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This paper proposes a novel monocular vision-based SLAM (Simultaneous Localization andMapping) algorithm for mobile robot.
In this proposed method, the tracking and mapping procedures are split into two separate tasks and performed in parallel threads.
In the tracking thread, a ground feature-based pose estimation method is employed to initialize the algorithm for the constraint
moving of the mobile robot. And an initial map is built by triangulating the matched features for further tracking procedure. In
the mapping thread, an epipolar searching procedure is utilized for finding the matching features. A homography-based outlier
rejection method is adopted for rejecting the mismatched features.The indoor experimental results demonstrate that the proposed
algorithm has a great performance on map building and verify the feasibility and effectiveness of the proposed algorithm.

1. Introduction

To successfully accomplish autonomous or semiautonomous
tasks to assist daily human activities, building the 3D
geometry map of the environment is becoming one of the
fundamental issues for mobile robotics. In computer vision
community, tracking and mapping of the sparse tracked
features can be easily conducted in real time by using a hand-
held camera. Existing Structure-from-Motion (SFM) [1] and
filter-based Simultaneous Localization andMapping (SLAM)
[2] approaches have been investigated in recent years in order
to concurrently estimate the pose of a freely moving camera
and the sparse spatial structure of the environment [3].

Computer vision-based approaches offer substantial
advantages for robot localization and environment recogni-
tion. Therefore, a lot of researches were devoted to extend
the vision technique for mobile robot platform. Recently, it
has been shown that it is possible to estimate the trajectory
using a monocular camera in real time. The typical filter-
based vision SLAM is proposed by Davison with a single
camera. In Davison’s work, a probabilistic filtering was
used for features of tracking and mapping procedures in a
consistent scenemap and the camera posewas estimatedwith

a relative coordination in real time [4]. Royer et al. proposed
a monocular vision system for mobile robot localization and
autonomous navigation with the prevailing SFM SLAM [5].
In Royer et al.’s work, a sparse 3D map was built with a video
sequence for the learning step.Then the sparse map was used
to localize the robot for its learning path or a slightly different
path. In particular, Klein and Murray proposed a famous
SFM-based vision SLAM which is named PTAM (parallel
tracking andmapping) [6, 7]. In the PTAM, the mapping and
tracking were split into two separate tasks and performed in
parallel threads. In the tracking thread, the robust pose esti-
mation of camera was calculated with the feature detection
and matching. In the mapping thread, the features which are
achieved by epipolar searching procedure were triangulated
for map building. Recently, the PTAM algorithm has been
widely applied for initial guess for some dense mapping
systems [8, 9] or the localization method for robotic systems
[10–12]. Forster et al. proposed a semidirect monocular visual
odometry algorithmwhich is somehow different fromPTAM
[13]. In their work, the feature extraction was only required
when a key frame is selected to initialize new 3Dpoints. In the
tracking step, the correspondence of feature was an implicit
result of direct motion estimation as in [14]. For the outlier
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measurement of triangulated features’ depth, a Bayesian filter
was used to estimate the depth at feature locations.

Spirited by above-mentioned works, this paper aims to
propose a robust algorithm for a mobile robot based on an
improved PTAM. The main contributions of this paper are
that an initialization method is proposed by using ground
features and a homography-based constraint is used for
mismatched features rejection. Assume that a camera is
fixed on a mobile robot which is moving on a plane at
the beginning. In the initialization procedure, the mobile
robot pose is roughly localized by using a homography-based
pose estimation method with features tracked by frames.
When the distance of mobile robot is about up to 5 cm,
the ground features-based pose estimation is performed to
achieve the accurate localization of robot. And the pose of
camera is calculated by using the translation between camera
and robot.Then, the initialmap is established by triangulating
those matched features. After this initialization procedure,
the algorithm begins to track the robot by using a weighted
projection error function. When a key frame is achieved,
the mapping procedure is performed to achieve the matched
features by using epipolar searching and all the matched
features will be tested by a homography-based constraint
for outlier rejection. To optimize the generated map, local
and global bundle adjustments are also adapted as in PTAM
algorithm. The indoor experimental results demonstrate the
feasibility and effectiveness of the proposed algorithm.

