a typical profile curve for dataset 1 which displays the number of 

blocks belonging to the liver window as a function of the slice number in a particular 

dataset and the slices used to calculate the value of the curve at some particular instant of 

time. Such a curve gives the estimate of the changes in the size as well as the potential 

extent of the liver region seen across slices, providing as a consequence the information 

needed to select those slices that most probably contain a large portion of the liver. 

 
 

Figure 3.22: Automatic Large Slice Selection algorithm. A typical curve is shown with 
corresponding slices. The red vertical line shows the location of the largest slice which is 

then is used by the algorithm. 
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The slice marked by the ALSS algorithm is presented to the user to demark the 

boundaries of the liver in that slice, which will make up the mask that delineates the liver. 

The mask is applied to all the slices of the dataset to exclude any portions that are not 

belonging to liver. This step is essential since the region growing algorithm sometimes 

over extracts the liver region by including some regions belonging to the duodenum, 

stomach and spleen. Once the initialization for all the slices of the dataset is obtained 

interactively, the localized-region-based active contouring algorithm is employed as 

described in section 3.2.3. 

3.5. Three-Dimensional Image Rendering 

In all the three versions of the algorithm, the 3D datasets are rendered using cost-

effective third party software called ScanIP™ developed by Simpleware Ltd. based in the 

United Kingdom. The software renders the segmented dataset in 3D space and offers the 

possibility for the physician to view/edit/correct the rendered liver if necessary.  

The software also calculates the volume of the liver by determining the number of voxels 

that are marked as being within the liver region by the segmentation algorithm. For the 

volume calculation, the software considers voxels marked by ‘1’ as belonging to the liver 

and voxels marked by ‘0’ as belonging to the surrounding. The developed algorithm 

differentiates between liver and background with no decision done by the software. The 

only inputs fed to the software are the segmented datasets and the original resolution of 

the CT datasets. The calculated volumes are in milliliters (ml).  
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CHAPTER IV 

TUMOR AND BLOOD VESSEL SEGMENTATION 

Segmentation of liver tumors is an important prerequisite task before any surgical 

intervention.  A precise and accurate analysis of the lesions/tumors allows for accurate 

staging and evaluation of the available therapies that can be provided to the patient.  It 

can help in deciding the best treatment approach as well as track the progress of the 

therapy over an interval of time.  Also, tumor segmentation plays a vital role in the 

development of 3D surgical tools that can help and guide the surgeon for the complete 

removal of the tumor rendering the patient free of the underlying disease. 

As emphasized in Chapter 1, fractional dose calculation of the liver and tumor depend on 

the volumes/masses of the liver and tumor.  Hence in order to calculate the dose delivered 

to the tumor, it is essential to segment the tumor from the background and calculate the 

volume of the tumor region.  Also, the ability to display the blood vessels along with the 

liver and the tumor/tumors provides an idea of the extent of the vasculature feeding the 

tumor as well as a map for the insertion point of the radio-isotope in cancer directed 

technologies like SIRT.   

This chapter introduces some of the advances in the field of tumor and blood vessel 

segmentation followed by the description of in-house developed methods for the 

segmentation of the tumor and blood vessels from CT scans.  
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4.1. Review of automatic/semi-automatic tumor segmentation techniques 

In order to improve the treatment and prognosis of CRLM, accurate and early detection 

of the tumor is a very important phase.  Also, staging plays an important role towards the 

determination of treatment options and the assessing the progression/recession of the 

disease.  Since CT is one the most commonly used imaging modalities in the prognosis 

and staging of liver tumors, tumor segmentation and volume calculations are essential. 

Various automatic/ semiautomatic techniques for liver tumor segmentation have been 

developed based on strategies which include entropy based segmentations, Bayesian 

approaches, multi-level thresholds, level set techniques and region growing techniques. 

Choudhary et al. demonstrated a semi-automatic technique using an initial Watershed 

algorithm followed by minimum entropy-based region growing technique and level set 

smoothing (Choudhary et al., 2008). The technique was tested on 10 datasets rendering a 

mean volumetric error of 22.58%.   Furthermore, Xu et al. demonstrated the use of a local 

entropy-based technique coupled with morphological filters towards liver tumor 

segmentation (Xu et al., 2010).  

Yoav et al. demonstrated the development of a nearly automatic technique for the 

segmentation of liver tumors using a multi-resolution, multiclass Bayesian classification 

technique followed by morphological adjustment (Yoav et al., 2008).  The method tested 

on 20 tumors in 9 patients showed promising results towards the determination of the 

tumor volume for clinical applications.  Another semi-automatic Bayesian based 

approach for automatic segmentation of liver tumors was reported by Qi et al. (Qi et al., 

2008).  The technique segmented the tumor region by modeling the probability density 
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functions of the tumor as a series of Gaussians followed by 3-D seeded region-growing 

algorithm.  The seeds for the region growing algorithm are selected manually and 

updated during the region growing process. 

Adaptive thresholding and multiple thresholding techniques have been widely used for 

the segmentation of liver tumors from CT images. Moltz et al. reported a technique for 

delineating the tumor boundaries using adaptive gray level thresholding combined with 

model-based morphological processing (Moltz et al., 2008).  The technique was carried 

out on the segmentation of tumors from 10 CT datasets. Another study demonstrated the 

use of Isodata threshold towards the segmentation of the tumors from CT images (Abdel-

massieh et al., 2010). The technique uses Gaussian smoothing flowed by a multilevel 

Isodata threshold and image binarization for the detection of the tumors. 

Level-set techniques have been at the forefront of tumor segmentation techniques with a 

number of studies published.  Smeets et al. demonstrated the development of a level-set 

algorithm based on statistical pixel classification with supervised learning for the 

segmentation of lesions (Smeets et al., 2008).  The algorithm tested on 10 datasets 

provided an average volumetric difference of about 17.8%.  Jimenez-Carretero et al. 

demonstrated the development of a multi-resolution 3D level set technique coupled with 

adaptive curvature technique for the classification of the pixels into tumor and 

background (Jimenez-Carretero et al., 2011). The technique demonstrated promising 

results for detection of elongated tumors avoiding internal leakages to close structures.  

Region growing techniques are the most widely used technique for the segmentation of 

tumors in liver CT scans due to their high accuracy, excellent differentiation capabilities, 
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and ease of use. Various studies have been demonstrated using variation of region-

growing algorithms with either 2-D or 3-D region growing and with different energy 

functions.  Wong et al. demonstrated a 2-D region growing technique based on 

knowledge-based constraints for the segmentation of the tumor in each slice (Wong et al., 

2008).  The technique demonstrated an average volume difference of 24.2% in the 

segmentation of the tumors.  Ben-Dan and Shenhav demonstrated the development of 

active contour- based tumor segmentation using a weighted function of the probability of 

each pixel (Ben-Dan and Shenhav, 2008).   

Various other techniques based on AdaBoost (Jingran et al., 2009; Yuanzhong et al., 

2006), Support Vector Analysis (Xing et al., 2011) and CAD approaches (Ben et al., 

2010) have been also developed for the segmentation of the tumors.  Enhancing the 

contrast of the images before the application of other segmentation approaches has been 

suggested towards better segmentation of tumors in liver. 

Even with the advent of multiple techniques for automatic tumor segmentation manual 

tumor segmentation form CT images by an expert has been regarded as the gold standard 

for all clinical purposes. This is due to the variability often seen in the different 

techniques with no single method being able to perform well in all situations. 

Nonetheless, studies have also shown that about a 17% variability is found in delineating 

the tumor manually by different experts (Moltz et al., 2011). 

4.2. Tumor Segmentation Method 

The tumor segmentation method developed for the study is a multi-stage segmentation 

technique comprised mainly of 5 stages.  
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1. Liver Extraction: first step in the segmentation is to extract the liver region. 

2. Image De-noising: performed using a median filter to improve the contrast of the 

tumors in the liver and to reduce specular noise. 

3. Intensity based Region Growing: a semi-automatic step requiring a single point 

per tumor as a seed. The region growing aims at encompassing regions of similar 

intensity to segment the tumor. 

4. Localized Contouring: coarse tumor segmentation obtained in step 3 is improved 

upon using a localized contouring algorithm to improve the detection of the tumor 

region. 

5. Rendering and Volume Calculations: tumor/tumors are rendered in 3-D space 

to display location, size and extent of the tumor within the liver.  Volume 

calculations are carried out based on the number of voxels comprised within the 

tumor. 

4.2.1. Liver Extraction 

The first step of the process is to extract the 3-D liver from the CT dataset to extract all 

the tumors belonging to the liver region.  For accomplishing this task, the 3-D liver 

segmentation approach detailed in Chapter 3 is utilized.  The 3-D segmented liver volume 

region is applied as a pixel-by-pixel binary mask on the 3-D CT scan obtained in the 

venous phase.  The utilization of the venous phase is based on literature review, which 

indicates that tumors are visualized best in the venous phase as compared to the arterial 

or equilibrium phase (Xu et al., 2011). The resultant output of the multiplication yields a 
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CT dataset containing only the liver region with the other parts of the CT scan substituted 

by zeros. Thus, 

=	3 	.       (13) 

 , 3 , 	  are the output CT containing only the liver, the 3-D liver 

binary mask obtained through liver segmentation and the original venous phase CT input 

dataset. 

4.2.2. Image De-noising 

A median filter is first applied to all the slices of the CT scan containing the liver in the 

dataset. The significance of the median filter is to reduce spurious and speckle noise 

effects seen in the liver CT images and enhance the contrast of the tumor region (Arce 

and McLoughlin, 1987 ). 

The filtering process is carried out in a slice-by-slice fashion for each slice of the dataset 

containing the liver. For the filter, a 2D network structure of 8 neighboring nodes is again 

considered for filtering. The median filter considers each pixel in the image in turn and 

examines the surrounding 8 pixels. The filter then proceeds to replace the value under 

consideration by the median value of the neighborhood pixels. The median value is 

calculated by first sorting the neighborhood pixel values and then obtaining their middle 

value. In case of even neighborhood pixels, the average of the two middle values is used 

as the median value to replace the pixel being considered. For calculating the filter 

neighborhood values for the next pixel value the updated values are considered. This can 

be displayed pictographically as shown in Figure 4.1. 
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.  

Figure 4.1: Working of the median filter showing the value 150 (marked in red) being 
replaced by 124 which is the median of the 8 neighborhood values  

 

4.2.3. Intensity-based Region-Growing 

An intensity-based region-growing step similar to the one used in the Ver. 3.0 algorithm 

discussed in section 3.4 for liver segmentation was utilized in the tumor segmentation 

step.  Two changes were made to accommodate the targeted region for segmentation, 

tumor instead of liver. 

1. Change in seed-point method:  

As contrasted to the liver segmentation approach, the tumor segmentation method 

uses a single seed point per tumor as an initialization for the intensity based 

region growing. This seed point is derived interactively from the user.  The user 

uses the mouse pointer to mark a single point in the 3-D tumor in any one slice of 

the dataset in which the tumor can be seen.  Using this seed point as the initial 

condition the region-growing algorithm evolves to include all the surrounding 

points in the 3-D space that fall inside the threshold of the region-growing 

algorithm. 
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2. Change of Threshold for Region Growing Method 

Recall that the threshold for the intensity-based region-growing step for the liver 

segmentation algorithm was set at 5% of the standard deviation of the image due 

to the distribution of the Hounsfield intensities in the entire abdomen that vary 

between -1000 HU and 2000 HU.  Since a single seed point is selected for tumor 

segmentation, it was not possible to determine a threshold in terms of statistical 

measures of the intensity of the chosen seed point.  Experimental evaluations 

reveal that a threshold of 10% of the intensity was sufficient to include all the 

points belonging to the tumor with little excess.  Lower thresholds resulted in 

regions of tumor being missed, which is to be avoided.   

4.2.4. Localized Contouring Algorithm 

After the coarse segmentation of the tumor by the region-growing step, we aim to refine 

the segmentation results using the localized contouring algorithm that has been widely 

used in the developmental process of this dissertation. Segmentation obtained using 

region growing acts as an initial contour for the localized contouring step. The localized 

contouring step is applied in a slice-by-slice manner to each slice that contained any 

region of a tumor. 

