4 research outputs found

    Mobile Robot Simultaneous Localization and Mapping Based on a Monocular Camera

    Get PDF
    This paper proposes a novel monocular vision-based SLAM (Simultaneous Localization and Mapping) algorithm for mobile robot. In this proposed method, the tracking and mapping procedures are split into two separate tasks and performed in parallel threads. In the tracking thread, a ground feature-based pose estimation method is employed to initialize the algorithm for the constraint moving of the mobile robot. And an initial map is built by triangulating the matched features for further tracking procedure. In the mapping thread, an epipolar searching procedure is utilized for finding the matching features. A homography-based outlier rejection method is adopted for rejecting the mismatched features. The indoor experimental results demonstrate that the proposed algorithm has a great performance on map building and verify the feasibility and effectiveness of the proposed algorithm

    Deep Cross-Domain Building Extraction for Selective Depth Estimation from Oblique Aerial Imagery

    Get PDF
    With the technological advancements of aerial imagery and accurate 3d reconstruction of urban environments, more and more attention has been paid to the automated analyses of urban areas. In our work, we examine two important aspects that allow online analysis of building structures in city models given oblique aerial image sequences, namely automatic building extraction with convolutional neural networks (CNNs) and selective real-time depth estimation from aerial imagery. We use transfer learning to train the Faster R-CNN method for real-time deep object detection, by combining a large ground-based dataset for urban scene understanding with a smaller number of images from an aerial dataset. We achieve an average precision (AP) of about 80% for the task of building extraction on a selected evaluation dataset. Our evaluation focuses on both dataset-specific learning and transfer learning. Furthermore, we present an algorithm that allows for multi-view depth estimation from aerial image sequences in real-time. We adopt the semi-global matching (SGM) optimization strategy to preserve sharp edges at object boundaries. In combination with the Faster R-CNN, it allows a selective reconstruction of buildings, identified with regions of interest (RoIs), from oblique aerial imagery

    DEEP CROSS-DOMAIN BUILDING EXTRACTION FOR SELECTIVE DEPTH ESTIMATION FROM OBLIQUE AERIAL IMAGERY

    Get PDF
    With the technological advancements of aerial imagery and accurate 3d reconstruction of urban environments, more and more attention has been paid to the automated analyses of urban areas. In our work, we examine two important aspects that allow online analysis of building structures in city models given oblique aerial image sequences, namely automatic building extraction with convolutional neural networks (CNNs) and selective real-time depth estimation from aerial imagery. We use transfer learning to train the Faster R-CNN method for real-time deep object detection, by combining a large ground-based dataset for urban scene understanding with a smaller number of images from an aerial dataset. We achieve an average precision (AP) of about 80 % for the task of building extraction on a selected evaluation dataset. Our evaluation focuses on both dataset-specific learning and transfer learning. Furthermore, we present an algorithm that allows for multi-view depth estimation from aerial image sequences in real-time. We adopt the semi-global matching (SGM) optimization strategy to preserve sharp edges at object boundaries. In combination with the Faster R-CNN, it allows a selective reconstruction of buildings, identified with regions of interest (RoIs), from oblique aerial imagery
    corecore