
WHY A SINGLE PARALLELIZATION STRATEGY IS NOT ENOUGH
TN KNOWLEDGE BASES

Simona Cohen, Ouri Wolfson

Columbia University
Dept. of Computer Science

Technical Report CUCS-O 15-90

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Columbia University Academic Commons

https://core.ac.uk/display/161440061?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

WHY A SINGLE PARALLELIZATION STRATEGY IS ~OT E~OUGH

IN KNOWLEDGE BASES

Simona Rabinovici Cohen

Ouri Wolfson 1

Deparunent of Computer Science

The Technion - Israel Institute of Technology

Haifa 32000, Israel

ABSTRACT

We address the problem of parallelizing the evaluation of logic programs in data intensive applications.

We argue that the appropriate parallcli/.ation srrategy for logic-program evaluation dcpends on the program

being cvaluated. Thcrcforc, this paper is concerned with the issues of program-classification, and

parallclization-stratcgics. We propose sevcral parallelization stratcgics based on the concept of data

reduction - the original logic-program is evaluatcd by several proc~ssors working in parallel. each using

only a subset of thc database. The strategies differ on the evaluation cost, thc ovcrhead of communication

and synchronization among processors, and the programs to which they are applicable. In particular, we

start our study with pure-parallelization, i.c., parallelization without overhead. An intcresting class

structure of logic programs is demonstrated. when considering amenability to pure-pamllelization. The

relationship to the ~C complexity class is demonstrated. Then \I.e propose stratcgies that do incur an over

head, but are optimal in a sense that will be precisely delined.

This paper makes the initial steps towards a theory of parallcl logic-programming.

I Present address: Department of Computer Science. ColumbIa Cnlv .• 'ew York, "Y 10027. CSA.
Research was supponed In pan by the Foundation for Research In Electronics. Computers and Communications, in Israet, by DARPA
Research Grant #F·29601·87·C'{)()7~. 3nd by the Center for Adv3nced Technology at Columbia Cnlversity under contract "YSSTF·
CAT(89)·5.

- 1 -

1. Il'iTRODLCTION

It is accepted by now that declarative languages present numerous advantages over navigational

ones, and should constitute the interface to the next-generation databases, such a~ deductive and object

oriented databases ([8]). We feel that parallelization holds the key to acceptable performance of a declara

tive language. In this paper we continue the study of Datalog parallelization, begun in [WS, WJ. Datalog

(see [tvIW]) is a simple logic programming language. An example of a recursive Datalog program, consist

ing of two rules, is the following:

T(x.y):- T(x,z), A (z,y)

T(x,y):- A (x,y)

It computes the transitive closure of the relation A. The program is evaluated in a set-oriented fashion by

initializing the relation T to A, and then iteratively adding to T the new tuples obtained by joining (or com

posing) the relations T and A.

At the heart of our present study lies the realization that "no single parallelization strategy is

appropriate for all logic programs" (to rephrase the analog statement in [MNSUVJ, that no single evalua

tion strategy is appropriate). Therefore, a large part of this paper is de oted to the classitication of pro

grams according to some fundamental parallelization properties. The most powerful property is strong

decomposability. It enables the evaluation to be separated into any number of completely independent

tasks, that can be carried out in parallel. Program classes that enable partial independence of the evalua

tion tasks, are also introduced (section 6).

The other part of the paper is devoted to parallelization strategies, i.e., sets of algorithms coopera

tively evaluating a program. We propose several classes of parallelization strategies, and analyze their pro

perties and limitations. The paralklization strdtegies proposed are based on the data-reduction principle;

each processor evaluates the original logic-program, but using only a subset of the database. This principle

underlies parallelization in many domains, including computer vision and vcctor-computing. In this paper

we demonstrate its application to logic programming. For example ([WS D, the transitive closure program

presented above can be evaluated in parallel, by having one processor st.ar1. from the even nodes, thus com

puting the tuples of the relation T in which the lirst component is e en. and the second processor start from

the odd nodes. This can be done if one processor evaluates the program having the predicate even (x)

appended to the body of both rules, and the other evaluates the program with odd (x) appended. The perfor

mance of such methods is analyzed in this paper.