The rest of the paper is organized as follows: in Section 2,
each part of the proposed algorithm is explained in detail.
Section 3 presents the experimental results of our system in
real environments. Finally, conclusions are drawn and future
work is outlined in Section 4.

2. Algorithm Architecture

The overall structure of the proposed algorithm is illus-
trated in Figure 1. Following the structure of the original
PTAM algorithm, the proposed algorithm is divided into
two independent threads which are the tracking thread
and the mapping thread. In the tracking thread, a pre-
calibrated camera which is fixed on the mobile robot is
capturing the images from the experiment scene. Then, a
ground feature-based pose estimation algorithm is employed
to achieve a high quality initial map for further camera
tracking procedure. After the initialization, the robot pose is
estimated by minimizing a weighted projection error-based
energy function. When a key frame is selected, the mapping
procedure will start in the other thread. The new map points
are detected by using the epipolar searching between the
new coming key frame and its nearest key frame. To get rid
of the mismatched features, a homography-based constraint
is utilized to reject the outliers and achieve a clear and
high quality 3D sparse map building. Finally, the local and
global bundle adjustments are used to achieve an optimized
map.

2.1. Parameter Definition. Let 𝑝 = (𝑥, 𝑦, 𝑧)𝑇 represent the
coordinate of a 3D point defined in the camera reference
frame and 𝑢

𝑛
= (𝑥
𝑛
, 𝑦
𝑛
)
𝑇 denotes the normalized image

projection coordinate. For a pinhole camera, projection of a
3D point 𝑝 onto the image plane appears as

𝑢
𝑛
= 𝐾𝜋 (𝑝) , (1)

where 𝜋(𝑝) = (𝑥/𝑧, 𝑦/𝑧, 1) is the projection function. The
term 𝐾 specifies the intrinsic parameter matrix; that is,

𝐾 =
[
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where (𝑓
𝑥
, 𝑓
𝑦
) is the focal length expressed in units of

horizontal and vertical pixels, whereas (𝑢
𝑥
, 𝑢
𝑦
) denotes the

principal point coordinates of the image plane. It is worth
noting that the above linear model fails to describe a wide-
angle camera. In this work, conforming to the mathematical
model proposed by Devernay and Faugeras [15], geometric
mapping constraints between the distorted image projection
(with subscript 𝑑) and the corresponding undistorted loca-
tion (with subscript 𝑢) are formulated as
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) .

(3)

𝑟 is the radial distance; that is, 𝑟
𝑢
= ‖𝑢‖. We use the pose of

camera with respect to the world frame of reference as

𝑇 = [
𝑅 𝑡

0 1
] , (4)

where 𝑇 ∈ SE(3) is a 4 × 4 matrix describing the camera pose
for each frame relative to the world, 𝑅 denotes the rotation
matrix, and 𝑡 stands for the translation vector. 𝑇 transforms
the point form the camera’s frame of reference to that of the
world, such that 𝑝

𝑐
= 𝑇𝑝
𝑤
.

Assume that the camera is fixed on the mobile robot
with a constant transformation described by transformation
𝑇
𝑐𝑟

as is shown in Figure 1. Let 𝑇
𝑟𝑠

be the transformation
describing the relative motion of the robot within a time step
when its camera captures two images. Since 𝑇

𝑐𝑟
is a constant,

the relative motion of the camera between the captured two
images in its own frame of reference 𝑇

𝑐𝑠
is related to the

motion of the robot and can be parameterized by planar
motion of the robot as follows:

𝑇
𝑟𝑠
= 𝑇
𝑟𝑐
𝑇
𝑐𝑠
𝑇
𝑐𝑟
, (5)

where 𝑇
𝑐𝑟
= 𝑇
−1

𝑟𝑐
.

