
Paper Parallel Mutant Execution

Techniques in Mutation Testing Process

for Simulink Models
Le Thi My Hanh, Nguyen Thanh Binh, and Khuat Thanh Tung

The University of Danang – University of Science and Technology, Vietnam

https://doi.org/10.26636/jtit.2017.113617

Abstract—Mutation testing – a fault-based technique for soft-

ware testing – is a computationally expensive approach. One

of the powerful methods to improve the performance of mu-

tation without reducing effectiveness is to employ parallel pro-

cessing, where mutants and tests are executed in parallel.

This approach reduces the total time needed to accomplish

the mutation analysis. This paper proposes three strategies

for parallel execution of mutants on multicore machines us-

ing the Parallel Computing Toolbox (PCT) with the Matlab

Distributed Computing Server. It aims to demonstrate that

the computationally intensive software testing schemes, such

as mutation, can be facilitated by using parallel processing.

The experiments were carried out on eight different Simulink

models. The results represented the efficiency of the pro-

posed approaches in terms of execution time during the testing

process.

Keywords—mutant execution, mutation testing, parallel process-

ing, software testing.

1. Introduction

Software testing is an expensive process. It typically con-

sumes more than half of the development budget [1], but

it is an effective way to estimate the reliability of software.

With the increasing expectations for software quality, de-

velopers are required to perform more effective testing on

large and complex systems.

In this context, mutation testing has been used as a fault

injection technique to measure the adequacy of test cases.

This method adopts a “fault simulation mode”. It has been

advocated as a technique for generating test cases by insert-

ing faults into an original program, and the effectiveness of

a test suite is represented by its “mutation score”. Thus,

mutation testing is used to measure the robustness of a test

suite. Though powerful, mutation testing is computation-

ally intensive, as numerous mutants need to be produced

and executed.

When a mutation is introduced to a large application, a huge

number of mutants can be generated. Despite the existing

techniques to reduce the costs of mutation analysis, the

computational time required to apply mutation testing to

large applications is still very long. The costs of mutation

testing depend mainly on the number of mutants generated,

as well as on the number of test cases. In a single sequen-

tial process, the total computational time of mutation test-

ing includes the time spent generating the mutants and the

time devoted to executing the tests against all the mutants

and the original system (which must be executed at least

once). The execution time Et is always much higher than

the generation time Gt . This is the reason why researchers

have focused their efforts on reducing Et . For example,

mutant schemata [2] make it possible to speed up execu-

tion by including all mutants in a single file. This makes it

possible to avoid continuous uploading of mutant files into

memory, and thus launching a new process to execute each

program version. Techniques such as random selection of

mutants [3], selective or constrained mutation [4]–[7], and

higher-order mutation [8] produce fewer mutants, which ex-

erts a positive influence on the total execution time. Tech-

niques such as byte-code translation [9], which remove the

compilation-related tasks, may in turn reduce the time of

processing.

In addition to the described techniques, parallel execution

attempts to decrease the overall time by distributing the

execution across different processors. This is to improve the

performance of mutation testing without compromising the

effectiveness of the process in which mutants and tests are

executed on parallel processors. This method contributes

to reducing the total time needed to perform the mutation

analysis.

The size and complexity of the system under test deter-

mine the execution expense. The larger or the more com-

plex a given application is, the more test cases are required

to achieve the adequate coverage. It takes less time, hence,

to generate mutants, but the execution time grows expo-

nentially along with the number of mutants and test cases

which, in turn, depends on the size of the application.

This paper presents a study of the parallel mutant execution

technique, which is appropriate to reduce the computational

cost of the execution phase. Three distribution strategies

are proposed to parallelize this task.

The rest of this paper is organized as follows: Section 2

describes some related work on parallel mutation testing.

Section 3 briefly introduces the Simulink environment, mu-

tation testing for Simulink models, and a process of mutant

generation and execution. In Section 4, three distribution

algorithms are proposed to parallelize the execution phase.

The experimental results are discussed in Section 5 and,

90

CORE Metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/235205656?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Parallel Mutant Execution Techniques in Mutation Testing Process for Simulink Models

finally, Section 6 presents the conclusions and future work

required.

2. Related Work

In the surveys on mutation testing, such as mutation

testing cost reduction techniques, Jia and Harman [10],

Mateo and Usaola [11] identified three directions of in-

vestigation: execution of mutants (i) in single instruction,

multiple data machines (SIMD), (ii) in multiple instruction,

multiple data (MIMD) machines, and (iii) with optimized

serial algorithms.

Mathur and Krauser [12] were the first ones who performed

mutation testing on a vector processor system. They sug-

gested that vectorizable programs be created, each one in-

corporating several mutants of the same type. The authors

hoped that a vector processor could execute the unified

mutant programs and achieve a significant speed-up over

a scalar processor. The proposed strategy had not been im-

plemented yet, and the authors implied in their papers that

only scalar variable replacement (SVR) type mutants are

suitable for unification. A later paper by Krauser, Mathur,

and Rego [13] proposed an approach for the concurrent

mutant execution under SIMD machines. The authors sug-

gested a strategy for efficient execution of mutants. Mutants

of the same type are grouped together, and the groups are

handled by different processors in a SIMD system. This

strategy, however, has also not been implemented yet.

The second direction of research is based on MIMD ma-

chines. The work of Choi and Mathur [14] was the first

study about the parallel mutant execution on these ma-

chines. These authors presented the Pmothra tool that is an

adaptation of the Mothra tool [15] for the Ncube/7 Hyper-

cube machine. It was based on a mutant generator, a mutant

compiler, a mutant scheduler, several test case servers, and

mutant executors. This tool used a dynamic distribution

algorithm that executes a mutant when a node of the hyper-

cube becomes available. Another important work was also

proposed by Offutt et al. [16]. These authors presented the

HyperMothra tool, an adaptation of the Mothra tool [13],

to be executed in the Intel iPSC/2 hypercube machine with

16 processors. The HyperMothra tool was designed to gen-

erate mutants for Fortran systems with 22 mutation opera-

tors and to interpret them in parallel in the hypercube.