4.2.5. Rendering and Volume Calculations 

Once the segmentation process is completed, the tumor/tumors are rendered in 3-D space 

to provide context in terms of location, size and extent of the tumor within the liver.  The 

segmented 3D tumors are again rendered using ScanIP™.  Figure 4.2 shows the output 

for the tumor segmentation algorithm at each step of the process. 
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Figure 4.2: Outputs after every step of the tumor segmentation algorithm. The red overlay 
shows the tumor masks generated after the intensity based region growing and the 

localized contouring 
 

4.3. Review of hepatic automatic/semi-automatic blood vessel segmentation 

techniques 

Analysis of vasculature information from 3-D volumetric data has been investigated with 

great interest due to its importance towards a variety of medical applications.  Accurate 

determination of the morphology and structure of blood vasculature enables an efficient, 

accurate and systematic diagnosis, surgical planning and resections in liver related 

diseases(Sonka et al., 2001).  Assessment of liver vasculature is essential in cases related 

to living-related liver transplants to study the branching patterns of all hepatic vessel 

system and for oncology applications for studying and understanding the underlying 

vasculature before surgical intervention.   
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In case of SIRT, the ability to display the blood vessels along with the liver and the 

tumor/tumors in a 3-D space offers an idea of the extent of the vasculature feeding the 

tumor as well as provides a map for the insertion point of the radio-isotope(Gulec and 

Fong, 2007). 

Various techniques for vessel or vessel-like tubular structures have been reported.  The 

various techniques developed for vessel segmentation can be broadly classified into 

techniques based on pattern recognition approaches, model based techniques, tracking 

based techniques, neural network based techniques, and other algorithms for segmenting 

tubular structures(Kirbas and Quek, 2003). 

Pattern recognition techniques are widely used for the extraction of blood vessels in 

medical image analysis.  Multi-scale pattern recognition analysis studies have provided 

excellent results with fast computational times towards the extraction of vasculature from 

cardiac CT and MR images (Sarwal and Dhawan, 1997). Skeleton based approaches to 

extract and locate the centerline of the vessel tree have been used to extract blood vessel 

in CT.  These techniques use one or more types of skeletonization approaches followed 

by thresholding to determine the vasculature structure (Kawata et al., 1996; Tozaki et al., 

1994).  Various ridge based approaches that treat the gray scale medical images as 3-D 

elevated maps have been established(Aylward et al., 1996). Region growing approaches 

that attempt to extract the 3-D vasculature from a single seed point are the most 

commonly used techniques for vasculature extraction.  These approaches are based on 

intensity similarity and spatial proximity for the extraction of the blood vessels (Higgins 
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et al., 1989; Selle et al., 2002). Although widely used they suffer the drawback of needing 

a seed-point for their initialization.  

Parametric Deformable Model (PDM) based approaches that intend to find the 

vasculature by evolving snakes based on some internal and external forces have found 

increasing use vessel segmentation(Hui et al., 2000; Toledo et al., 2000).  Level-set 

approaches for segmenting of blood vessel have been widely used for cardiac 

angiographs (Malladi et al., 1996; Malladi and Sethian, 1996).  Level-set methods 

provide many advantages for vessel segmentation however have not been utilized very 

greatly towards hepatic vasculature extraction from CT(Selle et al., 2002). 

Vessel tracking based approaches to determine the centerline of the vessels by analyzing 

the pixels in the orthogonal directions to the seed have been developed for vasculature 

segmentation in cardiac and retinal applications (Lecornu et al., 1992; Tolias and Panas, 

1997).  The use of these methods however is limited in case or hepatic vessel 

segmentation studies. 

Neural network based approaches for blood vessel segmentation have been used for 

classification of pixels as vessel or non-vessel in CT Angiograms (CTA)(Nekovei and 

Ying, 1991).  These methods do not aim to produce 3-D maps but only rely on 

classification of the pixels in to the different categories(Nekovei and Ying, 1995).  Since 

CTA datasets are usually large it is very time consuming to train the neural network and 

hence these algorithms are used only on selected section of the CTA.  Neural network 

based approaches have found little use in extraction of blood vasculature from hepatic 

CT. 
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4.4. Hepatic Blood Vessel Segmentation Method 

The segmentation of the hepatic blood vessels from CT data is a 3-step process. The 

various steps of the process are outlined below: 

1. Liver Extraction: The first step in the segmentation is to extract the liver 

region. 

2. Image De-noising: Following liver extraction image de-noising is 

performed using an anisotropic diffusion filter aimed at enhancing small objects 

such as the blood vessels so that they can be extracted from the images 

3. Intensity based Region Growing: The only semi-automatic step of the 

entire process is the region-growing algorithm, which needs a single point near 

the entrance of the aorta into the liver. The region growing aims at encompassing 

regions of similar intensity and spatial proximity to extract only the blood vessel. 

4.4.1. Liver Extraction for blood vessel segmentation 

For accomplishing this task, the 3-D liver segmentation approach detailed in Chapter 3 is 

utilized.  The 3-D segmented liver volume region is applied as a pixel-by-pixel binary 

mask on the 3-D CT scan obtained in the arterial phase.  The utilization of the arterial 

phase is based on the fact that the blood vessels are most clearly seen as bright objects in 

the arterial phase CT scan. The resultant output of the multiplication yields a CT dataset 

containing only the liver region with the other parts of the CT scan substituted by zeros. 

Thus, 

=	3 	.      (14) 
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, 3 , 	  are the output CT containing only the liver, the 3-D liver 

binary mask obtained by liver segmentation, and the original arterial phase CT input 

dataset, respectively. 

4.4.2. Vascular Edge Enhancement 

For image processing and computer vision applications, anisotropic diffusion is a 

technique used to reduce the image noise without removing significant parts of the image 

content, typically edges, lines or other details that are important for the interpretation of 

the image(Perona and Malik, 1990). 

The significance of the anisotropic diffusion filter in the particular application is to 

reduce spurious and speckle noise effects seen in the images and to enhance the edge 

information for extracting the vasculature. For the diffusion filter a 2D network structure 

of 8 neighboring nodes is considered for diffusion conduction. The considered neighbors 

are the north, south, east, west, northeast, northwest, southeast and southwest. The 

conduction coefficient function used for the filter applied on the liver slices aims to 

privilege edges over wider regions in order to enhance regions of high thermal activity 

associated with the vasculature. Thus, the conduction coefficient function used for the 

application as shown in Eq. 15 is given by 

( , , ) = ||	∇ 	||
     (15) 

where  is calculated for the 8 directions and K is the gradient modulus threshold that 

controls the conduction. The choice of the gradient modulus threshold K = 5 was 
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empirical in nature with studies aimed to reduce spurious noise while at the same time 

maintaining the overall information in the image.  

4.2.3. Intensity-based Region-Growing 

A modified version of the intensity-based region-growing step similar to the one used in 

the tumor segmentation process discussed in section 4.2.3 was utilized for the extraction 

of the blood vessel network of the liver.  The region growing method utilizes two key 

features seen for blood vessels in the CT scans, namely (1) the blood vessels in axial 

slices appear as extremely bright white spots with high HU in the CT slices; and (2) The 

blood vessels form a continuous network. These properties enable the extraction the 

blood vessels more accurately than using  regular thresholding, since only connected 

points belonging to the blood vessels are segmented out.   

The first important parameter for the region-growing algorithm is the selection of the 

seed point, which is the initial point from where the region-growing algorithm expands to 

include the rest of the vasculature.  The seed point for the method is user selected using a 

mouse pointer by selecting a pixel belonging to the vasculature near the entrance of the 

aorta in to the liver.  The second parameter of importance for the region-growing 

algorithm is the threshold for accommodating in the evolving vasculature.  A threshold 

10% of the intensity of the selected seed point provided good results in the study and has 

also been recommended in other studies using region-growing algorithms(Selle et al., 

2002). Once the segmentation is completed, the blood vessels are displayed in the 3D 

space using third party software called ScanIP. The software enables the rendering, 
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volume calculation and editing if necessary. Figure 4.3 shows the output for the blood 

vessel segmentation algorithm after every step of the processing. 

Since the first step towards the segmentation of the tumor and blood vessels is to extract 

the liver, the results of the tumor and blood vessel segmentation algorithm rely on the 

accuracy of the liver segmentation method.  Keeping this in mind, we have presented 

detailed description of the results for the tumor and blood vessel segmentation in section 

6.3 after discussing the liver segmentation results. But before these results are detailed, 

Chapter 5 which follows addresses the heavy computational burden associated with 3-D 

segmentation in large volume medical imaging. 

 

Figure 4.3: Outputs after every step of the blood vessel segmentation algorithm. The red 
overlay shows the masks generated after the intensity based region growing algorithm.  
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CHAPTER V 

PARALLEL PROCESSING FOR 3D SEGMENTATION AND VOLUME RENDERING 

As in most 3D applications that include large datasets, as is the case of this study, there is 

an inordinately lengthy processing time requirement.  The drawback is the consequence 

of the slice-by-slice segmentation approach that is required of such large datasets.  The 

fact that each dataset is comprised of 200 to 400 slices demands a computationally-taxing 

process.  The objective is thus to lower the processing time to offer a faster and effective 

solution for doctors and hospitals that rely on the processing of such 3D imaging tasks. 

Parallel computing has been widely used for reducing the computational burden imposed 

by image segmentation tasks, particularly medical image segmentation (Maeda et al., 

2011).  Parallel processing makes it possible for multiple slices of the dataset to be 

processed simultaneously. For a cost-effective solution, the constraint imposed here is to 

be able to perform parallel computing within a single desktop computer. Parallel 

computing in this case is employed mainly to reduce the processing time required by the 

region growing algorithm and the localized region contouring algorithm, since they the 

most computationally demanding. 

This chapter describes the performance results obtained on testing the MatLab parallel 

processing toolbox to execute a three-dimensional (3-D) liver reconstruction. The FFT 

algorithm was tested using the parallel processing toolbox, by changing system platform, 

number of workers, image size and number of images. A second set of experiments was 

conducted keeping the hardware fixed while changing the operating system to obtain 
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unbiased results. The third set of experiments was performed to assess the effect of 

parallelization applied to a newly developed 3-D liver reconstruction algorithm. 

5.1. Review of Parallel Processing Techniques 

High Performance Computing (HPC) as a discipline is continually introducing new and 

enhanced tools to provide each time faster solutions. Moreover, the emphasis on high 

productivity metrics results in a reduction of the time-to-solution process (Bliss and 

Kepner, 2007; Krishnamurthy et al., 2007). High level languages are under higher 

scrutiny due to the potential high productivity gains, and high yield for those tasks that 

are computationally taxing. The MatLab scripting language combines the ease of a 

scientific programming language with an extremely intuitive environment for application 

development and visualization. Traditionally, MatLab was used as a prototyping 

algorithm environment and the final algorithm deployment was done using a traditional 

language such as C or PASCAL. However with enhancements introduced in the MatLab 

compiler and domain specific tuned libraries, the use of MatLab has become not only 

ubiquitous but also more appealing to address those problems that demand heavy 

computational requirements (Trefethen et al., 1996). There is also the convenience 

provided by the availability of many specialized toolboxes. However, these advantages 

are often downplayed by the perceived limitations imposed by the relatively low 

processing speed and inadequate memory space. Such limitations are accentuated when 

dealing with massive datasets such as in medical imaging (Bister et al., 2007).  

The domain-specific library routines are precompiled and optimized to form specialized 

variants, which are substituted into the user script during user-script compilation. This 
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approach results in a significant increment on scripts execution. In other words, script-

based applications provide a high performance as if the user’s application were available 

at library compile time (Choy et al., 2004). Thus, MatLab provides many alternatives to 

solve problems that involve intensive computational operations; these alternatives are 

based on parallelism and HPC techniques. Krishnamurthy et al. presented an exhaustive 

description of all the HPC techniques offered by MatLab (Krishnamurthy et al., 2007). 

The most popular techniques are MatLab-MPI(Choy and Edelman, 2005; Hudak et al., 

2009), MatLab (Bliss and Kepner, 2007), Star-P(Edelman, 2007; Mirman, 2006), the 

MatLab Distributed Computing Toolbox (DCT) (Mathworks, 2009a) and the Parallel 

Computing Toolbox (PCT) (Smith, 2009).  

In this chapter the focus is placed on using the MatLab parallel and distributed processing 

(PCT and DCT) toolboxes as they provide a standard and simple mechanism to avoid the 

need of writing the code required dealing with inter-processor communication minutiae. 