The strategies analyzed in this paper differ in th.:ir cvaluation cost, overhead, and classes of pro

grams to which they can be applied. We postulate that the performancc of a parallelization strategy

depends on these two factors: the total evaluation cost, and the overhead of communication and synchroni-

I.ation among the algorithms of the strategy ~.

l As often demomtrated (e.g. [L Y. DIYD. commUnlC;IIJOn overhe'id limns the pOlcnual gams m performance by paraIleliza
Uon. For eumple. the parallel evaluation of the transluve closure. descnbcd .Ibovc. doc, no(need any communic.1lion between the
two processor;.

-2-

We first fonnally define and study pure parallelization, i.e., parallelization without overhead. We

focus on pure parallelization strategies of minimal evaluation cost, and show that a program can be paral

lelized by such a strategy, if and only if it is strongly decomposable. By cost-minimality we mean that the

total evaluation COSt of all the processors working in parallel. is not higher than the cost of a single proces

sor perfonning the evaluation single-handedly; and this holds for every input of the logic program. The dis

tribution of the work to processors is static. i.e. independent of the input to the datalog program. and is per

fonned by a hash function. If it distributes the workload evenly, then minimal total evaluation cost

translates into optimal speed-up. Our result is obtained using three different evaluation cost measures. One,

"the number of successful inferences", was introduced by Bancilhon and Ramakrishnan ([BRl). The others

are introduced in this paper.

The results of this paper combined with the results in [W], demonstrate an interesting class structure

of programs, with respect to pure parallelization. Most amenable is the class of strongly-decomposable

programs. A program in this class can be purely parallclized, with minimal [Otal evaluation-cost. Next is

the class of sharable programs. Such a program can be purely parallelized, but the evaluation cost may not

be minimal. Finally, the class of non sharable programs cannot be purely parallelized. The relationship

between these classes of programs, and the programs in the NC complexity class is demonstrated. The class

of NC programs intersects the class of sharable and strongly decomposable programs, but is neither con

tained in, nor contains, any of them.

Next we consider strat(:gies that do incur an overhead. We distinguish between control-overhead and

data-overhead. The fonner consists of control messages being transmitted between processors, and the

latter consists of data messages, i.e. relations or part of them, being transmitted. We propose an indepen

dent parallelization strategy, i.e. a strategy that incurs control- but not data-overhead. It is still restricted in

applicability to the strongly decomposable programs, but it has minimal total evaluation cost and it bal

ances the evaluation work-load among the processors. Load-balancing is dynamic: when a processor

becomes idle it takes work from the other processors. Finally. we introduce a strategy, called DS3, that can

be applied to parallelize all programs, and it incurs minimal data-overhead. DS3 also has minimal

evaluation-cost for the linear programs.

The parallelization strategies proposed in ulis paper arc "scalable", i.e., an arbitrary number of pro

cessors can be effectively utilized. (In any case, we assume that the number of processors is significantly

smaller than the number of tuples in the database). The dataJog programs considered, are the ones with

two rules, and one. unary or binary. intentional predicate (such a program is called single rule program. or

sirup, in [CK]). They are syntactically simple. yet as demonstrated, provide a rich lest-bed, with subclasses

having different paraJlelization properties. Additionally, the Slrdtegy DS3 can be easily generalized to arbi

trary datalog programs.

Concerning relevant work. most effom in the area of parallelization have been devoted to characteri

zation of the logic programs which belong to the NC complexity class (see [UVI. [CK), [Kl. [AP]). If a

program is in NC, it means that a query can be evaluated very fast (in polylogarithmic time). given a very

-3-

large number of processors (polynomial in the number of database tuples). The processors have to com

municate extensively, usually through common memory. If the number of processors is constant, then the

NC-type of evaluation algorithms can be adapted by assigning the work of multiple processors to a single

processor. However, it turns out that, which multiple processors are assigned to the single one, is very

imponam as far as overhead (particularly if the processors do not have shared memory) and evaluation

cost are concerned. The work in this paper can be regarded in some sense, as the study of this issue - how

to partition the work among the processors.

