24,895 research outputs found

    A vision-guided parallel parking system for a mobile robot using approximate policy iteration

    Get PDF
    Reinforcement Learning (RL) methods enable autonomous robots to learn skills from scratch by interacting with the environment. However, reinforcement learning can be very time consuming. This paper focuses on accelerating the reinforcement learning process on a mobile robot in an unknown environment. The presented algorithm is based on approximate policy iteration with a continuous state space and a fixed number of actions. The action-value function is represented by a weighted combination of basis functions. Furthermore, a complexity analysis is provided to show that the implemented approach is guaranteed to converge on an optimal policy with less computational time. A parallel parking task is selected for testing purposes. In the experiments, the efficiency of the proposed approach is demonstrated and analyzed through a set of simulated and real robot experiments, with comparison drawn from two well known algorithms (Dyna-Q and Q-learning)

    Evaluating the Impact of SDC on the GMRES Iterative Solver

    Full text link
    Increasing parallelism and transistor density, along with increasingly tighter energy and peak power constraints, may force exposure of occasionally incorrect computation or storage to application codes. Silent data corruption (SDC) will likely be infrequent, yet one SDC suffices to make numerical algorithms like iterative linear solvers cease progress towards the correct answer. Thus, we focus on resilience of the iterative linear solver GMRES to a single transient SDC. We derive inexpensive checks to detect the effects of an SDC in GMRES that work for a more general SDC model than presuming a bit flip. Our experiments show that when GMRES is used as the inner solver of an inner-outer iteration, it can "run through" SDC of almost any magnitude in the computationally intensive orthogonalization phase. That is, it gets the right answer using faulty data without any required roll back. Those SDCs which it cannot run through, get caught by our detection scheme

    Do optimization methods in deep learning applications matter?

    Get PDF
    With advances in deep learning, exponential data growth and increasing model complexity, developing efficient optimization methods are attracting much research attention. Several implementations favor the use of Conjugate Gradient (CG) and Stochastic Gradient Descent (SGD) as being practical and elegant solutions to achieve quick convergence, however, these optimization processes also present many limitations in learning across deep learning applications. Recent research is exploring higher-order optimization functions as better approaches, but these present very complex computational challenges for practical use. Comparing first and higher-order optimization functions, in this paper, our experiments reveal that Levemberg-Marquardt (LM) significantly supersedes optimal convergence but suffers from very large processing time increasing the training complexity of both, classification and reinforcement learning problems. Our experiments compare off-the-shelf optimization functions(CG, SGD, LM and L-BFGS) in standard CIFAR, MNIST, CartPole and FlappyBird experiments.The paper presents arguments on which optimization functions to use and further, which functions would benefit from parallelization efforts to improve pretraining time and learning rate convergence

    An Asynchronous Parallel Randomized Kaczmarz Algorithm

    Full text link
    We describe an asynchronous parallel variant of the randomized Kaczmarz (RK) algorithm for solving the linear system Ax=bAx=b. The analysis shows linear convergence and indicates that nearly linear speedup can be expected if the number of processors is bounded by a multiple of the number of rows in AA
    • ā€¦
    corecore