The motivation is to determine the impact of the operating system on the performance of 

parallelization of a given task by using PCT and DCT of MatLab. These tools provide 

users with access to high performance computing resources in terms of maximizing the 

multicore capabilities of local desktops, with the potential to extend such processes to 

clusters and grids (Mathworks, 2009c).  

The infrastructure used for our experiments required the configuration of a job manager 

and client host machines. The job manager schedules and coordinates the execution of 

jobs and tasks evaluation. The client host machine can request the job manager a specific 

job and its related tasks, in which case a MatLab session, referred to as a client session is 
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initiated. Moreover, a MatLab host machine through the MatLab DCT toolbox can be 

requested to execute a given task, in which case each MatLab session called a worker, 

would behave like a computing server. Since a given host machine can initiate several 

MatLab sessions or workers, the actual number of workers that can be utilized by a given 

host machine depends on the resources available to it (Chakravarti et al., 2008). The 

MatLab parallel computing toolbox is used for requesting distribution of the process 

among several MatLab sessions. The parallel computing toolbox provides up to 8 local 

workers on a single workstation. However, the numbers of usable workers that can be 

started for an application are dependent on the number of cores/processors present on the 

computer. For example, a dual core processor provides up to 4 workers, whereas a quad 

core computer can provide support for up to 8 workers, although the maximum number 

of workers does also depend on the version of MatLab used. The ‘matlabpool’ command 

in MatLab can be used to setup the number of desired workers. Moreover, a given 

MatLab coded algorithm executed under different operating systems and hardware 

configurations can thus be explored (Mathworks, 2009c) and evaluated on the basis of its 

computational merit. 

In order to define a job manager and a worker session it is necessary to have the MatLab 

Distributed Computing Engine (MDCE) installed in the host computer  (Mathworks, 

2009b). This provides a flexible configuration since both client and server can be 

deployed on a single host computer. To further explore the benefits of parallelism, we 

assessed an algorithm that semi-automatically segments the liver region from 3-D CT 

scans. The computational burden imposed by such a task is what originally led to this 
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investigation. The algorithm can calculate the volume of the extracted liver region and 

also render the segmented liver in 3-D view.  

This chapter discusses the processing time required to complete such tasks and the gains 

that were obtained by utilizing MatLab-based parallel computing. 

5.2. Aims for development of the parallel computing infrastructure 

The current literature lacks the necessary detail for assessing the heavy computational 

requirements of medical applications that require multidimensional analysis. 

Furthermore, there is a need for comparative studies for evaluating system performance 

as a function of the number of workers available in the MatLab environment under 

different configurations. Another contribution is also to facilitate an environment to 

design and create a test bed to determine the metrics for effective parallelism as a 

function of the operating system and hardware configuration used. 

5.3. Setup of the parallel computing platform 

To evaluate the merits of parallelism under different configurations, three sets of 

experiments are conducted, with the intent to:  

1. Evaluate benchmarking operations to measure performance improvements.  

2. Perform platform comparisons between three different operating systems: 

Windows Vista, Linux Kubuntu version 9.04, and Mac OS version 10.5.  

3. Assess the computational gains that were accomplished while performing 3-D 

liver segmentation followed by 3-D liver reconstruction.  
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First set of experiments: the built-in (2-D) FFT was used with MatLab R2009 for 

computing the fast Fourier transform of a given image. The MatLab script developed for 

this investigation contrasts the computation of the FFT in a single process and in parallel. 

The time required for the computation in both processes is assessed. The expected 

improvement in the computational time is referred here as the ‘speed up’ of the process, 

and is computed using Eq. 16 given below: 

=	 /      (16) 

C1 and Cn denote the computational time required to complete the given image 

processing task using a single worker and n workers, respectively. 

Second set of experiments: Further more benchmarking experiments were conducted to 

show the dependence between the speed up factor and a series of variables, which include 

the number of operational workers, the number of images being processed, the size of the 

images, and the operating system used. The objective is to identify optimal parameter 

settings which can later be applied to optimize the time-to-solution process to problems 

involving multidimensional processing.  

Third set of experiments: These experiments involved performing liver segmentation 

from CT images. Beyond the heavy computational requirement it demands, liver 

segmentation based on CT images is in itself considered a challenging task due to the 

presence of similar intensity objects in the abdomen with no clear delineation or 

boundary between them and the liver. 
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Two hardware platform configurations under system 1 and system 2 were used to 

perform benchmark experiments using FFT transform. 

1. The configuration of system 1 made use of an HP DC6700 built around an Intel 

Core 2 Quad Processor operating at 2.67 GHz with 8 GB RAM. This system was 

used for comparing the performance of the parallelization process among the 

Windows and the Linux platforms.  

2. The configuration of system 2 made use instead of a MacPro computer with two 

Intel Quad Core Xeon Processors operating at 2.26 GHz with 8.00 RAM. System 

2 was necessary to compare the performance between the Windows Vista and the 

Mac OS-X platforms.  

For these configurations, it is important to note that on one hand, by using different 

hardware configurations with the same operating systems, namely Windows Vista, we 

can observe the impact of the hardware on the performance of the parallelization process; 

and on the other hand by using different operating system on the same platform we can 

assess the effect of the operating system on the performance of the given application.  

The steps followed for the setup of the experiments were: (1) Define a job manager, 

through the MDCE service; (2) Create a job and respective tasks as a request of the client 

host via MatLab script; (3) Submit job to job queue for execution; (4) Assess job results; 

and (5) Record timing 

The three aforementioned sets of experiments were conducted using the following steps: 

1. Benchmarking using the FFT on images with resolution of 1024x1024 pixels 

by using 1, 2, 4 and 8 workers. Each process was replicated 3 times and the 
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average computational time was recorded. These experiments were carried 

out on both systems.  

2. Platform performance comparisons between three different operating 

systems, which are Windows Vista, Linux Kubuntu version 9.04, and Mac 

OS version 10.5. This experiment was carried out in 3 stages: (i) Perform the 

FFT on an image changing the number of workers under a fixed operating 

system; (ii) Perform the FFT changing both the number of workers and the 

work load by increasing the number of images from 10 to 10,000; and (iii) 

Perform the FFT changing both the number of workers and the work load by 

increasing the image resolution from 128x128 to 1024x1024, with number of 

images fixed to 1000.  

3. Parallel liver segmentation process is performed on CT images of size 

512x512 pixels while assuming different variables. Each dataset is processed 

using an in-house developed algorithm for segmenting the liver from 

abdominal CT images. The steps of the segmentation process for both 

sequential and parallel approaches are provided in Figure 5.1 and Figure 5.2 

for Ver1.0/Ver. 2.0 and Ver. 3.0, respectively 

Figure 5.1 which shows the parallel processing approach for Ver. 1.0 and Ver. 2.0 shows 

that the K-means segmentation and the localized contouring steps are parallelized.  Figure 

5.2 shows the parallel processing approach for Ver. 3.0 which shows that in addition to the 

K-means and localized contouring step, the contour initialization process is also 
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parallelized. Since Ver. 1.0 and Ver. 2.0 of the algorithm did not have an extensive 

contour initialization it was not incorporated in the parallelization. 

Note that the number of slices processed at any given time depends on the number of 

workers selected for the parallel processing task. In this experiment all the datasets are 

processed using 1, 2, 4 or 8 workers to estimate each time the computational gains 

achieved using parallel computing.  

The results were examined using analysis of variance (ANOVA) to identify the 

significance of each of the variables considered, including operating system, number of 

workers, number of images, and image size. 

 

Figure 5.1: Parallel processing approach for the Ver1.0/Ver. 2.0 algorithm. The serial 
approach is outlined in the yellow box. 
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Figure 5.2: Parallel processing approach for the Ver. 3.0 algorithm. The serial approach 
is outlined in the yellow box.  
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5.4. Parallel Computing Results 

The parallel computing results are presented in context to (1) benchmarking using the 

FFT based process, (2) platform comparison results between the different operating 

systems, and (3) liver segmentation process for the twenty different clinical datasets 

available.  

5.4.1. Benchmarking with FFT based process 

For the benchmarking process three different experiments were run. The first set of 

experiments computed the time required for the processing of a thousand images with 

resolution of 1024x1024 pixels. The process was carried out with a single worker as a 

reference and later was repeated for 2, 4 and 8 workers running in parallel. Each of these 

experiments was run on both Windows based systems, with the process repeated 3 times 

in order to provide statistical measures. Figure 5.3 shows the computational time required 

for processing the images as a function of the number of workers for system 1. It was 

observed that the computational time is reduced from 415 to 245 seconds as the number 

of workers was increased from 1 to 8.  

The results for the speed up vs. the number of workers for system 1 are shown in Figure 

5.4. The speed up experiment had for reference the performance obtained while using a 

single worker. For experiment 1, system 1 had a speed up of 1.69 as a result of going 

from 1 to 8 workers. The results obtained in this set of experiments suggest a form of 

saturation after using more than 4 processors. As a consequence of this, no significant 

improvement in the speed up with increased number of workers was obtained.  
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On running similar experiments on system 2 as shown in Figure 5.5, we observe that the 

computational time was reduced from 406 to 75 seconds as the numbers of workers was 

increased from 1 to 8. In this case, a speed up from 3.25 with 4 workers, up to 5.37 with 8 

workers was achieved. Note that the saturation effect observed in configuration 1 (Figure 

5.4) is not present in configuration 2 as can be seen from Figure 5.6. Configuration 2 

displays an almost linear trend in the speed up with the increase in the number of 

workers.  

 

 

Figure 5.3: Computation Time vs. Number of Workers for processing 1000 images on 
System 1 
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Figure 5.4: Speed up vs. Number of Workers for System 1 

 

 

Figure 5.5: Computation Time vs. Number of Workers for processing 1000 images on 
System 2. 
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Figure 5.6: Speed up vs. Number of Workers for System 2 

 

In the next set of experiments the performance of MatLab based parallelization is 

examined under the conditions of increased work load. In order to determine how both 

the computational time and speed up were affected with the increased number of images, 

experiments were conducted where the numbers of images were increased from 10 to 

10,000. Figure 5.7 and Figure 5.8 display the results for system 1, while Figure 5.9 and 

Figure 5.10 display the counterpart results for system 2. 

In configuration 1, the computational time was reduced significantly as the number of 

workers is increased from 1 to 4. However, a further increase to 8 workers did not 

improve the performance. Also, as can be seen from Figure 5.8, there is no improvement 

in the speed up when more than 100 images are used. We do observe however a rise in 

the speed up when the number of images are increased from 10 to 100, although for more 

than 100 images a plateau effect is experienced. For configuration 2, we observe the same 
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kind of behavior as in configuration 1 in reference to the number of images being 

processed. This suggests that the outcome in the number of images used is independent of 

the system in use 

 
Figure 5.7: Computational Time vs. Number of Images for system 1 

 

 
Figure 5.8: Speed up vs. Number of Images for system 1 
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Figure 5.9: Computational Time vs. Number of Images for system 2 

 

 

Figure 5.10: Speed up vs. Number of Images for system 2 
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The third set of experiments addressed the outcome of the parallel computing process as a 

function of the image size. For the experiments with 1000 images, different image sizes 

ranging from 128x128 to 1024x1024 were used, and the computational time required to 

perform the FFT of the images was recorded. The results of the experiment are shown in 

Figure 5.11 through Figure 5.14. Results in Figure 5.11 and Figure 5.12 were obtained 

using system 1, while results in Figure 5.13 and Figure 5.14 were obtained using system 

2. 

The computational time is seen to increase exponentially with the increase in size of the 

image. Also we did not observe a great improvement in the performance as the numbers 

of workers were increased from 4 to 8 as we had seen consistently for configuration 1.  

Observe the fact that the best speed up is obtained for the image size of 256x256 which 

shows up as a hump in Figure 5.12. This phenomenon cannot be explained. 

For system 2, the computational time increased exponentially with the image size as seen 

in Figure 5.11. However, the hump in Figure 5.12 which was seen with system 1 is not 

present for system 2. Also, the speed up for the system 2 was shown to be proportional to 

the increase in image size. 
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Figure 5.11: Computational Time vs. Size of Image for system 1 

 

 

Figure 5.12: Speed up vs. Size of Image for system 1 
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Figure 5.13: Computational Time vs. Size of Image for system 2 

 

 

Figure 5.14: Computational Time vs. Size of Image for system 2 
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5.4.2. Platform Comparison 

A system platform performance evaluation was carried out while varying the number of 

workers, the number of images, and the size of the images processed. Figure 5.15 through 

Figure 5.20 show the comparison of the performance of the parallelization process on 

Windows and Linux platforms, whereas Figure 5.21 through Figure 5.26 display the 

performance comparison of  Windows and Mac OS-X platforms. In the graphs, results 

using Windows are displayed in solid lines, while the results using the Linux and Mac 

OS-X platforms are displayed in dotted lines.  