2.2. Initialization of Algorithm. As the ground features are
sometimes much richer than the upper space in the indoor
environment, a ground feature-based localization algorithm
is adopted for initializing the improved PTAM algorithm.
Two captured images (live 𝐼

𝑐
and reference 𝐼

𝑟
) of the same

ground plane are related by a plane homography matrix 𝐻.
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Figure 1: The illustration of the proposed algorithm.

For two corresponding features 𝑢 and V, the homography
matrix transforms feature coordinates in the reference image
into the pixels in the live image and depends on the camera
motion 𝑇

𝑐𝑠
and the parameters 𝑛

𝑑
of the ground plane in the

reference camera frame:

𝑢 = 𝛼𝐻V,

𝐻 = 𝐾𝑇
𝑐𝑟
𝑇
𝑟𝑠 (x) 𝑇𝑟𝑐 (𝐼 | 𝑛𝑑)

𝑇
𝐾
−1
,

(6)

where 𝛼 is the scale factory. 𝑛
𝑑
and𝑇
𝑟𝑐
are easily precalculated

by using the calibration method for camera.
The pose of camera can be achieved by minimizing the

following energy function:

argminx ∑

𝑟
𝑝 (x)


, (7)

where 𝑟
𝑝
= 𝜋(𝐻(x)𝑢)−V is the homography-based projection

error.
As the nonground features have great influence on

the pose estimation, a ground feature detection and pose
estimation algorithm is expressed as (8) according to the
homography-based pose estimation algorithm and a 3D
scene flow depth estimation algorithm:

argmin
x,𝑑
∑𝐿(𝑑 (𝑢) − 𝑑𝑔 (𝑢))


𝑟
𝑝 (x)


+
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 ,

𝐿 (𝑥) =
{

{

{
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0 others,

(8)

where 𝑑
𝑔
= 1/𝑛

𝑇
𝑢 is the depth of the ground feature; 𝑑

is the depth estimated by a 3D scene flow depth estimation
algorithm. 𝐿(𝑥) indicates whether the feature is placed on

the ground. Only when |𝑑
𝑖
− 𝑑
𝑔
| ≤ 𝛿, 𝐿(𝑥) = 1. 𝑟

𝑑
=

𝐾𝜋(𝑇
𝑐𝑠
(x)𝑝(𝑢, 𝑑)) − V measures the projection error driven

by the depth of features. 𝑝(𝑢, 𝑑) is the coordinate of the 3D
point corresponding to the feature 𝑢 with the depth 𝑑.

To optimize this proposed ground feature detection
model, an alternating scheme is utilized to update either x or
𝑑 in every iteration. The full procedure in iteration is shown
as follows:

(a) Fix 𝑑; solve

argminx ∑𝐿(𝑑 − 𝑑
𝑔
)

𝑟
𝑝 (x)


. (9)

To optimize this energy function, the first-order Taylor
expansion of 𝑟

𝑝
(x) is performed around x = x

0
. Then, the

error function becomes

𝑟
𝑝 (𝜉) = 𝑟𝑝 (x0) + 𝐽𝜉, (10)

where 𝐽
𝑝
= (𝜕𝑟
𝑝
/𝜕x)|x0 .

Finally, a Gauss-Newton step is obtained to efficiently
optimize that error function iteratively.The solution of energy
function becomes
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(11)

The updating procedure of robot pose is applied as
follows:

𝑇 = 𝑇inc (x) 𝑇, (12)

where 𝑇 is the last estimate of the solution and 𝑇inc(x) is a
small update to the estimate parameterized by x ∈ se(2).



4 Journal of Robotics

In this approach, we are required to evaluate the partial
derivatives of the cost function at the solution x = x

0
. The

derivation of the error function is calculated in each feature
point by partial derivatives:
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(13)

where 𝑥
𝑖
is the 𝑖th generator of the se(2) group.