The last direction of research in the field of parallel muta-

tion testing concerns optimized serial algorithms. Fleysh-

gakker and Weiss [17], [18] proposed some algorithms

to reduce the number of executions and improve the effi-

ciency of the mutation testing process. Although the algo-

rithms were not implemented for parallel execution, the au-

thors indicated that their structure made them easily paral-

lelizable.

In the related works described above, all the mutation stud-

ies used programs written in Fortran. In recent years,

programming languages, networks, and processors have

evolved a great deal. Therefore, recent studies concerned

with parallel mutation have adapted the existing cost re-

duction techniques to new programming languages such as

Java. Mateo and Usaola [19] introduced Bacterio-P, which

is a parallel extension of the mutation testing tool Bac-

terio [20] using Java-RMI for communicating among the

nodes of the network. In addition, the authors presented

five distribution schemes adopting dynamic and static dis-

tributions. Among these ones, the parallel execution with

the dynamic ranking and ordering algorithm, which is

a dynamic distribution algorithm based on factoring self-

schedulling ideas [21], gave the best results. However, the

mechanisms used in the communications are not the most

adequate for high performance environments since a high

degree of latency is introduced by this technology, and Java-

RMI is much slower than MPI. To cope with this problem,

Pablo et al. [22] proposed a dynamic distributed algorithm,

known as EMINENT, to reduce the execution time asso-

ciated with the classical mutation testing scheme. Their

approach was implemented using the standard Message-

Passing Interface (MPI) library to facilitate communica-

tions in high-performance environments. In another re-

search, Saleh and Nagi [23] proposed the Hadoop Mutator

framework, which is based on the MapReduce program-

ming model to distribute and execute the mutant generation

and the testing processes. Nonetheless, this approach fol-

lows a static schema, so it is not suitable for heterogeneous

and dynamic environments.

As one may see, most studies on parallel mutation testing

are applied to programming languages. To the best of our

knowledge, this is the first work on parallel mutation testing

concerning designs in the Simulink environment.

3. Mutation Testing for Simulink

Models

Simulink [24] is a block diagram environment for multi-

domain simulation and model-based design. It supports

simulation, automatic code generation, continuous test

and verification of embedded systems. Simulink provides

a graphical editor, customizable block libraries and solvers

for modeling and simulating dynamic systems. It is inte-

grated with Matlab software, enabling to incorporate Mat-

lab algorithms into models and export simulation results to

Matlab for further analysis.

Simulink has been popularly used as a high-level system

prototype or a design tool in many domains, including

aerospace, automobile, and electronic industries.

Simulink models are of the data-flow variety and consist

of three levels of granularity: whole models, subsystems,

and blocks. Models contain systems, and systems contain

other subsystems and blocks. Blocks originate from pre-

defined block libraries (covering generic functions such as

addition or logical operators, but also domains like fuzzy

logic or network communication). Blocks are connected by

lines that provide a mechanism to transfer signals across the

connections, and have their own semantics. Blocks receive

a specific number of input signals from which output sig-

nals are computed. The underlying internal representation

of Simulink models is stored as text either in a Simulink

91

Le Thi My Hanh, Nguyen Thanh Binh, and Khuat Thanh Tung

MDL file or an XML file in the case of newer versions of

Simulink.

Simulink plays an increasingly important role in system

engineering, while verification and validation of Simulink

models are becoming ever more vital to users [25].

This paper is concerned with mutation testing for Simulink

models that contain basic blocks in predefined libraries,

such as commonly used blocks, continuous, discrete,

logic and relational operations, math operations, sinks and

sources.

3.1. Mutation Testing for Simulink Models

Mutation testing, which is a fault-based testing technique

proposed by DeMillo et al. [26], focuses on measuring the

quality of a test set according to its ability to detect specific

faults. It works in the following way: a large number of

simple faults is introduced to a program (or a model), one

at a time. The resulting changed versions of the program

(or model) under test are called mutants. Test data are then

constructed to cause these mutants to fail. The effective-

ness of the test set is measured by the percentage of the

number of mutants killed over the total number of mutants.

Since the number of mutants that can be generated is very

large (the number is usually in the order of N2, where N

is the number of variable references in the program), many

methods have been suggested to reduce the computational

expenses of this testing technique.

In mutation testing, faults are introduced to the program

(or model) under test by using mutation operators. They

are well-defined rules to make syntactic changes in the

original program (or model). They are designed based on

the experience of the target language usage and the most

common faults. Mutation testing is usually applied to pro-

gramming languages such as C++, Java, and C#. In this

study, we apply mutation testing to Simulink designs, us-

ing a set of mutation operators proposed in [27] and shown

in Table 1.

Table 1

Mutation operators

Operator Description

VNO Variable negation operator

VCO Variable change operator

TRO Type replacement operator

CCO Constant change operator

CRO Constant replacement operator

SCO Statement change operator

SSO Statement swap operator

DCO Delay change operator

ROR Relational operator replacement

AOR Arithmetic operator replacement

ASR Arithmetic sign replacement

LOR Logical operator replacement

BRO Block removal operator

SRO Subsystem replacement operator

By applying a mutation operator to the model under test,

i.e. by inserting a single fault into the model, a faulty model

is obtained, which is called a mutant. Then, test data should

be generated to reveal the fault introduced.

A test suite is considered good if it contains tests that are

able to distinguish a large number of these mutants from the

original model. If a mutant can be distinguished from the

original model by at least one of the test cases in the test set,

the mutant is considered to be killed. Otherwise, the mutant

is alive. Sometimes the mutants cannot be killed due to the

semantic equivalence of the mutants and the original model.

