2,250 research outputs found

    A Domain Specific Approach to High Performance Heterogeneous Computing

    Full text link
    Users of heterogeneous computing systems face two problems: firstly, in understanding the trade-off relationships between the observable characteristics of their applications, such as latency and quality of the result, and secondly, how to exploit knowledge of these characteristics to allocate work to distributed computing platforms efficiently. A domain specific approach addresses both of these problems. By considering a subset of operations or functions, models of the observable characteristics or domain metrics may be formulated in advance, and populated at run-time for task instances. These metric models can then be used to express the allocation of work as a constrained integer program, which can be solved using heuristics, machine learning or Mixed Integer Linear Programming (MILP) frameworks. These claims are illustrated using the example domain of derivatives pricing in computational finance, with the domain metrics of workload latency or makespan and pricing accuracy. For a large, varied workload of 128 Black-Scholes and Heston model-based option pricing tasks, running upon a diverse array of 16 Multicore CPUs, GPUs and FPGAs platforms, predictions made by models of both the makespan and accuracy are generally within 10% of the run-time performance. When these models are used as inputs to machine learning and MILP-based workload allocation approaches, a latency improvement of up to 24 and 270 times over the heuristic approach is seen.Comment: 14 pages, preprint draft, minor revisio

    Transparent resource sharing framework for internet services on handheld devices

    Get PDF
    Handheld devices have limited processing power and a short battery lifetime. As a result, computationally intensive applications cannot run appropriately or cause the device to run out of battery too early. Additionally, Internet-based service providers targeting these mobile devices lack information to estimate the remaining battery autonomy and have no view on the availability of idle resources in the neighborhood of the handheld device. These battery-related issues create an opportunity for Internet providers to broaden their role and start managing energy aspects of battery-driven mobile devices inside the home. In this paper, we propose an energy-aware resource-sharing framework that enables Internet access providers to delegate (a part of) a client application from a handheld device to idle resources in the LAN, in a transparent way for the end-user. The key component is the resource sharing service, hosted on the LAN gateway, which can be remotely queried and managed by the Internet access provider. The service includes a battery model to predict the remaining battery lifetime. We describe the concept of resource-sharing-as-a-service that allows users of handheld devices to subscribe to the resource sharing service. In a proof-of-concept, we evaluate the delay to offload a client application to an idle computer and study the impact on battery autonomy as a function of the CPU cycles that can be offloaded

    Heuristics of node selection criteria to assess robustness of world airport network

    Get PDF
    The world airport network (WAN) is one of the networked infrastructures that shape today's economic and social activity, so its resilience against incidents affecting the WAN is an important problem. In this paper, the robustness of air route networks is extended by defining and testing several heuristics to define selection criteria to detect the critical nodes of the WAN. In addition to heuristics based on genetic algorithms and simulated annealing, custom heuristics based on node damage and node betweenness are defined. The most effective heuristic is a multi-attack heuristic combining both custom heuristics. Results obtained are of importance not only for advance in the understanding of the structure of complex networks, but also for critical node detection.Peer ReviewedPostprint (author's final draft

    A Survey on Live Virtual Machine Migrations and its Techniques

    Get PDF
    Today’s world is internet world. Almost all the people uses internet for accessing different services. In Cloud Computing various cloud consumers demand variety of services as per their dynamically changing needs over the internet. So it is the job of cloud computing to avail all the demanded services to the cloud consumers. But due to the availability of finite resources it is very difficult for cloud providers to provide all the demanded services in time. From the cloud providers’ perspective cloud resources must be allocated in a fair manner. So, it’s a vital issue to meet cloud consumers’ QoS requirements and satisfaction. Virtualization mainly abstracts the resources like CPU and Memory through Virtual Machine for efficient resource utilization. Virtual Machine Migration is one of the key technique for dynamic resource management in cloud computing. This paper mainly addresses key performance issues, challenges and techniques for live virtual machine migration in cloud computing. It also focuses on the key issues related to these existing live virtual machine migration techniques and summarizes them. Keywords: Cloud Computing, Migration, Virtualization, Virtual Machine, Physical Machine, Resource Management, Live Virtual Machine Migration
    • …
    corecore