(b) Fix x; solve

argmin
𝑑

∑
𝑟𝑑 (𝑢, 𝑑)

 . (14)

The energy function can be solved by iterating the
following equations:

Δ𝑢
𝑖
= 𝐽
𝑑
∇𝑑,

𝑑 = 𝑑 + ∇𝑑,
(15)

where 𝐽
𝑑
is the Jacobian for the projection function evaluated

at point u; 𝐽
𝑑
= (𝜕𝜋(𝑝)/𝜕𝑝)(𝜕𝑝/𝜕𝑑). Generally, it only needs

3∼5 iterations to achieve the convergent solution.

(c) Revalue 𝛿 by using 𝛿 = max(𝛾, 𝛽𝛿).
(d) The iteration will not stop until the ground features

are no longer changed or the maximum iteration is
arrived at.

(e) When all the ground features are detected, all the
ground features are used to achieve more accurate
pose estimation with an m-estimation scheme of (9).
The weighted energy function is described as follows:

minx ∑𝑤(𝑟𝑝)

𝑟
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, (16)

where 𝑤 is Tukey’s biweight function [16] for 𝑟
𝑝
and
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where 𝑥
𝑚
is the median value of 𝑥, 𝑐 = 1.4826 is the

robust standard deviation, and 𝑏 = 6.6851 is Tukey
specific constant.

Figure 3 illustrates the initialization of the proposed
algorithm. Firstly, the algorithm is tracking the features using
a patch-based method as is shown in Figure 3(a). All tracked
features are regarded as the ground features for raw pose esti-
mation by solving (9). When the translation of mobile robot
is about up to 5 cm, the ground feature detection and pose

estimation algorithm is performed for the accurate localiza-
tion of mobile robot. In Figure 3(b), all the ground features
are detected by using the proposed algorithm, and reliable
and accurate pose estimation is achieved by using the m-
estimation scheme. With this accurate localization of mobile
robot, all matched features are triangulated for map building
and an initial map is established after the epipolar search-
ing procedure, as shown in Figures 3(c) and 3(d). It demon-
strates that the proposed algorithm is able to detect all the
ground features and achieve high accurate pose estimation
during the initialization.

2.3. Tracking Procedure. Accurate camera pose determina-
tion is necessitated in a consistent monocular map building,
and the goal of this process is to find a rotation matrix 𝑅
and translation vector 𝑡 which transform the current camera
coordinate frame to that of the global world. In this work,
the optimal pose is derived by iterating a robust objective
function which minimizes the reprojection error on the
image plane used in PTAM algorithm:

𝜉 = argmin
𝜉

∑

𝑖

𝑤 (𝑒
𝑖
)
𝑒𝑖
 , (18)

where 𝑒
𝑖
is the projection error. 𝑤(𝑒

𝑖
) stands for Tukey’s

biweight function.
After intense experimental study, we come to realize that

the quality of map initialization has a significant impact on
the subsequent mapping. Prompted by this requirement, we
initiate the 3D point cloud before the dynamic tracking. The
method in Section 2.2 is performed for initialization. During
this initialization procedure, an image pair is thus gathered
at different camera locations which are corresponding to the
robot moving and estimated by employing a homography-
based method. When the distance of robot moving is about
5 cm and an accurate localization of robot is achieved during
the initialization, a good quality initial map guess is provided
by triangulating the correspondent points for further tracking
and sparse mapping procedure.

Once tracking starts, we attempt to track the FAST-
10 corners [17] within the impeding images and they are
employed as visual features for tracking in data association
procedure. Spatial 6D trajectory of the moving camera could
be derived by SFM. As correct interframe correspondence
is of vital importance, FAST-10 features are extracted and
matched on a four-level coarse-to-fine architecture to boost
tracking performance. An 8 × 8-pixel patch template is
employed for matching the corner features and the most
appealing matched pair is selected by searching within the
circular candidate regionwith the smallest difference ZMSSD
(zero-mean SSD) [18] scores. The features on coarse levels
of the image pyramid are searched to roughly estimate the
relative pose with (18), and then a final accurate pose is
optimized by using a thousand of feature correspondences.
During the experiment, the tracking is executed with a key
frame-based strategy for subsequent incremental mapping. A
key frame is selected by taking into account such factors as
tracking quality, number of skip frames, proportion of new
features, and distance away from the nearest key point.
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Table 1: The deviation evaluation of original PTAM and proposed algorithm to ground only PTAM.