These mutants are called equivalent mutants. Worse still,

determining whether a mutant is equivalent is generally

undecidable [28], and so typically the decision is left for

testers to establish manually.

The proportion between mutants killed and all non-

equivalent mutants is called the mutation score and is for-

mally defined as:

MS(P,Ts) =
K

T −E
, (1)

where P is the program under test, Ts is the test suite,

K is the number of mutants that have been killed, T is the

total number of mutants, and E is the number of equivalent

mutants.

The process of mutation testing for Simulink models con-

sists in generating mutants, executing mutants, analyzing

results and in the generation of test suites. If this pro-

cess is performed manually, it will require too much time.

Hence, we have designed and implemented a MuSimulink

tool to automate this process. The design details of this

tool are presented in [29].

3.2. Mutant Generation and Execution

This section presents, in detail, the process of generating

and executing mutants for Simulink models. As with any

automated mutation testing system, there are several impor-

tant steps that a tester must follow. Because there is a large

number of mutants generated for each model, it has been

considered impractical to compile and store each mutant

model separately. Therefore, MuSimulink has been built

as an interpretive system. Instead of creating, compiling,

and storing many separate models, the Simulink model is

translated once into an intermediate form, and each mutant

is stored in the form of a short description of the changes

required to create the mutants. In MuSimulink, these de-

scriptions are stored in records of a mutant description table

(MDT). The testing process continues until a satisfactory

mutation score is attained or is forced to stop due to time or

economic constraints. The major steps of mutation testing

are listed below and illustrated in Fig. 1.

1. Mutant Generator. The mutation testing process

begins with the construction of mutants, which are

automatically created through mutation operators.

First of all, the original model O is submitted, an-

alyzed, and parsed to create an intermediate form

92

Parallel Mutant Execution Techniques in Mutation Testing Process for Simulink Models

Fig. 1. MuSimulink mutation testing process.

ready for interpretation. One or more mutation oper-

ators will be selected to be applied to O. The testers

typically use all mutation operators available. Based

on the mutation operator specification, each of the se-

lected operators is applied to O to produce the MDT

that describes the M set of O mutants.

2. Test data generator. A set of test cases T is submit-

ted. Each test case within T contains values for the

input variables of O. T can be created manually by

testers or generated automatically by the MuSimulink

test data generator.

3. Mutation analysis. This task is to execute the model

under test and its mutants against test cases. The goal

is to determine how many mutants are killed by the

tests. The results are then analyzed, and the mutation

score is calculated to measure the mutation adequacy

of the test suite.

The original model O is interpreted once for each test case

in T by the MuSimulink tool. A set of expected outputs

O(T) is produced. The expected outputs of O can be ex-

amined at any point of time during the testing process to

determine whether O is performed on T correctly. If any

output is incorrect, a fault has been found, and the model

must be fixed before the process restarts from step 1. If

the output is correct, that test case is executed against each

alive mutant within the set of mutants M. M is interpreted

by MuSimulink using the input values for each test case

in T . This produces a set of mutant outputs M(T) that

has at most |M| · |T | elements. Since mutants are not exe-

cuted against new test cases after being killed, this set of

mutant outputs will not be usually very large. In practice,

T is usually small compared to M. Note that a typical test

case will kill a large number of mutants, so the number

of executions is usually much lower than |M| · |T |. After

that, each element of M(T) is compared with the element

of O(T) generated from the same test data. If they are not

the same, the mutant is killed. If, after output comparison,

some mutants remain alive, either the test data in T are not

adequate or the mutant is equivalent to O, and it can never

be killed.

The results of testing are analyzed and, if necessary, fur-

ther testing may be performed. If all mutants are killed

(or reach the specified mutation score threshold), and all

mutation operators have been applied to the original model

O, then no further testing is necessary. If one or more non-

equivalent mutants remain alive, then additional test cases

should be added to T , and appropriate steps of the process

should be repeated. If, as a result of testing, faults in O
are uncovered, then O must be modified, and the testing

process will be repeated as well. Existing test cases can

usually be reused for the subsequent testing phases.

After all test cases have been executed against all mutants

generated, each remaining mutant falls into one of two cat-

egories. The first one is composed of mutants that are

functionally equivalent to the original model. The equiva-

93

Le Thi My Hanh, Nguyen Thanh Binh, and Khuat Thanh Tung

lent mutant always yields the same output as the original

model, so no test case can kill it. The second category

consists of mutants that are killable, but the test set is in-

sufficient to kill them. In this case, new test cases need

to be added, and the process reiterates until the test set

is strong enough to kill all mutants or until the specified

mutation score threshold can be reached.

Steps are presented above to expose the inherent paral-

lelism in mutation testing. The most computationally ex-

pensive parts of the mutation process are the execution of

the original model, the mutant execution, the output com-

parison, and the test data generation. The mutant execu-

tion, which is performed once for each mutant and each

test case, is considered to be an internal loop. The internal

loop includes the interpretation of a mutant on a test case,

the comparison of the mutant output with the output of the

original model, and, if they differ, the killing of the mutant.

The internal loop (shown in lines 11–23 of Algorithm 1,

lines 14–29 of Algorithm 2, lines 16–31 of Algorithm 3) is

by far the most computationally expensive part of mutation

testing, and therefore it is the target of our parallelization

efforts.