\  

Figure 5.15: Computational Time vs. Number of Workers: A Comparison of Windows 
and Linux platforms conducted on System 1 

 

In Figure 5.15 and Figure 5.16 it is noted that both operating systems (Windows and 

Linux) behave similarly with respect to increasing the number of workers. The 

performances in both systems show saturation with no significant gains achieved on 
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increasing the numbers of workers from 4 to 8. Although the Linux-based results do 

show an improvement as seen in Figure 5.16, however it is not significant. 

 

 
Figure 5.16: Speed up vs. Number of Workers: A Comparison of Windows and Linux 

platforms conducted on System 1. 

 

Figure 5.17 and Figure 5.18 depict the performance reached in system 1 on using 

different numbers of workers (n) on Linux and Windows operating systems, respectively. 

The computational time with respect to the number of images shows that both systems 

perform equally well. However, in Figure 5.18 an interesting finding is that MatLab 

performs better for larger number of images on Linux, but performs worse for small 

number of images on the Windows system. Note that for 10 images the Linux based 

system performs poorly, but for more than 100 images it shows an improved performance 

that is actually better than the Windows-based system. Also, speed up for both Windows-
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based and Linux-based systems present similar trends. With a small number of images, 

the speed up increases almost linearly with the numbers of workers, and when the 

number of images exceeds 100, the speed up ratio reaches a plateau.  

This platform comparison was also carried out with images of different sizes. The 

results for the computational time and the speed up are displayed in Figure 5.19 and 

Figure 5.20, respectively. In response to varying image size, both the Windows and the 

Linux platforms show comparable performances with no clear distinction between them. 

Both Windows and Linux platforms show an unexplainable hump at image size of 

256x256, which was seen for system 1 earlier. 

 

Figure 5.17: Computational Time vs. Number of Images: A Comparison of Windows 
and Linux platforms conducted on System 1 
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Figure 5.18: Speed up vs. Number of Images: A Comparison of Windows and Linux 
platforms conducted on System 1 

 

 

 

 

Figure 5.19: Speed up vs. Size of Images: A Comparison of Windows and Linux 
platforms conducted on System 1. 
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The computational time achieved by the Windows platform were lower than those 

obtained by the Mac OS-X platform by a factor of 2 as shown in Figure 5.21. Though the 

Windows platform yielded half the computational speed as compared to the Mac OS-X, 

the speed up as we go from a single worker to 8 workers is better for the Mac. Thus, 

although the Mac OS-X platform displays a better performance on the speed up, as 

shown in Figure 5.22, the Windows platform exhibits a much faster performance, as 

shown in Figure 5.21.  

 

 

Figure 5.20: Computational Time vs. Size of Images: A Comparison of Windows and 
Linux platforms conducted on System 1. 
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Figure 5.21: Computational Time vs. Number of Workers: A Comparison of Windows 
and Mac OS-X platforms conducted on System 2 

 

 

Figure 5.22: Speed up vs. Number of Workers: A Comparison of Windows and Mac 
OS-X platforms conducted on System 2 
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In terms of the different number of images used as illustrated in Figure 5.23, the results 

show that the computational time when using the Windows platform was half that of the 

Mac platform for any number of images when using the same number of workers. Note 

that the performance that was obtained using 2 workers on the Mac platform was 

obtained with only 1 worker on the windows platform. Once again, Mac OS-X exhibited 

higher speed up upon increasing the computing resources and the load, as shown in 

Figure 5.24. 

Figure 5.23 displays a significant rise in the computational time as the size of the image 

was increased. We again observed the trend that the Mac platform took twice as long to 

finish a task as compared to the Windows platform with the same number of workers. 

Results shown in Figure 5.26 indicate that the Mac platform shows better speed up as 

compared to the Windows platform for larger image sizes. 

 

Figure 5.23: Computational Time vs. Number of Images: A Comparison of Windows 
and Mac OS-X platforms conducted on System 2 
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Figure 5.24: Speed up vs. Number of Images: A Comparison of Windows and Mac OS-
X platforms conducted on System 2 

 

Figure 5.25: Computational Time vs. Size of Images: A Comparison of Windows and 
Mac OS-X platforms conducted on System 2 
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Figure 5.26: Speed up vs. Size of Images: A Comparison of Windows and Mac OS-X 
platforms conducted on System 2 

 

5.4.3 Specific Application: Liver Segmentation 

This section presents the results of the liver segmentation process implemented on system 

2 with Windows Vista platform. Due to the computational demands of this algorithm and 

based on the performance obtained from the previous results, we concluded that it was 

unnecessary to perform this experiment on system 1 for both Windows and Linux 

platforms and on system 2 for Mac-OS-X. Taking into account the performance of the 

parallel computing algorithm with different variables, the segmentation was performed 

on images of size of 512x512. The number of slices for the 20 clinical datasets ranged 

from 132 to 377 as indicated in Chapter 1.  
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Table 5.1 presents the results of parallelizing Ver. 1.0 of the liver segmentation algorithm 

as described in section 5.3.  The table shows the time required to segment the dataset 

using the serial approach using 1 worker as compared to the parallel approach using 8 

workers.  The table shows the time required to segment the entire liver dataset as well as 

a single slice of the dataset.  It is seen that the highest processing time using the serial 

approach was around 257 min which was reduced to 51 min using the parallel processing 

approach with 8 workers. 

Figure 5.27 shows the average computational time for the twenty datasets as a function of 

the number of workers using the Ver. 1.0 algorithm. It is seen from the graph that the 

computational time does not reduce linearly as the number of workers is increased. 

 

Figure 5.27: Average computational time for the segmentation of a single slice of the 
datasets as a function of the Number of workers employed for Ver. 1.0 algorithm.  The 

Error bars show the standard deviation across the 20 datasets. 
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Table 5.1: Computational Time for Ver. 1.0 Algorithm 

NO 

Number of 
slices 

Containing 
Liver 

Average time taken to 
segment entire dataset (min) 

Average time taken to 
segment 1 slice (sec) 

Serial 
Approach 

Parallel 
Approach with 8 

workers/cores 
Serial 

Approach 

Parallel 
Approach with 
8 workers/cores

1 163 147.01 29.23 54.11 10.76 

2 377 257.51 51.75 40.98 8.24 

3 208 169.16 33.42 48.80 9.64 

4 295 206.64 41.27 42.03 8.39 

5 247 183.45 36.91 44.56 8.97 

6 189 158.60 31.17 50.35 9.90 

7 194 162.61 32.04 50.29 9.91 

8 192 161.94 32.32 50.61 10.10 

9 168 154.07 30.66 55.03 10.95 

10 169 154.21 30.73 54.75 10.91 

11 170 152.87 30.94 53.95 10.92 

12 364 252.47 50.90 41.62 8.39 

13 132 111.51 22.33 50.69 10.15 

14 365 252.81 51.11 41.56 8.40 

15 189 159.06 31.38 50.50 9.96 

16 176 157.23 31.83 53.60 10.85 

17 230 177.64 35.92 46.34 9.37 

18 324 225.68 45.74 41.79 8.47 

19 251 186.20 37.65 44.51 9.00 

20 356 247.47 49.62 41.71 8.36 

Average 237.95 183.91 36.85 47.89 9.58 

Std Dev 79.79 42.10 8.61 5.14 1.00 
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Figure 5.28 shows the average speed up of the twenty datasets as a function of the 

number of workers engaged using Ver. 1.0 algorithm. It is seen from Figure 5.28 that the 

increase in speed up is fairly linear as the number of workers is increased. However, the 

maximum speed up obtained with 8 workers is around 5.  The ideal case speed up with 8 

workers must be around 8 since 8 slices are processed at a time but this is not seen in the 

experimental results due to loss in overhead due to storing, parsing and sequencing of the 

data. 

 

Figure 5.28: Average speed up for the segmentation of the datasets as a function of the 
Number of workers employed for Ver. 1.0 algorithm.  The Error bars show the standard 

deviation across the 20 datasets 

 

Table 5.2 shows the computational time for the 20 datasets using the serial and parallel 

approaches for the Ver. 2.0 algorithm.  Figure 5.29 and Figure 5.30 show the average 

computational time and the average speed up as a function of the number of workers for 
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the Ver. 2.0 algorithm.  The Ver. 2.0 results show a similar trend as that of Ver. 1.0 

algorithm. 

 
Table 5.2: Computational Time for Ver. 2.0 Algorithm 

Dataset 
No 

Number 
of slices 

Containing 
Liver 

Average time taken to 
segment entire dataset (min) 

Average time taken to 
segment 1 slice (sec) 

Serial 
Approach 

Parallel 
Approach with 
8 workers/cores 

Serial 
Approach 

Parallel 
Approach 

with 8 
workers/cores

1 163 147.01 29.23 54.11 10.76 

2 377 257.51 51.75 40.98 8.24 

3 208 169.16 33.42 48.80 9.64 

4 295 206.64 41.27 42.03 8.39 

5 247 183.45 36.91 44.56 8.97 

6 189 158.60 31.17 50.35 9.90 

7 194 162.61 32.04 50.29 9.91 

8 192 161.94 32.32 50.61 10.10 

9 168 154.07 30.66 55.03 10.95 

10 169 154.21 30.73 54.75 10.91 

11 170 152.87 30.94 53.95 10.92 

12 364 252.47 50.90 41.62 8.39 

13 132 111.51 22.33 50.69 10.15 

14 365 252.81 51.11 41.56 8.40 

15 189 159.06 31.38 50.50 9.96 

16 176 157.23 31.83 53.60 10.85 

17 230 177.64 35.92 46.34 9.37 

18 324 225.68 45.74 41.79 8.47 

19 251 186.20 37.65 44.51 9.00 

20 356 247.47 49.62 41.71 8.36 

Average 237.95 183.91 36.85 47.89 9.58 

Std Dev 79.79 42.10 8.61 5.14 1.00 
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Figure 5.29: Average computational time for segmentation of a single slice of the 
datasets as a function of the Number of workers employed for Ver. 2.0 algorithm.  The 

Error bars show the standard deviation across the 20 datasets 
 

 

Figure 5.30: Average speed up for segmentation of the datasets as a function of the 
Number of workers employed for Ver. 2.0 algorithm.  The Error bars show the standard 

deviation across the 20 datasets. 

0

10

20

30

40

50

60

0 1 2 3 4 5 6 7 8 9

Ti
m

e 
(s

ec
)

Number of Workers

Average time to segment one slice (Ver 2.0)

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9

Sp
ee

d 
U

p

Number of Workers/Cores

Speed Up vs Number of workers



103 
 

Table 5.3 provides the computational time for the segmentation process using the Ver. 3.0 

algorithm.  Figure 5.31 and Figure 5.32 demonstrate similar graphs as seen in Figure 5.29 

and Figure 5.30 for the Ver. 3.0 algorithm, respectively.  Although, a similar trend is seen 

for the Ver. 3.0 algorithm, with a non-linear decrease in computational time and a linear 

increase in speed up with increasing number of workers, the computational time for the 

Ver. 3.0 algorithm are higher than that seen for the Ver. 1.0 or the Ver. 2.0 algorithms by 

about 5 min for segmenting the entire dataset.  This is attributed to the extra time spent in 

the generation of the automated initial contours from the single initialized slice. 