𝑥 𝑦 𝑧 Pitch Yaw Roll

Proposed algorithm Mean −0.0055 0.0052 0.0015 −0.0003 −0.0002 −0.0003

Variance 0.0025 0.0048 0.0015 0.0006 0.0009 0.0004

Original PTAM Mean −0.0231 0.1835 0.0104 −0.0035 0.0057 0.0044
Variance 0.1166 0.2207 0.1540 0.0272 0.0159 0.0115

2.4. Mapping Procedure. Based on the pose estimation by
image features, the matched feature points are triangulated
into 3D point cloud. After the sparse map initialization stated
previously, the sparse mapping thread begins to query for
incorporation of new key frames. Once a new key frame is
successfully selected, the extracted FAST features are evalu-
ated by using Shi-Tomas score to find out the most salient
points in the new key frame. As Euclidean transformation
between current key frame and its closest neighbor, which
is reported in tracking routine, is available, new correspon-
dent features can be found in adjacent key frame by using
epipolar constraint and ZMSSD criterion is applied for those
remaining unmatched feature points in current key frame.
Then those new map points are incorporated into the map
after triangulation of new feature pairs.

It is worth noting that projection of a 3D point in the
sparse map is generally inconsistent with the corresponding
feature point due to inaccuracy involved in feature finding,
pose estimation, and so forth. A small region around the
corresponding features can usually be found in epipolar
searching procedure between key frames. With this associa-
tion among the key frames, a refinemap is optimized by using
a bundle adjustment routine [19] to simultaneously optimize
the pose for all key frames and all map points. In practice, this
procedure becomes increasingly expensive in computation as
map size and the number of key frames increase. For this
reason, a local bundle adjustment is also adopted to perform
in this thread. The most recent key frame and its closest
neighbors and all of the map points in their view are adjusted
by using the local bundle adjustment. According to this local
and global bundle adjustment mechanism, the key frame can
be integrated in a very short possible time, and it also allows
a reasonable rate of camera tracking.

2.5. Homography-Based Outlier Rejection. In the mapping
thread, an epipolar searching procedure is employed to
achieve some new matched features. The matched features
are searched by finding a minimum difference of ZMSSD
among features which are around the epipolar. Ideally, the
ZMSSD value between two matched patches should be very
small. In particular, the ZMSSD which is equal to 0 means
that two matched patches are perfectly fitted. As ZMSSD
is not an invariant with the rotations, some mismatched
features are triangulated and added into map in PTAM.
Although a few mismatched features will be rejected during
the bundler adjustment optimization, most of them are
hardly to be removed. As a projection error-based pose
estimation algorithm is utilized in PTAM, the noise will have
some effect on the accuracy of localization.

To analyze the performance of features matching in
PTAM, the features are detected in the three typical images
which are shown in Figure 4(a) by using the FAST-10 algo-
rithm. The ZMSSDs between the original image patch and
warped patch which, respectively, rotates and translates along
𝑥-axis, 𝑦-axis, and 𝑧-axis are calculated and drawn in Figures
4(b)–4(d) for all features.TheZMSSD values of some features
with different rotation or translation are easily confused for
feature matching during the patch searching. Moreover, the
epipolar searching procedure is generally hard to establish
one-one mapping for feature matching with such confused
ZMSSD evaluation. Therefore, a noised map and the low
accurate pose estimation are sometimes achieved by the
original PTAM algorithm.