Algorithm 1. Mutant distribution strategy using the parfor

paradigm

1: Read test data file T
2: Start N workers in Matlab

3: for each test case t in T do

4: Execute original model O on t to produce ∆(O,t)
5: if (abnormal termination O) then

6: Send “error” message, close workers and finish

7: else

8: Record expected output ∆(O,t)
9: end if

10: Send t and expected output ∆(O,t) to workers

11: for parallel each alive mutant m in M do

12: Send the mutant information m to the worker

13: Modify original model O to produce mutant model O′

14: Interpret O′ on t to produce ∆(O′,t)
15: if abnormal termination O′ then

16: Mark m as killed

17: else if ∆(O′,t) 6= ∆(O,t) then

18: Mark m as killed

19: else

20: Mutant m remains alive

21: end if

22: Update the killed mutant counter

23: end for parallel

24: end for

25: Close all workers

26: Write execution outputs to a result file

4. Solutions Parallel to Mutant

Execution

In a survey of parallel Matlab technologies [30], nearly

27 technologies were discovered. Many of them are de-

funct, while many others are currently under development,

with a large user base and an active developer base. This

Algorithm 2. The alternate-order mutant distribution strat-

egy using Matlab’s SPMD paradigm

1: Read test data file T
2: Start N workers in Matlab

3: for each test case t in T do

4: Execute original model O on t to produce ∆(O,t)
5: if (abnormal termination O) then

6: Send “error” message, close workers and finish

7: else

8: Record expected output ∆(O,t)
9: end if

10: Send t and expected output ∆(O,t) to workers

11: spmd in M
12: k← 0
13: i← N · k + labindex
14: while i≤ |M| do

15: if mutant M(i) alive then

16: Send infor. of mutant M(i) to worker labindex
17: Modify original model O to produce mutant O′

18: Interpret O′ on t to produce ∆(O′,t)
19: if abnormal termination O′ then

20: Mark M(i) as killed

21: else if ∆(O′,t) 6= ∆(O,t) then

22: Mark M(i) as killed

23: else

24: Mutant M(i) remains alive

25: end if

26: end if

27: k← k +1
28: i← N · k + labindex
29: end while

30: Update the killed mutant counter

31: end spmd

32: end for

33: Close all workers

34: Write execution outputs to a result file

paper uses the parallel computing toolbox (PCT) with the

Matlab distributed computing server (MDCS), which is

a novel technology.

While the core Matlab software itself supports multi-

threading, the PCT offers operations to run the Matlab

code on multicore systems and clusters. The PCT pro-

vides functions for the parallel for-loop execution, cre-

ation/manipulation of distributed arrays, as well as message

passing functions for implementing fine-grained parallel al-

gorithms.

The MDCS enables to scale parallel algorithms to larger

cluster sizes. The MDCS consists of the Matlab worker

processes that run on the cluster and is responsible for par-

allel code execution and process control. Figure 2 illustrates

the PCT and MDCS architecture.

The PCT also allows users to run up to 12 Matlab labs

or workers on a single machine. This enables interactive

development and debugging of parallel codes from a desk-

top. After parallel codes have been developed, they can

be scaled up too much larger number of workers or labs

in conjunction with the MDCS. Thus, the PCT addresses

94

Parallel Mutant Execution Techniques in Mutation Testing Process for Simulink Models

Algorithm 3. The random-order mutant distribution strate-

gy using Matlab’s SPMD paradigm

1: Read test data file T
2: Start N workers in Matlab

3: for each test case t in T do

4: Execute original model O on t to produce ∆(O,t)
5: if (abnormal termination O) then

6: Send “error” message, close workers and finish

7: else

8: Record expected output ∆(O,t)
9: end if

10: Send test case t and expected output ∆(O,t) to workers

11: Get a list of alive mutants L from M
12: Randomly reorder list L

13: spmd in L

14: k← 0
15: i← N · k + labindex
16: while i≤ |L | do

17: if mutant L (i) alive then

18: Send infor. of mutant L (i) to worker labindex
19: Modify original model O to produce mutant O′

20: Interpret O′ on t to produce ∆(O′,t)
21: if abnormal termination O′ then

22: Mark L (i) as killed

23: else if ∆(O′,t) 6= ∆(O,t) then

24: Mark L (i) as killed

25: else

26: Mutant L (i) remains alive

27: end if

28: end if

29: k← k +1
30: i← N · k + labindex
31: end while

32: Update killed mutants on M
33: end spmd

34: end for

35: Close all workers

36: Write execution outputs to a result file

the challenge of getting codes to work well in a multicore

system by enabling to select the programming paradigm

that is most suitable for applications. The paper employs

Fig. 2. The parallel computing toolbox and the Matlab distributed

computing server.

two most basic parts of these paradigms: parallel for-loops

and Single Program Multiple Data (SPMD) blocks.

4.1. Work Distribution Strategies

Parallel algorithms can be divided into two categories: task-

parallel and data-parallel. Task-parallel algorithms take ad-

vantage of the fact that multiple processors can work on

the same problem without communicating with each other.

These algorithms can be used when the computations in

a large loop are independent from each other and can be per-

formed in any order without affecting the results. In such

cases, multiple processors can analyze the subsets of the

data simultaneously, without the need for inter-processor

communication. Data-parallel algorithms typically involve

some inter-processor communication. In such algorithms,

the data are typically too large to be analyzed on a sin-

gle processor. Therefore, parallel computing paradigms are

used to distribute the data across processors, and each pro-

cessor works on a smaller chunk of the same data. In

such cases, there may be some communications required

between different processors that involve the exchange of

data to address boundary conditions. Based on how the

data are distributed, each processor needs a small amount

of data from its neighbor to complete the computations.