 

Figure 5.31: Average computational time for segmentation of a single slice of the 
datasets as a function of the Number of workers employed for Ver. 3.0 algorithm.  The 

Error bars show the standard deviation across the 20 datasets. 
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Table 5.3: Computational Time for Ver. 3.0 Algorithm 

NO 

Number 
of slices 

Containing 
Liver 

Average time taken to 
segment entire dataset (min) 

Average time taken to 
segment 1 slice (sec) 

Serial 
Approach 

Parallel 
Approach with 
8 workers/cores 

Serial 
Approach 

Parallel 
Approach 

with 8 
workers/cores

1 163 171.26 35.32 63.04 13.00 

2 377 280.28 55.58 44.61 8.85 

3 208 192.68 38.64 55.58 11.15 

4 295 230.74 47.16 46.93 9.59 

5 247 208.12 42.13 50.56 10.23 

6 189 183.48 38.41 58.25 12.19 

7 194 186.25 35.70 57.60 11.04 

8 192 184.36 36.99 57.61 11.56 

9 168 176.52 36.54 63.04 13.05 

10 169 176.98 35.30 62.83 12.53 

11 170 177.39 36.34 62.61 12.83 

12 364 275.23 53.71 45.37 8.85 

13 132 135.95 27.95 61.80 12.70 

14 365 275.54 53.37 45.29 8.77 

15 189 183.85 38.39 58.37 12.19 

16 176 180.28 34.46 61.46 11.75 

17 230 200.23 38.81 52.23 10.13 

18 324 248.43 50.19 46.01 9.29 

19 251 210.05 42.30 50.21 10.11 

20 356 270.89 55.49 45.66 9.35 

Average 237.95 207.43 41.64 54.45 10.96 

Std Dev 79.79 41.75 8.08 7.05 1.53 
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Figure 5.32: Average speed up for segmentation of the datasets as a function of the 
Number of workers employed for Ver. 3.0 algorithm.  The Error bars show the standard 

deviation across the 20 datasets. 

 

Figure 5.33 provides the computational time as a function of the number of slices in the 

dataset for the Ver. 3.0 algorithm.  Figure 5.33 demonstrates that a linear relationship is 

observed between the number of slices in the dataset and the time required to segment the 

entire dataset.  This is attributed to the fact that the designed algorithms proceed in a 

slice-by-slice manner.  Such a trend can also be observed for Ver. 1.0 and Ver. 2.0 

algorithms since these algorithms also operate in a slice-by-slice manner. 
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Figure 5.33: Time required for segmenting the entire dataset as a function of the 
number of slices in the dataset for both the serial and parallel approaches using Ver. 3.0 

algorithm 
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CHAPTER VI 

RESULTS 

This Chapter is divided into 4 main sections.  The first section demonstrates the accuracy 

of the results obtained in estimating the volumes obtained by the proposed segmentation 

for the 20 liver datasets to the manually obtained volumes. The second section illustrates 

the comparative results and statistical analysis carried out to determine both consistency 

in the results and user independence. The third section of the results shows the 

improvement of the computational time due to the deployment of the parallel computing 

process. The final section demonstrates the results obtained for the tumor and blood 

vessel segmentation algorithms.  The tumor segmentation algorithm is validated by 

comparing the obtained volumes with that of a manual expert. The blood vessel 

segmentation are qualitative in nature since quantitative validation of such results was not 

possible. 

6.1. Accuracy Analysis of the liver segmentation approach 

Twenty datasets are used for testing the segmentation algorithm. The characteristics of 

the datasets used are given in Chapter 2. In order to validate the segmentation results 

obtained by the algorithm, the volumes of the extracted livers were compared to manually 

calculated volumes. The manual calculation was done by an expert and is treated as the 

gold standard for the comparison which is routinely the suggested method (Heimann et 

al., 2009).  

6.1.1. Results for Liver Segmentation algorithm Ver. 1.0  

Table 6.1 provides the results of the comparison of the volumes obtained by Ver. 1.0 of 
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the algorithm to the manual volumes obtained by the segmentation carried out by the 

expert. The average calculated volumes are obtained by calculating the mean of the 

volumes obtained on performing the results three times. The absolute error is calculated 

as the absolute difference between the manual and average calculated volume and the 

percent error is the relative error in the volume calculation expressed in terms of per 100.  

A positive percent error denotes a calculated volume higher than the true volume and a 

negative percent error denotes an underestimation. 

Table 6.1: Comparative results between the proposed algorithm and manual gold 
standard for Ver. 1.0 algorithm 

No 
Manual 

Segmentation 
Volumes (ml) 

Average 
Calculated 

Volumes (ml) 

Absolute 
Error (ml) 

% Error

1 1458.80 1418.74 40.06 -2.75 
2 4079.50 4099.82 20.33 0.50 
3 2419.18 2380.61 38.57 -1.59 
4 1848.73 1876.78 28.05 1.52 
5 1630.59 1624.38 6.21 -0.38 
6 1568.82 1422.10 146.72 -9.35 
7 1408.27 1336.97 71.30 -5.06 
8 1331.81 1300.74 31.07 -2.33 
9 2595.61 2647.43 51.83 2.00 
10 2651.20 2693.55 42.36 1.60 
11 1631.40 1663.90 32.50 1.99 
12 2892.98 2600.33 292.65 -10.12 
13 1904.25 1954.37 50.12 2.63 
14 2704.79 2737.25 32.46 1.20 
15 1602.26 1504.40 97.86 -6.11 
16 1565.97 1672.89 106.92 6.83 
17 2408.85 2372.54 36.31 -1.51 
18 5336.28 5112.33 223.96 -4.20 
19 1102.16 1144.50 42.33 3.84 
20 2363.25 2411.08 47.83 2.02 

Average 2225.24 2198.74 71.97 -1.6 
Std Dev 1018.79 987.26 72.41 4.0 
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Figure 6.1 provides illustrative examples of the segmentation results for 4 different 

datasets.  The results are displayed in the CT window of [-40 180] since it best displays 

the features in the abdominal slices.  The figure shows results of the segmentation (shown 

in brown color) overlaid on the sparsely spaced CT slices of the datasets.  The results are 

displayed to demonstrate the effectiveness of the algorithm in extracting the liver from 

surrounding organs. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
Figure 6.1: Illustrative examples of segmentation results for 4 datasets. (a) Subject 19 (b) 

Subject 2 (c) Subject 15 (d) Subject 20 using the Ver. 1.0 of the liver segmentation 
algorithm 
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6.1.2 Results for Liver Segmentation algorithm Ver. 2.0 

Table 6.2 provides comparative results for Ver. 2.0 of the liver segmentation algorithm.  

The table provides the volumes calculated as the mean of three different runs as well as 

the absolute and percent error in the determination of the volume of the liver.  

 

Table 6.2: Comparative results: proposed algorithm Ver. 2.0 vs. manual gold standard 

No 
Manual 

Segmentation 
Volumes (ml) 

Average 
Calculated 

Volumes (ml) 

Absolute Error 
(ml) 

% Error 

1 1458.80 1395.55 63.25 -4.34 

2 4079.50 4166.64 87.15 2.14 

3 2419.18 2358.41 60.76 -2.51 

4 1848.73 1843.13 5.60 -0.30 

5 1630.59 1647.81 17.22 1.06 

6 1568.82 1441.58 127.23 -8.11 

7 1408.27 1341.06 67.20 -4.77 

8 1331.81 1300.14 31.67 -2.38 

9 2595.61 2577.37 18.24 -0.70 

10 2651.20 2675.14 23.94 0.90 

11 1631.40 1670.49 39.08 2.40 

12 2892.98 2500.54 392.44 -13.57 

13 1904.25 1939.50 35.26 1.85 

14 2704.79 2827.38 122.59 4.53 

15 1602.26 1546.04 56.22 -3.51 

16 1565.97 1459.55 106.41 -6.80 

17 2408.85 2326.45 82.41 -3.42 

18 5336.28 5133.38 202.90 -3.80 

19 1102.16 1095.41 6.76 -0.61 

20 2363.25 2410.67 47.42 2.01 

Average 2225.24 2182.81 79.69 -1.32 

Std Dev 1018.79 1003.95 88.19 4.0 
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Again, as different illustrative purposes, Figure 6.2 shows the liver segmentation results 

obtained for 4 other datasets to demonstrate the results of the Ver. 2.0 algorithm.  

 

 
(a) 

 
(b) 

 
  (c) 

 
(d) 

Figure 6.2: Illustrative examples of segmentation results for 4 datasets. (a) Subject 1 (b) 
Subject 19 (c) Subject 7 (d) Subject 16 using the Ver. 2.0 of the liver segmentation 

algorithm 
 

6.1.3. Results for Liver Segmentation algorithm Ver. 3.0  

Comparative results of volumes obtained by the liver segmentation algorithm Ver. 3.0 

and the manually calculated volumes are provided in Table 6.3.  
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Table 6.3: Comparative results: proposed algorithm Ver. 3.0 vs. manual gold standard 

No 
Manual 

Segmentation 
Volumes (ml) 

Average 
Calculated 

Volumes (ml) 

Absolute Error 
(ml) 

% Error 

1 1458.80 1426.00 32.80 -2.25 

2 4079.50 4180.67 101.17 2.48 

3 2419.18 2402.00 17.18 -0.71 

4 1848.73 1855.33 6.60 0.36 

5 1630.59 1649.33 18.74 1.15 

6 1568.82 1448.67 120.15 -7.66 

7 1408.27 1358.67 49.60 -3.52 

8 1331.81 1318.00 13.81 -1.04 

9 2595.61 2637.33 41.72 1.61 

10 2651.20 2709.67 58.47 2.21 

11 1631.40 1703.33 71.93 4.41 

12 2892.98 2626.67 266.31 -9.21 

13 1904.25 1966.00 61.75 3.24 

14 2704.79 2832.67 127.87 4.73 

15 1602.26 1545.67 56.59 -3.53 

16 1565.97 1491.67 74.30 -4.74 

17 2408.85 2376.00 32.85 -1.36 

18 5336.28 5180.33 155.95 -2.92 

19 1102.16 1139.33 37.17 3.37 

20 2363.25 2466.00 102.75 4.35 

Average 2225.24 2215.67 72.39 3.24 

Std Dev 1018.79 1010.58 61.46 2.23 
 

In the same fashion as in previous versions of the algorithm, Figure 6.3 shows the 

segmentation results obtained for 4 other different datasets. Subject 19 is maintained in 

all 3 versions as a case for comparison for the different versions of the algorithm. The 

point that can be made here for all three versions of the algorithm is that there is great 
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variation in the intensity, structure, and position of the liver from dataset to dataset. 

Moreover, some of the datasets may reveal the presence of tumors. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6.3: Illustrative examples of segmentation results for 4 datasets. (a) Subject 19 
(b) Subject 8 (c) Subject 12 (d) Subject 18 using the Ver. 3.0 of the liver segmentation 

algorithm 
 

6.1.4. 3-D Rendering of the Segmented Livers  

Results of the 3D rendering process obtained from the ScanIP software are shown in 

Figure 6.4 for the different datasets. The 3D rendering displayed in Figure 6.4 are for 4 

different datasets used in the study for illustrative purposes. 
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(a)     (b) 

 

(c)     (d) 

Figure 6.4: Illustrative examples of 3D renderings for 4 datasets (a) Subject 19 (b) 
Subject 8 (c) Subject 12 (d) Subject 18. The 3-D rendering shown are obtained using 
algorithm Ver 3.0. Similar 3-D rendering can be generated for Ver 1.0 and Ver 2.0 

algorithms also. 
 

The renderings shown here have solid surfaces and a mesh finish. However, translucent 

surfaces can be generated with varying opacities and colors if needed.  The need to 

generate translucent surfaces would be useful to demonstrate the presence of a tumor 

inside the liver or to display the vasculature of the liver.  As demonstrated later in the 

chapter the 3-D rendering can be displayed along with tumors and blood vessel to obtain 

a complete idea of the extent and location of the disease. 
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6.2. Comparative and Statistical Analysis 

6.2.1. Comparative Analysis 

Table 6.4 displays the comparison between some of the current techniques found in the 

literature and the proposed technique in terms of the accuracy of the segmentation 

process and the computational aspects of the proposed algorithm. For the comparison of 

accuracy, the average volume difference between the calculated and the manual volumes 

is presented along with the standard deviation for the particular study.   