To efficiently establish a correct feature matching rela-
tionship, a homography-based constraint is adopted for those
new detected features. After epipolar searching procedure in
𝑖th image level, the homography 𝐻

𝑖
is estimated by using a

RANSAC approach with all the detected features. Only when
the projection error 𝑟

𝑗
is smaller than the threshold 𝛿

𝑖
is

the detected feature 𝑢
𝑗
accepted as good matched feature.

Consider

𝑠 (𝑢
𝑖

𝑗
) =
{

{

{

𝑟
𝑗
≤ 𝜎
𝑖
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𝑟
𝑗
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𝑖
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𝑟
𝑗
= 𝜋 (𝐻

𝑖
V𝑖
𝑗
) − 𝑢
𝑖

𝑗
,

(19)

where V𝑖
𝑗
is the reference feature of 𝑢𝑖

𝑗
. Generally, the

homography in the higher level of the image pyramid can be
approximated by the lower one with the following equation:

V𝑖−1
𝑗
=

[
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𝑠
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𝑠
1

]
]
]
]
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]
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(20)
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Figure 2: The parameter calibration for mobile robot: (a) is the procedure of calibration of plane parameter, and (b) is the robot platform.

(a) (b)

(c) (d)

Figure 3: The procedure of initialization: (a) illustrates the tracking of features, the detected ground features are shown in (b), (c) shows all
the matched features, and (d) demonstrates the initial map after epipolar searching.

where 𝑠 is the down-sample rate of image pyramid. During
the experiment, the threshold 𝛿

𝑖
in the high level of image

pyramid is also decreased by the scale of image down-sample
rate.

Figure 5 is a compare result between the original PTAM
algorithm and the improved PTAM algorithm. The exper-
imental environment is shown in Figure 5(a). Figure 5(b)
shows the map generated by the original PTAM algorithm.
7,680 feature points are achieved in the established map and
6 key frames are generated during the camera moving. There
are some mismatched features which have been triangulated
into the map. Though a few of the mismatched features are

rejected after bundle adjustment optimization, some mis-
matched features still exist which would have an effect on the
localization of PTAM algorithm. Figure 5(c) demonstrates
the map established by using PTAM with the homography-
based constraint. More than 1500 feature points are accepted
and added to the map. And the mismatched features are
rejected by using the homography-based constraint.

3. Experimental Result

Indoor experiments are conducted to verify the validity
and accuracy of the algorithm. Our hardware system setup
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Figure 4: Continued.
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Figure 4: The ZMSSDs for rotation and translation of features: (a) shows the images for feature detection; (b), (c), and (d) are the ZMSSDs
with rotations around 𝑥-axis, 𝑦-axis, and 𝑧-axis; (d) illustrates the ZMSSDs with the translations along 𝑥-axis and 𝑦-axis.
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Figure 5: A compare result of the original PTAM and the improved PTAM algorithm: (a) is the experiment environment, (b) shows the map
generated by the original PTAM, and (c) shows the map generated by the improved PTAM.
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Figure 6: The experimental environment.

consists of a Pioneer3-DX platform and a monocular vision
system which is depicted in Figure 2. The robot platform
is qualified for the indoor research activities like mapping,
obstacle avoidance, path planning, and so forth. A forward
looking Point Grey Flea2 camera (shown in Figure 1) is fixed
on the mobile robot. The focal length of the camera is about
3.5mm and the field of view is about 65∘. The camera is
connected via 1394 B to a 2.8GHz Intel i5 computer with
4G RAM. The experiments are performed in an indoor
environment as shown in Figure 6.