Since the size of T (the set of test cases) is usually small

compared to the size of M (the set of mutants), our work

uses the task-parallel approach. Parallelizing the mutant ex-

ecution on multi-processor machines has been implemented

by supplying each worker/lab with all test cases and a subset

of mutants. The mutation testing using the parallel mech-

anism for mutants is a natural way to divide up the work

because it does not necessarily guarantee an even distribu-

tion of work among workers/labs. Some mutants which are

easily killed by a test case in the early stage of the mutant

execution process will not be executed against most of the

remaining test cases in the test set. On the other hand,

equivalent mutants must be executed against all test cases,

since they are not killed by any test case. Therefore, there

is a wide volatility in the amount of execution time required

for individual mutants. To achieve maximal speed-up, we

should distribute mutants to workers/labs such that each

worker/lab performs the same amount of execution. It is

unfortunate that we have no way to know in advance how

much execution time will be required for a mutant, or how

many test cases need to be run against it. The optimum

distribution of mutants, thus, cannot be determined.

The parallel mutation algorithm has two execution phases:

original model execution and mutant execution. In the orig-

inal model execution phase, workers/labs are not used, and

only the host processor (Matlab client) computes and saves

the expected outputs from the original model. In the mutant

mode, the client begins with sending the startup informa-

tion to the workers. For each test case, the input values

and the expected outputs are sent to the workers, then once

a worker interprets all its mutants on the test case, a counter

of remaining alive mutants is sent back. If all the mutants

within all the workers are killed (or mutation score reaches

95

Le Thi My Hanh, Nguyen Thanh Binh, and Khuat Thanh Tung

a predetermined threshold value), then the algorithm takes

an early exit and does not send more test cases to the work-

ers. Otherwise, the next test case is sent. When all the test

cases have been processed, the workers send the updated

MDTs back to the client. There is recurring communica-

tion between the client and the workers. The client sends

the test case information which includes the outputs of the

original model and a list of elements referenced in the orig-

inal model, and the workers send back the number of alive

mutants.

Three dynamic distribution strategies are described below

that attempt to balance the amount of work done by the

workers. The distribution strategies are shown in Algo-

rithms 1–3, where test data file T and mutant description

table M are the inputs, while the output is the Alive/Killed

list of mutants. In all algorithms, test data are delivered to

workers sequentially by an outer loop (line 3 for all), while

the inner iterations (line 11 in Algorithm 1, line 14 in Al-

gorithm 2, and line 16 in Algorithm 3) take responsibility

for executing mutants in parallel.

Algorithm 1 presents the first mutant distribution strategy

using the Matlab parfor paradigm which divides the MDT

list between the workers. Alive mutants are interpreted

on each test case by the workers, and the process is re-

ferred to as internal loop iteration (lines 12–22 in Algo-

rithm 1). The parfor statement is very simple to use due to

the fact that it is based on the automatic data management,

but the parfor iterations are executed in an unknown order.

Thus, the effective distribution of mutants cannot be de-

termined.

Algorithms 2 and 3 present two dynamic distribution strate-

gies using Matlab’s SPMD paradigm. For each test case,

the first worker gets the first mutant in the MDT list, the

second worker gets the next mutant, and so on. Dead mu-

tants in the MDT list are not distributed to the workers. If

there are N workers, the first N mutants will be assigned

to the workers at a time. Then, the second N mutants will

be assigned to the workers in the next iteration, and so

on. Thus, if labindex is the index number of each worker,

worker labindex gets mutants at position N · k + labindex
in the MDT list (where k is from 0 to |M|/N in turn,

|M| is the number of mutants). These two strategies dis-

tribute approximately the same number of mutants to each

worker.

The second strategy, in Algorithm 2, is the distribution of

MDTs in an alternate order of a list of all mutants. How-

ever, not all executions will take the same time because

each mutant usually takes a different amount of time to

run, so presumably, some processors will finish before oth-

ers, and the total process time will be the time taken by

the slowest processor. To avoid a large number of “hard

to kill” mutants running on a worker, the third distribu-

tion strategy assigns each worker approximately the same

number of mutants in a random order of the list of alive

mutants. For each new test case, the MDT list will first be

randomly reordered before alive mutants are delivered to

the workers, and the parallel process is performed on this

randomly reordered list (lines 11–12 of Algorithm 3).

5. Experimentation

5.1. Parallel Mutation Testing on a Single Multicore

Machine

Three proposed distribution strategies were implemented

in the MuSimulink tool [29], and experiments in this sub-

section were carried out on a single computer which uses

the Intel Xeon E5520 2.27 GHz CPU with 8 GB RAM,

and runs the Windows Server 2008 operating system. This

computer has two processors with four cores each. Thus,

to use all the cores, eight workers were run. For the distri-

bution algorithms, a configuration parameter which needs

to be established is the number of workers. In experi-

ments, the MDT is generated for the models using muta-

tion operators introduced in our previous work [27]. Each

model under test was given 100 test cases generated ran-

domly using MuSimulink’s automatic test data generator.

The original model is executed on the client, while the

mutant ones are executed in parallel on eight workers us-

ing the different work distribution strategies (using parfor

paradigm, alternate-order using SPMD, and random-order

using SPMD).

The time of the execution phase within the mutation pro-

cess is shown in Table 2, which describes the average

time of ten runs per second for each model with regard

to each distribution algorithm. The use of parallel strate-

gies helps us reduce the execution time by up to 89.23%

(from 4752.54 s down to 511.9 s).

Figure 3 is a chart that shows the speed-up achieved by

MuSimulink using eight workers. Speedup for N work-

ers is defined as the division between the serial execution

time on one worker and the parallel execution time on N
workers. Speed-up indicates by how much the execution

time has been reduced. It may be seen from both Fig. 2

and Table 2 that the work distribution strategy 1 (using the

Fig. 3. Speed-up achieved using eight workers.