Table 6.4: Comparison of proposed algorithm with other algorithms found in literature 

# 
Method 

Interaction 
Level 

Volume 
Difference 
(% Error) 

Processing 
Time per 
slice (sec) 

1 Beck and Aurich(Beck and Aurich, 2007) high 1.8±2.5 3.00 

2 Beichel et al.(Beichel et al., 2007) high 1.0±1.7 15.43 

3 Chi et al.(Chi et al., 2007) none 2.6±6.3 14.57 

4 Dawant et al.(Dawant et al., 2007) medium 2.5±2.3 8.57 

5 Furukawa et al.(Furukawa et al., 2007) none -7.3±4.7 15.43 

6 
Heimann et al.(Heimann and Meinzer, 

2009) 
none 1.7±3.2 3.00 

7 Kainmuller et al.(Kainmüller et al., 2007) none -2.9±2.9 6.43 

8 Lee et al.(Lee et al., 2007) low 1.3±2.9 3.00 

9 Rusko et al.(Ruskó et al., 2007) none -3.8±6.4 0.21 

10 Saddi et al.(Saddi et al., 2007) none 1.2±4.4 2.36 

11 Schmidt et al.(Schmidt et al., 2007) none -4.9±3.0 8.57 

12 Seghers et al.(Seghers et al., 2007) none -6.8±2.3 12.86 

13 Susomboon et al.(Susomboon et al., 2007) none -11.5±30 10.71 

14 Algorithm Ver. 1.0 (Goryawala et al., 2011) high -1.6±4.0 7.30 

15 Algorithm Ver.2.0 medium 
-1.32 ± 

4.0 
7.50 

16 Algorithm Ver. 3.0 low 3.24±2.23 10.96 
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Table 6.4 compares the average computational time required to segment a single slice of 

the dataset obtained for the proposed study to various studies found in the literature. Such 

a comparison is essential since different algorithms use datasets with different number of 

slices for the analysis which determines the time needed for processing the entire dataset.  

The table also provides the interaction level of each algorithm where an interaction of 

less than 1 min is considered ‘low’, 1 to 5 min is considered ‘medium’ and greater than 5 

min is considered ‘high’. An interaction level of ‘none’ is displayed for automatic 

algorithms which are usually based on learning techniques and generally provide a lesser 

accuracy than interactive methods. The proposed algorithm falls in the low interaction 

category since it requires less than a minute to initialize the entire process. 

Also, in order to compare the different versions of the algorithms, the percentage errors 

generated for the 20 different datasets for each version were compared using a 1-way 

ANOVA. The 1-way ANOVA analysis allows us to determine if a statistical difference is 

found in the accuracy for the three versions.  

Table 6.5 shows the percentage errors obtained by the different versions of the algorithm 

for the 20 datasets.  

The results of the 1-way ANOVA analysis are shown in Table 6.6.  The results indicate 

that the version of the algorithm used in calculating the liver volume is not a significant 

factor (p =0.96).  This suggests that the differences in the accuracy seen for the three 

versions in Table 6.4 are not statistically significant. 
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Table 6.5: Percentage volume errors for the 20 datasets for each version of the algorithm 

Dataset No. 
Percentage Error 

Ver 1.0 Ver 2.0 Ver 3.0 
1 2.75 4.34 2.25

2 0.50 2.14 2.48

3 1.59 2.51 0.71

4 1.52 0.30 0.36

5 0.38 1.06 1.15

6 9.35 8.11 7.66

7 5.06 4.77 3.52

8 2.33 2.38 1.04

9 2.00 0.70 1.61

10 1.60 0.90 2.21

11 1.99 2.40 4.41

12 10.12 13.57 9.21

13 2.63 1.85 3.24

14 1.20 4.53 4.73

15 6.11 3.51 3.53

16 6.25 6.83 4.74

17 1.51 3.42 1.36

18 4.20 3.80 2.92

19 3.84 0.61 3.37

20 2.02 2.01 4.35
 

Table 6.6: ANOVA Results for various Users 

Sum of Mean F p-value 
Source Squares df Square Value Prob > F 

Version 0.60 2 0.30 0.04 0.96 

Error 425.41 57 7.46   

Total 426.01 59    
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6.2.2. Statistical Analysis 

In order to determine if the user initialization of the segmentation has an impact on the 

segmentation results, 3 different users were asked to initialize the algorithm. 1-way 

ANOVA test was again carried out on the errors obtained after the segmentation process 

was initialized by the 3 users. The errors calculated as the percentage difference between 

the algorithm calculated volumes and the manual gold standard volumes are shown in 

Table 6.7 with the ANOVA results shown in Table 6.8. 

Table 6.7: Percentage error for various user initializations for Ver. 1.0 algorithm 

Dataset No. 
Percentage Error 

User 1 User 2 User 3 
1 2.03 1.83 8.44
2 2.35 2.01 1.15
3 7.76 0.23 3.21
4 4.42 3.50 3.63
5 2.62 1.69 2.07
6 14.74 8.06 5.26
7 3.89 4.73 6.57
8 2.27 1.80 2.93
9 2.51 3.63 4.87
10 3.51 1.38 2.66
11 0.20 6.96 1.19
12 4.12 16.23 10.00
13 2.06 2.21 8.04
14 3.46 3.47 3.61
15 5.44 6.25 6.64
16 6.89 2.00 9.87
17 3.75 2.29 1.51
18 0.29 3.99 8.32
19 5.82 6.71 1.01
20 1.83 0.90 5.14
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Table 6.8: ANOVA Results for various Users for Ver. 1.0 algorithm 

Sum of Mean F p-value 
Source Squares df Square Value Prob > F 

User 8.8 2 4.4 0.41 0.67 

Error 610.5 57 10.7   

Total 619.2 59    
 

It is seen from the ANOVA analysis that ‘Users’ is not a significant factor with a p-value 

of 0.67 (p>0.05). The results of the statistical analysis suggest the consistency of the 

segmentation algorithm in terms of the users.  

Table 6.9 through Table 6.10 provide results of a similar analysis for the Ver. 2.0 

algorithm. As was the case of Ver. 1.0 algorithm, the Ver. 2.0 algorithm also 

demonstrates independence to user initialization (p = 0.46). 

Table 6.9: Percentage error for various user initializations for Ver. 2.0 algorithm 

Dataset No. 
Percentage Error 

User 1 User 2 User 3 

1 2.09 4.22 10.87

2 2.75 4.40 4.76

3 5.20 1.89 0.45

4 3.29 5.96 1.76

5 5.30 0.78 2.90

6 8.54 11.48 4.31

7 1.94 4.14 8.24

8 5.81 1.25 2.57

9 8.61 1.38 5.12

10 2.02 1.61 3.12

11 5.90 1.33 0.05

12 9.30 16.88 14.51

13 1.69 0.35 4.22
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14 1.14 2.29 10.16 

15 3.79 0.34 7.08 

16 7.01 7.88 5.59 

17 5.89 3.01 1.35 

18 5.35 3.00 3.06 

19 4.77 1.21 5.40 

20 1.63 0.97 6.68 
 

 

Table 6.10: ANOVA Results for various Users for Ver. 2.0 algorithm 

Sum of Mean F p-value 

Source Squares df Square Value Prob > F 

User 19.8 2 9.9 0.80 0.46 

Error 708.1 57 12.4   

Total 728.0 59    

A similar analysis for Ver. 3.0 algorithm shown in Table 6.11 through Table 6.12 

demonstrate that like its predecessors the Ver. 3.0 algorithm also demonstrates 

independence to user initialization (p =0.33). 

Table 6.11: Percentage error for various user initializations for Ver. 3.0 algorithm 

Dataset No. 
Percentage Error 

User 1 User 2 User 3 

1 1.32 1.43 6.64 

2 0.99 2.88 3.57 

3 3.81 1.16 2.84 

4 2.99 4.96 3.04 

5 3.21 1.45 1.68 

6 10.89 8.34 3.75 

7 0.87 4.92 4.78 

8 1.11 0.46 2.46 

9 4.15 4.06 4.91 



121 
 

10 1.73 2.52 2.37 

11 4.27 7.02 1.94 

12 5.81 12.03 9.78 

13 0.35 0.88 8.49 

14 5.15 1.26 7.77 

15 6.01 2.01 2.58 

16 3.00 2.74 8.49 

17 1.74 2.15 0.20 

18 1.67 1.24 5.85 

19 5.25 4.98 0.11 

20 0.12 4.05 8.88 

 

Table 6.12: ANOVA Results for various Users for Ver. 3.0 algorithm 

Sum of Mean F p-value 

Source Squares df Square Value Prob > F 

User 18.01 2 9.01 1.13 0.33 

Error 455.54 57 7.99   

Total 473.56 59    

 

6.3. Tumor and blood vessel segmentation 

6.3.1. Tumor segmentation 

Tumor segmentation was performed on 13 out of the 20 datasets.  These 13 datasets are 

chosen since the manual gold standard tumor volumes calculated by an expert were only 

available for these 13 datasets. Table 6.13 provides the volumes obtained by the 

algorithm as compared to the ones provided by the physician.   
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Table 6.13: Comparative results between the proposed algorithm and manual gold 
standard for Ver. 1.0 algorithm 

No 
Manual 

Segmentation 
Volumes (ml) 

Calculated 
Volumes (ml) 

Absolute 
Error (ml) 

% Error

1 NA -   

2 NA -   

3 219 191 28 12.79 

4 130 95 35 26.92 

5 565 476 89 15.75 

6 73 58 15 20.55 

7 NA -   

8 373 252 121 32.44 

9 712 523 189 26.54 

10 195 173 22 11.28 

11 NA -   

12 381 305 76 19.95 

13 NA -   

14 225 186 39 17.33 

15 NA -   

16 188 154 34 18.09 

17 243 201 42 17.28 

18 3500 3100 400 11.43 

19 7 10 3 -42.86 

20 NA -   

Figure 6.5 shows the results of the segmentation for four different datasets showing the 

regions of the image that are demarked as the tumor.  Figure 6.5(a) – (d) shows the 

results for four different subjects. It can be seen from Figure 6.5 that the algorithm is 

capable of extracting tumors from the CT images with a good accuracy.  The algorithm 

works efficiently with both calcified and non-calcified tumors as seen Figure 6.5 (a) and 

Figure 6.5(b).  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6.5: Illustrative examples of tumor segmentation results for 4 datasets. (a) 
Subject 5 (b) Subject 6 (c) Subject 14 (d) Subject 17 

 



124 
 

However, the algorithm fails to extract the entire tumor when a calcification is seen as a 

ring around a tumor mass as can be seen in Figure 6.5(c). The reason is that the 

algorithm’s region growing step is an intensity-based step which excludes the calcified 

regions when the seed point is selected in the interior non-calcified region of the tumor.  

Such a difficulty is not seen when the tumor is entirely calcified or entirely non-calcified.  

The rejection of the calcified rings may justify the reason why the algorithm under-

estimates the tumor volumes.  

Once the tumors are segmented, ScanIP is used for the visualization of the tumors in 3-D 

with a translucent liver.  Figure 6.6 shows the 3-D rendering results for 4 datasets 

obtained using the ScanIP software.  Note that the software does not make a decision but 

just renders the segmented mask in a 3-D volume.  This gives the opportunity to visualize 

the size, extent, and location with respect to the liver.   

Figure 6.6 shows the different orientation for the 4 datasets to demonstrate the fact that 

the 3-D analysis makes is possible to better view and understand the geometry and extent 

of the disease. Also, as seen in Figure 6.6(d) it is possible to allocate different colored 

masks to each tumor for distinction and also for determination of individual volumes of 

each tumor.  
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(a) 

   

(b) 

   

(c) 

   

(d) 

Figure 6.6: Illustrative examples of tumor segmentation results for 4 datasets. (a) 
Subject 5 (b) Subject 8 (c) Subject 14 (d) Subject 17 
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6.3.2. Blood vessel segmentation 

The results for the blood vessels segmentation are shown in Figure 6.7. This is to 

demonstrate the results of the segmentation process by overlaying a red mask on the CT 

slices in locations where the algorithm determines the presence of blood vessels.  

   

Figure 6.7: Illustrative examples of blood vessels segmentation results for Subject 10 
 

It is seen from Figure 6.7, that it is hard to appreciate the findings of the blood vessel 

segmentation approach in images that shows spots and dots where the blood vessels are 

seen in the cross section axial slices.  In order to truly appreciate the finding of the 

algorithm it is required to visualize the results in a 3-D environment in context with the 

liver.  Such results are shown in Figure 6.8 for 2 different dataset in various orientations. 

It can be observed that the algorithm is capable of extracting even fine branches of the 

arterial system of the liver as well as the larger arteries.  Validation results for vessel 

segmentation are very hard to achieve since it is generally obtained through corrosion 

casts that require expensive equipment and is very tedious to obtain (Selle et al., 2002).  

Another validation technique would be presumably to segment the blood vessels 

manually from the CT slices.  This however would require a lot of time on the part of the 

expert and also would not yield very good results since blood vessels in cross sectional 
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CT slices are hard to visualize.  The validation of blood vessels is not carried out in this 

dissertation and is deemed a challenging task. 