During the experiment, the mobile robot is running
following the path fromA to D, while the camera is capturing
the images. Firstly, the algorithm is initialized by using

the proposed ground features-based method. During the
initialization procedure, the features are tracked frame by
frame. All the features are regarded as the ground features
and the coarse localization of mobile robot is estimated by
(9). When the distance of robot moving is about up to
5 cm, the ground features detection procedure is performed
to achieve accurate localization for the mobile robot. With
the translation between the mobile robot and camera, the
estimated pose of camera is calculated for initializing the
mapping and epipolar searching. Then, all matched features
are triangulated and added to the map for further tracking
procedure. After the initialization, the algorithm begins to
estimate its pose by minimizing a weighted projection error
function and the map is updated with the epipolar searching
after a key frame is achieved. To evaluate the proposed
method, the PTAM algorithm which only uses the ground
features in tracking procedure is considered as the ground
truth during the experiment. In the ground only PTAM
algorithm, the detected features are triangulated to achieve
the 3D coordination 𝑝

𝑖
. And the features are accepted in

the algorithm only when 0.95 ≤ ‖𝑛
𝑇

𝑑
𝑝
𝑖
‖ ≤ 1.05. As the

initialization of the original PTAM algorithm is sometimes
unsuitable during the experiment, the ground feature-based
pose estimation is employed to initialize the algorithm.

Figure 7 is the mapping result of the proposed algorithm
and the original PTAM algorithm. Figures 7(a) and 7(b) are
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(a) (b)

(c) (d)

Figure 7:Themapping result: (a) and (c) are generated by original PTAMalgorithm and proposed algorithm; (b) and (d) are the downlooking
of (a) and (c).

the map generated by the original PTAM algorithm in the
different viewpoints. Some mismatched features have been
added to the map by using the epipolar searching procedure.
It would have much influence on the pose estimation with
mismatched features. Even worse is the fact that the tracking
procedure would make some ridiculous mistakes and fail
to track the features, which is hardly to be recovered. To
deal with these mismatched features, a homography-based
constraint is employed in our improved algorithm. After the
epipolar searching procedure, all the matched features which
are detected between the new coming key frame and its
nearest key frame are used to estimate homography with a
RANSAC scheme. The features are filtered with the distance
of homography projection errors. In Figures 7(c) and 7(d), the
mismatched ground features are rejected and a clearness map
is generated by using the proposed method. The experiment
demonstrates that the proposed algorithm is able to achieve
a clear and high quality 3D feature map.

Figure 8 shows the compare result of the localization
among the original PTAM, ground only PTAM, and our
proposed algorithm during the mapping experiment. As is
shown in Figure 8, the estimated parameters x, y, z, pitch, yaw,
and roll of the proposed algorithm and ground only PTAM
are highly consistent with each other. But in the original
PTAM algorithm, the estimated parameters deviate far from
the ground only PTAM algorithm due to the noised map.
Table 1 illustrates the mean and the variance of the error
which is achieved by the original PTAM and the proposed
algorithm. The estimated trajectories of three methods are

shown in Figure 9. The proposed algorithm is highly con-
sistent with the ground only PTAM. All above experimental
results demonstrate that the proposed algorithm has a high
performance on mismatching features rejection and pose
estimation. Those results also verify the feasibility and effec-
tiveness of the proposed algorithm.

4. Conclusions

This paper proposes a parallel tracking and mapping algo-
rithmwith amonocular camera formobile robot.The camera
is fixed on the mobile robot with a consistent translation,
and the robot is moving in an indoor experiment. A ground
feature-based pose estimation method is employed to initial-
ize the algorithm. And an initial map is built by triangulating
the matched features for further tracking procedure. To
establish a sparse 3D map, an epipolar searching procedure
is utilized for finding the matching features when it comes
to a key frame. Moreover, a mismatched feature rejection
method is adopted based on homography for achieving a
clearness map. The indoor experimental results demonstrate
that the proposed algorithm has a high performance on
sparse feature-based mapping and verify the feasibility and
effectiveness of the proposed algorithm.

As future work, we will further improve the performance
of the proposed algorithm to deal with the mapping in the
lighting changed scene. And we also plan to find way to
extend ourwork to a dense visual SLAM systemwith amono-
cular camera.
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Figure 8: The compare result among the original PTAM, ground only PTAM, and our proposed algorithm.
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