9 research outputs found

    Optimization of systems of algebraic equations for evaluating datalog queries

    Get PDF
    A Datalog program can be translated into a system of fixpoint equations of relational algebra; this paper studies how such a system can be solved and optimized for a particular query. The paper presents a structured approach to optimization, by identifying several optimization steps and by studying solution methods for each step

    Decomposability and Its Role in Parallel Logic-Program Evaluation

    Get PDF
    This paper is concerned with the issue of parallel evaluation of logic programs. We define the concept of program decomposability, which means that the load of evaluation can be partitioned among a number of processors, without a need for communication among them. This in turn results in a very significant speed-up of the evaluation process. Some programs are decomposable, whereas others are not. We completely syntactically characterize three classes of single rule programs with respect to decomposability: nonrecursive, simple linear, and simple chain programs. We also establish two sufficient conditions for decomposability

    Eliminating Recursion from Monadic Datalog Programs on Trees

    Full text link
    We study the problem of eliminating recursion from monadic datalog programs on trees with an infinite set of labels. We show that the boundedness problem, i.e., determining whether a datalog program is equivalent to some nonrecursive one is undecidable but the decidability is regained if the descendant relation is disallowed. Under similar restrictions we obtain decidability of the problem of equivalence to a given nonrecursive program. We investigate the connection between these two problems in more detail

    A data complexity and rewritability tetrachotomy of ontology-mediated queries with a covering axiom

    Get PDF
    Aiming to understand the data complexity of answering conjunctive queries mediated by an axiom stating that a class is covered by the union of two other classes, we show that deciding their first-order rewritability is PSPACE-hard and obtain a number of sufficient conditions for membership in AC0, L, NL, and P. Our main result is a complete syntactic AC0/NL/P/CONP tetrachotomy of path queries under the assumption that the covering classes are disjoint

    A tetrachotomy of ontology-mediated queries with a covering axiom

    Get PDF
    Our concern is the problem of efficiently determining the data complexity of answering queries mediated by descrip- tion logic ontologies and constructing their optimal rewritings to standard database queries. Originated in ontology- based data access and datalog optimisation, this problem is known to be computationally very complex in general, with no explicit syntactic characterisations available. In this article, aiming to understand the fundamental roots of this difficulty, we strip the problem to the bare bones and focus on Boolean conjunctive queries mediated by a simple cov- ering axiom stating that one class is covered by the union of two other classes. We show that, on the one hand, these rudimentary ontology-mediated queries, called disjunctive sirups (or d-sirups), capture many features and difficulties of the general case. For example, answering d-sirups is Π2p-complete for combined complexity and can be in AC0 or L-, NL-, P-, or coNP-complete for data complexity (with the problem of recognising FO-rewritability of d-sirups be- ing 2ExpTime-hard); some d-sirups only have exponential-size resolution proofs, some only double-exponential-size positive existential FO-rewritings and single-exponential-size nonrecursive datalog rewritings. On the other hand, we prove a few partial sufficient and necessary conditions of FO- and (symmetric/linear-) datalog rewritability of d- sirups. Our main technical result is a complete and transparent syntactic AC0 / NL / P / coNP tetrachotomy of d-sirups with disjoint covering classes and a path-shaped Boolean conjunctive query. To obtain this tetrachotomy, we develop new techniques for establishing P- and coNP-hardness of answering non-Horn ontology-mediated queries as well as showing that they can be answered in NL

    A tetrachotomy of ontology-mediated queries with a covering axiom

    Get PDF
    Our concern is the problem of efficiently determining the data complexity of answering queries mediated by descrip- tion logic ontologies and constructing their optimal rewritings to standard database queries. Originated in ontology- based data access and datalog optimisation, this problem is known to be computationally very complex in general, with no explicit syntactic characterisations available. In this article, aiming to understand the fundamental roots of this difficulty, we strip the problem to the bare bones and focus on Boolean conjunctive queries mediated by a simple cov- ering axiom stating that one class is covered by the union of two other classes. We show that, on the one hand, these rudimentary ontology-mediated queries, called disjunctive sirups (or d-sirups), capture many features and difficulties of the general case. For example, answering d-sirups is Π2p-complete for combined complexity and can be in AC0 or L-, NL-, P-, or coNP-complete for data complexity (with the problem of recognising FO-rewritability of d-sirups be- ing 2ExpTime-hard); some d-sirups only have exponential-size resolution proofs, some only double-exponential-size positive existential FO-rewritings and single-exponential-size nonrecursive datalog rewritings. On the other hand, we prove a few partial sufficient and necessary conditions of FO- and (symmetric/linear-) datalog rewritability of d- sirups. Our main technical result is a complete and transparent syntactic AC0 / NL / P / coNP tetrachotomy of d-sirups with disjoint covering classes and a path-shaped Boolean conjunctive query. To obtain this tetrachotomy, we develop new techniques for establishing P- and coNP-hardness of answering non-Horn ontology-mediated queries as well as showing that they can be answered in NL
    corecore