 
(a) 

 
(b) 

 
(c) 

Figure 6.8: Illustrative examples of blood vessel segmentation results for 3 datasets. (a) 
Subject 10 (b) Subject 4 (c) Subject 17 
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On the completion of all the modules of the segmentation process, the final task is to 

combine the results obtained by the liver, tumor and blood vessel segmentation 

approaches to produce a complete 3-D object detailing all the features of the liver.  Three 

masks containing the results of the liver, tumor and blood vessel segmentation are fed to 

the software ScanIP for 3-D rendering.  The fusing of the three masks to generate the 

final 3-D object is illustrated in Figure 6.9. 

Figure 6.10 shows the results of the fused renderings of two illustrative datasets.  The 3-

D rendering are shown from different orientations to display the present tumor(s) and the 

blood vessels feeding the tumor(s).  The knowledge of the anatomy and vessel 

architecture provides the tools necessary for the surgeon for liver resection surgery 

planning, living donor liver transplants and for the determination of the insertion point in 

treatments such as SIRT.  The 3-D rendering provides an in-depth analysis aiding the 

surgeon locate all sources of blood feeding the tumor and any blood vessels which may 

not show up in 2-D angiograms due to their 3-D location.  
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Figure 6.9: Generating the 3-D fused solution containing the liver, tumor(s) and blood 
vessels for enhanced visualization 
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(a) 

 
 

   

 

(b) 

Figure 6.10: Examples of 3-D fused solution. (a) Subject 4 (b) Subject 17 
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6.4. Extending the algorithm’s extent towards other applications 

The algorithm for the liver segmentation process is modular in nature where some of the 

sections of the algorithm are capable of being executed as a standalone process.  This 

nature of the algorithm enables it to be adapted for different applications of segmentation 

other than liver segmentation for which it was designed.  This section provides two 

instances for which a part or a modified version of the algorithm has been applied for 

segmentation.  

The algorithm has been modified for use in two applications we have encountered in the 

laboratory at the Center for Advanced Technology and Education (CATE) at the Florida 

International University, Miami, Florida.  These two applications are: 

1. Thermal imaging as a biometrics approach to facial signature authentication as 

performed  by Ana Guzman, a colleague in the CATE laboratory (Guzman, 

2011; Guzman et al., 2012).  

2. Segmentation of brain from MR images for calculation of patient specific 

white and gray matter volumes (Cabrerizo et al., 2011). 

What we have demonstrated through these two different additional applications, beyond 

the merit of the generalized construct of the segmentation algorithm, is its robustness for 

segmenting other organs and vasculatures.  

In  the first application using thermal imaging, we have proven that in the case of the 

facial segmentation process where the intensity distribution of the face is fairly 

homogenous, the Yezzi energy function (Li and Yezzi, 2007) is better suited than the 
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Chan-Vese method used for the localized contouring algorithm in the liver which had a 

heterogeneous intensity distribution. Furthermore, the results show a high accuracy in 

matching facial signatures as biometric markers.  

For the second application, we have shown that an under-estimation of the white matter 

volumes may result in incorrect 3-D source localization, and where volume differences 

near 102 ml between the results of the proposed method and the BET (Brain Extraction 

Tool), which is considered the gold standard in neuroscience (Smith, 2002), can be a 

significant factor towards the determination of the seizure focus.  
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CHAPTER VII 

DISCUSSION 

This discussion centers on the four main topics that make up this dissertation. These are 

liver segmentation, parallel computing, tumor segmentation and the contextual blood 

vessel extraction with respect to the tumor location.  Understanding the merits of each of 

these topics allows us to project a potential extension of this fully integrated algorithm 

towards other biomedical applications.   

7.1. Liver Segmentation Algorithm 

Results have shown that the liver region is accurately delineated from the heart, spleen 

and other organs even as they share similar intensities. Very little leakage to the adjoining 

organs is thus seen due to the use of local properties in the contouring algorithm. This 

segmentation is independent of the structure, size, position and intensity distribution of 

the liver region, even in the presence of the challenging fact that the intensity distribution 

across the liver is not uniform.  

Furthermore, the size of the liver is vastly different from patient to patient, especially in 

the case where one patient had actually undergone an earlier resection. This makes the 

algorithm reliable when used in post-treatment follow-ups. The liver segmentation 

algorithm provides highly accurate results for livers of all sizes ranging from 1102 ml to 

5336 ml. This is an important feature for any liver segmentation approach to be applied 

for cancer study and especially SIRT since the size of the liver is greatly affected by the 

disease. Also, resection of the liver due to surgical procedures leads to smaller size and 



134 
 

atypical liver shapes. The algorithm is not affected by these situations. This makes the 

algorithm robust and applicable for use in post-treatment and follow-ups as well. 

It can also be visualized that the span of the liver is different for the datasets under 

consideration where some liver are located and confined to the right side of the body (see 

Figure 6.1(a) whereas in some cases the liver spans the entire width of the body (see 

Figure 6.3(c)). It is seen that the algorithm is capable of extracting the liver correctly with 

an accuracy of less than 10%, which is considered the clinical error threshold for critical 

applications like SIRT. This is an advantage of the segmentation algorithm over model-

based and learning-based approaches, which fail in situations where such large deviations 

from ‘normal’ structures are seen.  Also, since the algorithm does not need to be trained 

like in model-based approaches, independent analysis is reinforced and influence of one 

dataset over others is removed. Another feature evident from Figure 6.3(d) is that the 

dataset is rotated such that the patient data is obtained as if the patient was scanned feet 

first instead of head first.  It is seen that since the algorithm is not dependent on prior 

knowledge of the dataset under consideration, it did not fail under such a circumstance. 

Results displayed in Table 6.1 for the Ver. 1.0 algorithm demonstrate that the percent 

error in determining liver volume was anywhere in the range of 0.38% to 10.12% for the 

20 datasets under consideration with a mean error of only 1.6%.  Similar results for the 

Ver. 2.0 algorithm are given in Table 6.2 to demonstrate that the improvised initialization 

step and reduction in the interaction from Ver. 1.0 to Ver. 2.0 had little or no effect on the 

accuracy of the volume determination.  The results of the Ver. 3.0 algorithm shown in 

Table 6.3 do shows a slight increase in the mean error obtained by the algorithm to 
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around 3.24% but still this is well below the accepted clinical norms.  In Ver. 3.0 it is 

emphasized that the initialization process relied on a single slice, minimizing to a great 

extent human intervention in this critical initialization process. 

This fact is also evidenced from the statistical analysis performed in section 6.2.1 which 

demonstrated that the percentage error seen in determining liver volume was strongly 

independent of the version of the algorithm utilized (p = 0.96).  Accurate volume 

calculation specific to each patient’s anatomy would help in the calculation of a more 

precise dose to deliver to that patient, reducing as a consequence the risks for either 

excess dosing which may damage healthy surrounding liver tissue or under dosing with a 

potential for tumor relapsing.  

In comparison to other techniques found in the literature, an important feature to note is 

the low standard deviation attained in the volume calculation, which suggests a higher 

consistency in the results. The algorithm fairs well with respect to the computational 

burden imposed by the subtle intricacies of the algorithm itself as well as the amount of 

imaging data required to process each of the 3-D CT datasets. The algorithm as designed 

is parallel aware and can be deployed on larger computer clusters if the need arises to 

reduce significantly the processing time to seconds.  

Although the comparison process provided encouraging results, it should be noted that 

the different studies used for the comparison process used different datasets and hardware 

systems for the deployment of the algorithm. Also, in addition to the different datasets 

and hardware configurations the various algorithms listed in the comparison use different 

programming languages such as C, C++, Java, Visual Basic and MatLab. The developed 
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algorithm was performed on the available 3-D liver datasets and using a system as 

outlined in section 5.4.3. For a more meaningful comparison it would be essential to test 

the algorithm on the same datasets using the same hardware configuration preferably 

programmed with the same language. However such a comparison is difficult to achieve 

given the critical nature of the data that was available for this study.  

The statistical analysis demonstrated that the results of the segmentation were not 

dependent on user initialization (p>0.05). Such a feature is essential as different medical 

staff may be called to perform the initialization. 

Furthermore, the selection of the seed points for the K-means algorithm is an important 

feature introduced in the algorithm. The modified K-means approach as deployed in this 

study segments effectively the different regions of the CT slice around the user selected 

points which act as seeds for each of the aforementioned five masks. The selection of the 

seeds, rather than a random selection or uniform selection of points in the entire intensity 

range of the image, yielded much better segmentation results as shown in Figure 3.4 for 

any given slice. These seed points clearly differentiate the various organs of interest as 

compared to the other two methods of seed selection where the liver region is not at all 

visible. Based on empirical results, it was determined that the optimal mask would 

require a combination of the first two identified regions since in some cases the entire 

liver is not seen in mask M1 due to the inhomogeneous intensity distribution across the 

entire liver region. Combining masks M1 and M2 ensures that no part of the liver is 

missed out. 
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Although the results presented in the study demonstrated very high accuracies in liver 

volume calculation, some precautions are required in the presence of truncated datasets. 

Such truncations are evident in the 3D renderings as illustrated earlier in Figure 6.4 

where the dataset has been truncated without the entire liver being imaged.  In order to 

avoid such errors, which result in underestimation of the liver volume, it is advised to 

validate the integrity of the dataset before applying the liver segmentation algorithm. In 

situations where the entire liver is not imaged, either the imaging study must be repeated 

or the physician must be informed of such cases.  

Finally, it should be noted that although MatLab provides an excellent environment for 

research and development of algorithms, their eventual deployment for 

commercialization would likely rely on object oriented languages like C, C++ or Java.   

7.2. Parallel Computing  

The results achieved by system 1 on the first experiments led us to believe that Amdahl's 

law (Hill & Marty, 2008), which is a model for the relationship between the expected 

speedup of parallelized implementations of an algorithm relative to the serial algorithm, 

was the explanation of the results obtained in Figure 5.4. However, after running the 

same algorithm on system 2, we conclude that the effect observed was a mere resource 

saturation of the system being deployed and not an example of Amdahl’s law. 

The result of the statistical analysis of the experiment performed on system 1 is shown in 

Table 7.1.  
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Table 7.1: ANOVA Test results for experiments on System 1 

Source 
Sum of 
Squares df Mean Square F Value 

*p-value  

Prob > F 

Model 3.51E+05 7 50122.9 221.32 < 0.0001 

OS 0.079 1 0.079 3.4E-04 0.9852 

Number of Workers 12610.02 3 4203.34 18.56 < 0.0001 

Size of Image 3.38E+05 3 1.1E+05 497.85 < 0.0001 

Residual 19929.56 88 226.47 . . 

Lack of Fit 19882.18 24 828.42 1118.9 < 0.0001 

Pure Error 47.39 64 0.74 . . 

Corrected Total 3.71E+05 95  . . 

* Values of "Prob> F" less than 0.0500 indicate model terms are significant. 
* df indicates degrees of freedom. 
 

The results of the ANOVA test suggest no significance on the factors represented by the 

operating system, while there is significance on the factors represented by the number of 

workers utilized and the number of images processed. The Model F-value of 221.32 

implies that the difference in the speed up is statistically significant and not due to 

chance. There is only a 0.01% chance that a "Model F-Value" this large could occur due 

to noise.  

 
Based on these ANOVA test results, it can be concluded that there is no significant 

difference between the results obtained under Windows Vista and Linux operating 

systems. However, the difference in the processing loads, expressed as a function of the 
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size of image or the number of images being processed, is viewed as statistically 

significant.  

The results from the FFT-based benchmarking process show a speed up of around 5 when 

8 workers were employed are in agreement with the experiments carried out in system 2 

for the FFT of the images, but are different from the results achieved for the equivalent 

experiment on system 1, where a modest 70% gain was reached. A similar speed up of 

around 5 was accomplished when segmenting the liver images with 8 workers for each of 

the three algorithms as shown in section 5.4.3. This suggests that the parallelization 

process is dependent on the resources available for the hardware platform (available 

memory, number of cores in the processor) and independent of the processing employed 

(segmentation or FFT) or the type of image employed (the abdominal CT images used in 

the experiments). However, we have to be cautious in this reasoning since parallelization 

of tasks is not possible on all algorithms, so there is an individual level of parallelism that 

applies to each algorithm. In our experiments, it happens to have the same effect in 

performance execution. Also, the graph shows a fairly linear rise in the speed up with the 

number of workers, and saturation for higher number of workers did not occur for up to 8 

workers. This is an important feature since it gives us the opportunity to further increase 

the number of workers in the future.  