96

Parallel Mutant Execution Techniques in Mutation Testing Process for Simulink Models

Table 2

The total execution time for each model with each distribution strategy

Model name Mutant Killed MS

Time [s]

Serial
Using parfor Alternate-order Random-order

paradigm using SPMD using SPMD

CheckInputs 154 130 83.77 2303.20 278.5 306.6 311.04

Quadratic v1 161 129 90.43 636.94 173.2 221.37 220.18

Quadratic v2 140 89 63.57 976.52 210.7 259.62 240.32

RandMdl v2 188 138 73.40 1141.18 201.2 230.07 217.22

SimpSw 92 85 92.39 263.16 153.2 170.69 167.56

SmokeDetector 321 160 49.84 2685.83 353.3 418.08 385.11

Tiny 144 120 83.33 490.74 190.3 234.63 229.13

CalcStartProgress 458 183 39.96 4752.54 511.9 661.69 501.13

parfor paradigm) results in a much better speed-up than

strategy 2 (alternate-order using SPMD), and strategy 3

(random-order using SPMD) is also marginally better than

strategy 2 in general.

In the second distribution strategy, each worker receives

the mutants located once at the fixed position in the list

of mutants, before executing. Therefore, it is more likely

a certain worker will always be available if all its mutants

are killed soon. This situation causes an imbalance among

workers in which some cores are overworked with hard-

to-kill mutants, and so the second strategy has rendered

the worst performance in comparison with the others. This

drawback is partially overcome in the third strategy due to

the random redistribution of alive mutants before delivering

them to workers to execute with new test case. Hence, the

execution time of the third strategy is shorter than that of

the second one.

The second and third strategies can reduce the communi-

cation between workers and host, and the network traffic

will be minimal because each worker receives fixed groups

once, before starting the process of executing mutants for

each test case. However, mutant model interpretation and

execution times are much longer than the communication

time. Meanwhile, the second and third algorithms use fixed

groups of mutants, so not all executions will take the same

amount of time. In such a case, some workers will finish

before others and become available when they get many

easy-to-kill mutants. This is the disadvantage of strate-

gies 2 and 3 using the SPDM mechanism, while strategy 1

using parfor does not face this problem. In the first distri-

bution strategy, the executions are split into smaller pieces,

called tasks. The tasks are delivered to parallel workers

several times until all the groups are delivered. In other

words, the tasks are sent to the parallel workers on de-

mand. The parfor mechanism has a smart scheduler that

sends tasks to the free workers. When a worker finishes

its executions, it receives a new task with its size depend-

ing on the number of remaining executions in the mutation

process [31]. Hence, when the remaining unexecuted mu-

tants are few, the task size is small. The loop of sending

and executing mutants on the test case finishes if all tasks

have been sent and run. The smart scheduler contributes

to the reduction of the free time of a worker, as well as to

the increase in the speed of mutant execution, so execution

time of the strategy 1 is significantly reduced, in general

terms, compared to that of the second and third strategies.

Nonetheless, there are some rare exceptions such as the

CalcStartProgress model, when the third strategy is better

than the first one. As may be seen from the result of this

model, the mutation score is low – it means that a lot of

alive mutants exist, and these mutants are executed on all

test cases in the test set. In this case, it is more likely that

the number of hard-to-kill mutants on each worker is quite

equal in both strategy 1 and strategy 3. Meanwhile, the first

distribution strategy has to spend more time on communi-

cation, so the execution time in the strategy 1 is slightly

longer.

In practice, a complex Simulink model with few mutants

might run longer compared to a simple one with many mu-

tants. This is shown in the Serial column of Table 2, where

CheckInputs model with only 154 mutants shows the serial

execution time being more than twice as long as that of

RandMdl v2 model with 188 mutants. The same applies

also to the parallel mutant execution time. In general, the

execution time will increase along with the growth of com-

plexity of the models under test.

It would be more helpful if we could show how the dis-

tribution and communication times contribute to the to-

tal execution time. However, parallel computing toolbox is

a high-level application programming interface (API), so

we may only identify the total execution time, and there

is no way to get the communication time between the host

and workers. In the future work, therefore, we need to

use other low-level APIs to ameliorate and further analyze

the effect of communication time on the total mutant exe-

cution time.

5.2. Parallel Mutation Testing on Many Machines

The first experiment was conducted by parallelizing on only

one multicore computer. To prove for the effectiveness of

parallel programming with Matlab, we scaled up the distri-

97

Le Thi My Hanh, Nguyen Thanh Binh, and Khuat Thanh Tung

bution strategy using parfor to much larger number of work-

ers in the different environments using the MDCS. This

ex- periment was performed in two environments with dif-

ferent characteristics, one of them being a homogeneous

system (four computers with the same processor, mem-

ory and operating system) and the other a heterogeneous

system (two computers with the different processors and

memories), which are called DCS A and DCS B, respec-

tively. The DCS A environment is made up of four homo-

geneous computers (with 2.4 GHz Intel Core 2 Quad CPU

Q6600 and 2 GB memory, running the Windows 7), which

are configured for running four workers on each computer.

The DCS B environment is made up of two heterogeneous

computers, including one computer (CPU Intel Xeon E5520

2.27 GHz and 8 GB RAM) running eight workers and one

computer (AMD Operon Dual-Core 2.27 GHz, 4 GB mem-

ory, running the Windows Server 2008 operating system)

running four workers.

Table 3

The total time in seconds for each model on two different

environments using MDCS

Model DCS A DCS B

CheckInputs 74.99 189.35

Quadratic v1 119.48 129.51

Quadratic v2 133.21 148.67

RandMdl v2 125.76 132.23

SimpSw 112.45 117.59

SmokeDetector 187.88 221.21

Tiny 126.87 173.48

CalcStartProgress 340.67 437.72

A drawback of PCT is that it can only get use of the max-

imum of 12 workers on a multicore machine. Hence, the

purpose of this experiment is to show that parallel muta-

tion testing can be executed on many machines with homo-

geneous and heterogeneous configurations by running the

Matlab Distributed Computing Server. This ability is useful

to execute mutation testing for large Simulink models.