Also, from the comparative results between MAC and Windows operating systems one 

can observe the following relationship: 

 ( ) = 	 ( 2⁄ )     (17) 
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where n is the number of workers employed for the computational task, as defined earlier, 

and Tc is as defined earlier in Eq. 16.  This outcome is true for every experimental 

situation that was considered in this study. It is also observed that the computational 

gains from a single worker to multiple workers (shown by speed up factor in Figure 5.24) 

for the Mac OS-X system was greater than the Windows based system. 

The results of the statistical analysis of the experiment performed on system 2 are shown 

in Table 7.2. These results suggest that there is significance on the type of operating 

system used, the number of workers utilized, and the number of images processed. The 

Model F-value of 29.09 implies that the differences in the speed up are statistically 

significant. It is also noted that there is significant differences not only in terms of load 

(number of images) and computing resources available (workers) but also in terms of the 

performance of the operating system, with Windows Vista performing better than MAC-

OS 10.5. 

The time required to complete the image processing tasks after converting them to a C 

code was monitored with the expectation that it may yield a reduced processing time. The 

MatLab compiler was used for the conversion of the serial codes to their C counterparts. 

The details of these results are not included here since no significant improvement in 

computational time was obtained by this conversion process. The reason for this outcome 

is that although the generated C code is a standalone version of the MatLab code; it still 

calls MatLab routines for processing the task. Also, the high level of optimization seen in 

MatLab’s pre-defined functions such as the FFT reduces the chance of any improvement 

that could be made by developing an in-house C code. Although such improvement is 
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possible, a very high level of optimization would be required to outmatch the processing 

task obtained by using MatLab. 

Table 7.2: ANOVA Test result for experiments in system 2 

Source 
Sum of 
Squares df Mean Square F Value 

*p-value 
Prob > F 

Model 4.3E+05 7 62196.66 29.09 < 0.0001 

OS 18019.3 1 18019.3 8.43 0.0047 

Numberof Workers 79287.5 3 26429.17 12.36 < 0.0001 

Size of Image 3.3E+05 3 1.13E+05 52.7 < 0.0001 

Residual 1.8E+05 88 2138.28   

Lack of Fit 1.8E+05 24 7838.88 14008.7 < 0.0001 

Pure Error 35.81 64 0.56   

Corrected Total 6.2E+05 95    

* Values of "Prob> F" less than 0.0500 indicate model terms are significant. 
* df indicate degrees of freedom. 
 

As a note of caution, when installing the PCT/DCT in MatLab version R2008, a 

maximum of 4 local workers can be defined. However, the MatLab version R2009 allows 

defining a maximum of 8 local workers. This feature is independent of the hardware 

used, although the number of usable workers depends on the available system resources. 

In fact, the first set of experiments demonstrated that the hardware limitation establishes 

constraints in the possible speed up of the application expected. For a system with limited 

hardware resources the possible gain achieved quickly converged to a plateau. 
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In retrospect, the contribution here is in developing compute-aware algorithms before 

investing on large scale distributed system or parallel machines. An important feature 

about the proposed segmentation algorithm to be noted is that the entire parallelization is 

carried out on a single desktop computer. This feature allows the algorithm to be portable 

and adaptable in hospital settings with minimal cost and space requirements. More 

importantly, the hybrid algorithm as designed displayed extremely good accuracies in 

calculating the volumes of the different livers. 

7.3. Tumor and Blood Vessel Segmentation 

The tumor segmentation results shown in section 6.3.1 demonstrate the capability of the 

algorithm in determining the tumor volumes.  It is seen from the results shown in Figure 

6.5 that the algorithm is capable of extracting the tumors with good detail, and works 

well for both calcified and non-calcified tumors. From the results presented in Table 6.13 

the algorithm estimated the volume of the tumor(s) from CT images with an accuracy of 

about 86% for the 13 datasets out of the 20 that had livers with tumors.  Although the 

accuracy is not as high as the liver segmentation approach, this accuracy is comparable to 

the results obtained from different studies (Abdel-massieh et al., 2010; Choudhary et al., 

2008; Moltz et al., 2008; Qi et al., 2008; Xu et al., 2010; Yoav et al., 2008).   

Tumor segmentation from CT on the other hand remains an extremely challenging task 

due to the extensive amount of discrepancies seen among the datasets. Also, in as many 

as 25% of the cases, tumors are not visible in the CT datasets altogether due to the similar 

intensity of the tumor and the surrounding liver (Xu et al., 2011). Even when manually 

performed, experts find it difficult differentiating tumor from background. Studies have 
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shown that about a 17% variability is found in delineating the tumor manually by 

different experts (Moltz et al., 2011). In Figure 6.5, the segmentation algorithm yielded 

good results when the intensity distribution of the tumors was fairly uniform. However, 

in situations where a calcified ring is seen around the tumor, the algorithm fails to extract 

the ring since the intensity of the calcified ring is much higher than the central region. 

This is attributed to the intensity based region-growing step, which encompasses pixels 

only within a 10% deviation of the selected seed point. An increment in the threshold to 

include the calcified ring is not possible due to the intensity of the surrounding liver 

tissue. It is seen that the tumor segmentation approach underestimates the volume of the 

tumor in most of the studied cases. The exclusion of such calcified regions may 

contribute towards the underestimation of the tumors. 

In case of SIRT, the ability to display blood vessels in context with the liver and the 

tumor(s) in a 3-D space provides a map for the insertion point of the radio-isotope (Gulec 

and Fong, 2007), but also shows which part of the vasculature is actually feeding the 

tumor(s) . Such an assessment of liver vasculature is essential in liver transplants cases in 

order to gauge the branching patterns of all hepatic vessel system and for understanding 

the underlying vasculature before surgical intervention.  From the results displayed in 

Figure 6.8, the algorithm is able to extract meticulously the vasculature to include not 

only the larger structures of the hepatic blood vessel system such as the aorta and hepatic 

artery but also the smaller and finer blood vessels.  

Blood vessel segmentation is usually validated using corrosion cast where an agent is 

inserted in the vasculature of the liver of a corpse followed by corrosion of the liver to 
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obtain the liver vasculature structure.  Corrosion cast techniques are very difficult to 

master as well as expensive due to the need of the specialized equipment, which are 

available at very few centers in the USA.     

Although, the algorithms developed in the study for tumor and blood vessel segmentation 

are accurate, better segmentation results can be obtained by using the right set of images. 

Although CT has been established as the backbone imaging technique that is most 

prominent in oncology programs, it is observed that up to 25% of the liver metastases are 

often missed in CT scans (Scott et al., 2001; Valls et al., 2001).  In contrast to this fact, 

PET/CT is better than other modalities for the identification of CRLM (Bipat et al., 2005; 

Mainenti et al., 2010). The use of PET/CT for tumor segmentation and volume 

calculations would greatly improve the results.  

Also, in contrast enhanced CT images it is essential to segment the tumor from images 

acquired in the correct phase. It is believed that the best contrast for segmenting the 

tumors is available in the portal or venous phase where the tumor to background contrast 

ratio is the optimal.  In addition to this it should be said that the poor selectivity of CT 

towards tumor differentiation makes CT a non-ideal imaging choice for tumor 

segmentation. However, CT has been widely used for tumor/disease staging due to the 

ease of use and lower costs as compared to PET/CT. 

Finally, we demonstrated that the usefulness of the liver segmentation algorithm extends 

to other applications in biometrics using thermal imaging, and in brain research using 

Magnetic Resonance Imaging clearly demonstrates the modular nature of the algorithm 

and its adaptation to other organs and parts of the body (Guzman, 2011).   
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7.4. Contributions of the study 

The following section provides a summary of the contributions provided by the 

development of the semi-automatic approaches for liver, tumor and blood vessel towards 

the field of liver cancer imaging.  

The dissertation demonstrated the development of a robust and accurate method for the 

segmentation of the liver from CT images for the purpose of volume calculations. The 

algorithm was demonstrated to be independent of the dataset-properties namely structure, 

size, position and intensity distribution of the liver region mainly due to the novel hybrid 

segmentation method that coupled the k-means algorithm with a newly established 

contouring method that relied on radio density of the CT images. The experiment results 

reported in this study display very high accuracies of 98.27% in agreement with manual 

expert analysis.  

Also, the development of the novel initialization method, which aims at reducing 

human/user interaction, achieved highly accurate results with only a single slice of the 

dataset initialized by the user, minimizing greatly human intervention as a consequence.  

The proposed algorithm is also structured to lend itself to parallel computing, which is 

viewed as an important characteristic in applications that require heavy computational 

loads such as in medical imaging. Parallel computing provided henceforth a scalable 

approach applicable for single workstations poised to serve as a portable method that is 

cost-effective and highly desirable in clinical settings. 
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The results obtained on the execution of the parallelization of the liver image 

segmentation indicates a significant speed up in the performance, achieving more than 

500% increase by using 8 MatLab  workers on a dual quad-core machine. 

SIRT relies on the calculation of the tumor to liver volume ratio for the calculation of the 

radioactive dose to the patient. The novel technique for tumor segmentation outlined in 

the dissertation achieved highly accurate results in segmenting the tumor(s) from the CT 

scans. Also, the algorithm’s capability to extract the tumor(s) using very little human 

interaction serves the purpose as a fast yet reliable technique for tumor(s) segmentation. 

Finally, the blood vessel segmentation approach delineated in the dissertation provided a 

means to segment the entire blood vessel architecture of the liver with the initialization of 

a single point of the vasculature.  

The successful implementation of the various algorithms in the study enables the 

physician to obtain a complete picture of the disease under investigation and to plan the 

best treatment for the disease. Also, accurate volume calculation specific to each patient’s 

anatomy would help in the calculation of the absolute precise dose to deliver to that 

patient. This would reduce the risk for excess dosing which may damage healthy 

surrounding liver tissue or reduce the risk of under dosing and the potential relapsing of 

the tumor. 
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CHAPTER VIII 

CONCLUSIONS AND FUTURE WORK 

The study demonstrated the development of a robust and accurate liver segmentation 

technique requiring minimal human interaction. This was achieved by going through 

progressive research steps that led to the ultimate algorithm that relied solely on a single 

initialized slice and two seed points manually selected from the first and last slices. The 

algorithm demonstrated a very high accuracy in determining liver volumes, which 

demonstrate the effectiveness of the segmentation process. Statistical analyses have also 

proven consistency in the results and independence on user initialization during the 

segmentation process. 

Moreover, the tumor segmentation algorithm led to volume estimations of the tumor(s) 

with good accuracy and comparable to those found in the literature while minimizing 

human intervention in delineating manually the tumor borders in every slice, requiring 

instead a single point in a single slice for the entire tumor.  Together with the developed 

blood vessel segmentation approach the liver and tumor segmentation algorithm provide 

a complete solution towards pre-surgical evaluation. 

The proposed algorithm is also structured to lend itself to parallel computing, which is 

viewed as an important characteristic in applications that require heavy computational 

loads such as in medical imaging. The multicore parallel processing deployed on a single 

workstation with a dual quad core processor demonstrated a speed up of around 5 for the 

segmentation. 
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Since calculation of the radioactive dose to be delivered to the patient relies on the tumor 

to volume of liver ratio, accurate calculation of the liver volume helps significantly in the 

accurate determination of the radioactive dosage to the patient. Calculation of accurate 

radioactive dose has the merits of avoiding under-dosing resulting in recurrence of tumor 

or over-dosing resulting in damage to healthy tissue. 

The future of algorithm development for cancer therapy planning is rooted in the use of 

multiple modalities for the determination of the anatomical and functional extent of the 

disease.  Development of techniques and algorithms to fuse information from PET, MRI 

and CT is of prime importance.  

The next steps towards the enhancement of the developed algorithm will be to devise 

techniques to reduce the interaction of the liver segmentation algorithm to make it fully 

automatic.  This can be achieved by using image-processing techniques to estimate the 

largest slice for Ver. 3.0 algorithm or develop a completely different technique.  

Irrespective of the techniques used reduction in accuracy is not an option. 

Further validation of the tumor segmentation algorithm with more datasets and with 

greater number of experts is required for a complete quantification of the approach.  Also, 

as it has been repeatedly said the validation of blood vessels remains a challenge for the 

future. 

Finally, in order to demonstrate the advantages of the complete 3-D solution and the 

novel dosimetry, clinical trials will be of utmost importance in order to truly gauge the 
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merits of the proposed method to conventional methods as currently performed in clinical 

settings. 
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