As shown in Table 3, the parfor mechanism on the ho-

mogeneous combination of many machines (DCS A) with

16 workers takes much less time compared with that using

8 workers on a single multicore machine with the same

configuration as shown in Table 2. It is also noted that the

parallel execution for small models with a few mutants is

less efficient than that for large models, because, in such

cases, the communication cost is higher than the execution

cost.

The goal of this subsection is too prove that mutation test-

ing can be scaled up to many computers by running it on

MDCS. Results in Table 3 have not yet concluded that the

shorter execution time for the DCS A configuration results

from its homogeneity, or that it has more workers, as the

number of workers in two different environments is not

equal. The influence of the configuration type on the mu-

tation execution time is out of scope of this paper, and it

will be figured out more carefully in the future studies.

6. Conclusion

Parallel execution helps reduce the computational cost,

which is one of the biggest problems in mutation testing,

and increase the efficiency without compromising the ef-

fectiveness. Three different strategies were implemented by

distributing different subsets of mutants to the workers, and

an experimental comparison of these three distribution al-

gorithms was conducted. The experimental results demon-

strated that the distribution strategy of mutants using the

parfor scheme is the best one.

As discussed above, the parallel execution is only useful for

large models with a large number of mutants, so mutation

testing should be done on sequential machines when models

are small and moved to parallel machines only if the size

of models requires much execution time.

Another problem is that the communication overhead is

fairly high because the client broadcasts one test case at

a time to all workers, and some small models do not re-

quire much time for mutant interpretation. To decrease the

communication cost in all cases, test cases could be sent to

the workers in blocks, since few large messages (n test cases

at a time) are processed more efficiently than many small

messages (one test case at a time) on multicore machines.

This offers a great potential to improve the performance of

MuSimulink in the future work.

Moreover, workers often sit idle waiting for the slowest

node to finish executing mutants. If nodes are allowed to

request work from the host rather than wait for the host to

send the next test case, then the idle time could be signif-

icantly reduced. This demand-driven strategy may restrict

overhead to the time necessary for communicating test case

information.

Finally, mutants are assigned to processors before they are

interpreted, and there is no way to redistribute mutants dur-

ing interpretation if one or more processors become over-

worked. With dynamic load balancing, mutants can be

reassigned during interpretation so that each processor per-

forms approximately the same amount of work. In the

future work, the study will be extended to validate this di-

rection.

References

[1] B. Beizer, Software Testing Techniques, 2nd ed., Thomason Com-

puter Press, 1990.

[2] R. H. Untch, A. J. Offutt, and M. J. Harrold, “Mutation analysis using

program schemata”, in Proc. Int. Symp. on Software, Cambridge,

Massachusetts, 1993, pp. 28–30.

[3] K. N. King and A. J. Offutt, “A Fortran language system for mutation

based software testing”, Software: Practice and Experience, vol. 21,

no. 7, pp. 685–718, 1991.

[4] E. F. Barbosa, J. C. Maldonado, A. Marcelo, and R. Vincenzi,

“Toward the determination of sufficient mutant operators for C”,

Software Test., Verif. and Reliabil., vol. 11, no. 2, pp. 13–136,

2001.

98

Parallel Mutant Execution Techniques in Mutation Testing Process for Simulink Models

[5] A. J. Offutt, G. Rothermel, R. H. Untch, and C. Zapf, “An

experimental determination of sufficient mutant operators”, ACM

Trans. on Software Engin. and Methodol., vol. 5, no. 2, pp. 99–118,

1996.

[6] W. E. Wong and A. P. Mathur, “How strong is constrained mutation

in fault deletion”, in Proc. Int. Computer Symp. ICS’94, Hsinchu,

Taiwan, Republic of China, 1994, pp. 515–520.

[7] W. E. Wong, J. C. Maldonado, M. E. Delamaro, and A. P. Mathur,

“Constrained mutation in C programs”, in Proc. 8th Simpósio

Brasileiro de Engenharia de Software SBES 94, Curitiba, PR, Brazil,

1994, pp. 439–452.

[8] M. Polo, M. Piattini, and I. Garcia-Rodriguez, “Decreasing the cost

of mutation testing with 2-order mutants”, Softw. Test. Verif. Reliab.,

vol. 19, no. 2, pp. 111–131, 2008.

[9] Y. S. Ma, J. Offutt, and Y. R. Kwon, “MuJava: an automated class

mutation system”, Software Test., Verif. and Reliabil., vol. 15, no. 2,

pp. 97–133, 2005.

[10] Y. Jia and M. Harman, “An analysis and survey of the develop-

ment of mutation testing”, IEEE Trans. on Software, vol. 37, no. 5,

pp. 649–678, 2011.

[11] P. R. Mateo and M. P. Usaola, “Mutation testing cost reduction

techniques: a survey”, IEEE Software, vol. 27, no. 3, pp. 80–86,

2010.

[12] A. P. Mathur and E. W. Krauser, “Modeling mutation on a vector

processor”, in Proc. 10th Int. Conf. on Software Engin. ICSE’88,

Singapore, 1988, pp. 154–161.

[13] E. W. Krauser, A. P. Mathur, and V. J. Rego, “High performance

software testing on SIMD machine”, IEEE Trans. on Software En-

gin., vol. 17, no. 5, pp. 403–423, 1991.

[14] B. Choi and A. Mathur, “High-performance mutation testing”, J. of

Syst. and Software, vol. 20, no. 2, pp. 135–152, 1993.

[15] R. A. DeMillo, D. S. Guindi, K. N. King, W. M. McCracken, and

J. Offutt, “An extended overview of the Mothra software testing

environment”, in Proc. 2nd Worksh. on Softw. Test., Verif. and Anal.,

Banff, Alberta, Canada, 1988, pp. 142–151.

[16] A. J. Offutt, R. P. Pargas, S. V. Fichter, and P. K. Khambekar, “Mu-

tation testing of software using a MIMD computer”, in Proc. Int.

Conf. on Parallel Process. ICPP 1992, Chicago, Illinois, USA, 1992,

pp. 257–266.

[17] V. N. Fleyshgakker and S. N. Weiss, “Efficient mutation analysis:

a new approach”, in Proc. Int. Symp. on Software Test. and Anal.

ISSTA 1994, Seattle, WA, USA, 1994, pp. 185–195.

[18] S. N. Weiss and V. N. Fleyshgakker, “Improved serial algorithms for

mutation analysis”, in Proc. Int. Symp. on Software Test. and Anal.

ISSTA 1993, Cambridge, MA, USA, 1993, pp. 149–158.

[19] P. R. Mateo and M. P. Usaola, “Parallel mutation testing”, J. of

Software Test., Verif. and Reliabil., vol. 23, no. 4, pp. 315–350,

2013.

[20] P. R. Mateo and M. P. Usaola,“Bacterio: Java mutation testing tool:

A framework to evaluate quality of tests cases”, in Proc. of the

Int. Conf. on Software Mainten. ICSM 2012, Trento, Italy, 2012,

pp. 646–649.

[21] S. F. Hummel, E. Schonberg, and L. E. Flynn, “Factoring: A method

for scheduling parallel loops”, J. of Commun. of ACM, vol. 35,

no. 8, pp. 90–101, 1992.

[22] C. C. Pablo, G. M. Mercedes, and N. Alberto, “EMINENT: EM-

barrassINgly parallEl mutatioN Testing”, Procedia Comp. Science,

vol. 80, pp. 63–73, 2016.

[23] I. Saleh and K. Nagi, “Hadoopmutator: A cloud-based mutation test-

ing framework”, in 14th Int. Conf. on Software Reuse ICSR 2015,

Miami, FL, USA, 2014, pp. 172–187.

[24] Matlab Inc. [Online]. Available: http://www.mathworks.com/

products/simulink/ (accessed on March 10, 2017).

[25] K. Ghani, J. A. Clark, and Y. Zhan, “Comparing Algorithms for

Search-based Test Data Generation of Matlab Simulink Model, in

Proc. 10th IEEE Congr. on Evol. Comput. CEC’09, Trondheim,

Norway, 2009, pp. 2940–2947.

[26] R. DeMillo, R. Lipton, and F. Sayward, “Hints on test data selection:

help for practicing for programmer”, IEEE Computer, vol. 11, no. 4,

pp. 34–41, 1978.

[27] L. T. M. Hanh and N. T. Binh, “Mutation Operators for Simulink

Models”, in Proc. of the 4th Int. Conf. on Knowl. and Syst. Engin.

KSE 2012, Danang, Vietnam, 2012, pp. 54–59.

[28] T. A. Budd and D. Angluin, “Two notions of correctness and their

relation”, Acta Informatica, vol. 18, no. 1, pp. 31–45, 1982.

[29] L. T. M. Hanh and N. T. Binh, “Automatic generation of mutants for

simulink models”, in Proc. 16th Nat. Conf.: Selec. Problems About

IT and Telecommun., Danang, Vietnam, 2013, pp. 339–346.

[30] A. Krishnamurthy, S. Samsi, and V. Gadepally, “Parallel Matlab

techniques”, in Image Processing, Y.-S. Chen, Ed. InTech, 2009 [On-

line]. Available: http://www.intechopen.com/books/

image-processing/parallel-matalab-techniques

[31] G. Sharma and J. Martin, “MATLAB: A language for parallel com-

puting”, Int. J. of Parallel Programm., vol. 37, no. 1, pp. 3–36,

2009.

Le Thi My Hanh is cur-

rently a lecturer at the Informa-

tion Technology Faculty, Uni-

versity of Science and Tech-

nology, Danang, Vietnam. She

gained her M.Sc. degree in

2004 and the Ph.D. degree in

Computer Science at the Uni-

versity of Danang in 2016. Her

research interests are about soft-

ware testing and, more gener-

ally, application of heuristic techniques to problems in soft-

ware engineering.

Email: ltmhanh@dut.udn.vn

The University of Danang

University of Science and Technology

54 Nguyen Luong Bang, Lien Chieu

Danang, Vietnam

Nguyen Thanh Binh gradu-

ated from The University of

Danang, University of Science

and Technology in 1997. He

got a Ph.D. degree in Computer

Science from Grenoble Institute

of Technology (France) in 2004.

He is currently associate profes-

sor of the Information Technol-

ogy Faculty, The University of

Danang, University of Science

and Technology, Vietnam. He has been dean of Information

Technology Faculty at The University of Danang, Univer-

sity of Science and Technology since 2010. He has been

directing a research team since 2009. His research interests

include software testability, software testing and software

quality.

Email: ntbinh@dut.udn.vn

The University of Danang

University of Science and Technology

54 Nguyen Luong Bang, Lien Chieu

Danang, Vietnam

99

Le Thi My Hanh, Nguyen Thanh Binh, and Khuat Thanh Tung

Khuat Thanh Tung received

the B.Sc. degree in Software

Engineering from University

of Science and Technology,

Danang, Vietnam, in 2014.

Currently, he is participating in

the research team at DATIC

Laboratory, University of Sci-

ence and Technology, Danang.

His research interests focus on software engineering, soft-

ware testing, evolutionary computation, intelligent opti-

mization techniques and applications in software engi-

neering.

Email: thanhtung09t2@gmail.com

The University of Danang

University of Science and Technology

54 Nguyen Luong Bang, Lien Chieu

Danang, Vietnam

100