An approach, called horizontal partitioning, is taken in the parallelization of production systems

([IS,M,St,TM]). It partitions the rules among the processors, and each processor evaluates its own set of

rules, while communicating with the other processors. The data-reduction approach advocated here, is

orthogonal to horizontal partitioning (perhaps should also be called vertical partitioning). Data-reduction

partitions the data (or some of it) rather than the rules. However, a variant of data reduction, named "copy

and constrain", was proposed independently in the production-system literature ([S!vlMJ), and its merit was

demonstrated experimentally using OPS5 ([P]). But, the LOpics of this paper, namely program classification

and parallelization strategies, have nO! been addressed previously.

Another body of relevant research has been performed on parallel and concurrent variations of PRO

LOG ([DLl). Much of this research, along with a description of the three leading languages that have

emerged (Fiat Concurrent Prolog, Parlog, and Guarded Hom Clauses) is summarized in the collection of

papers [Sh). However, there is a fundamental difference between logic program evaluation in knowledge

bases, which is performed bouom-up (or forward chaining), and concurrent Prolog, which is evaluated

top-down (or backward chaining). As a result of this difference we feel that not much of the research on

concurrent Prolog can be utilized in knowledge bases.

Bouom-up-evaluation for logic programs in knowledge bases. usually amounts to iteratively per

forming several relational algebra operations, and deducing new facL'S, until a fixed point is reached. There

has been work on parallelil.ation of relational algebra operators, particularly the join (e.g. [BBDW]). How

ever, when parallelizing these low level operations in knowledge bases, the processors have 10 be syn

chronized at the completion of each iteration, then each processor has to exchange its newly generated

facL'S with the newly generated facts of every other processor, and duplicate elimination has to be central

ized at a single processor, Therefore, the communication and re4uircd synchronization among the proces

sors is extremely high. Much of this overhead can be avoided by considering the whole sequence of rela

tional operations, performed in all the iterations, rather than each individual operation. In some sense, the

work in this paper amounts 10 studying the parallc1i/.ation of a sequence of relational operations.

Finally, [Wj and [WSj proposed methods for pure parallc1i/.alion, and analyzed their applicability.

The methods ba~ically consist of rewriting a program by a sel of other programs (each of which works with

smaller relations), and evaluating them in parallel. [Wj also formally defIned pure parallelization in terms

of algorithms thal evaluate a program in parallel, and studied the class of sharable programs. This paper

extends that work in several ways. First, it demonstrates lhat there is something fundamental about

-4-

decomposability. independent of the parallelization methods proposed in [WI and [WS]. This fundamental

property, panitioning of the output domain, is introduceD in section 3 of this paper. In fact we show that

there arc two notions, decomposability and strong decomposability. We provide a complete characteriza

tion of the single rule programs with respect to both. and show their relationship to parallelization strategies

with certain desirable properties. Second. in the present paper we analyze the evaluation cost of paralleliza

tion strategies. Third, we propose and analyze strategies with communicating algorithms, that overcome the

limitations of pure parallelization.

The rest of this paper is organized a') follows. In the next section we provide main definitions used in

the rest of the paper. In section 3 we study decomposability, and in section 4 we study pure parallelization.

and analyze its cost and its limitations. In section 5 we introduce control-overhead for the purpose of load

balancing. In section 6 we discuss the general parallelization strategy, OS3, and related program classes.

We conclude and discuss future research in section 7.

2. PRELIMINARIES

In this section we define the basic terminolOgy as well as provide some relevant definitions. The

Datalog language has three building blocks: predicate symbols. variables and constants. With each preili

cate symbol is associated a fixed arity. A predicate symbol with ariry k followed by a list of k arguments is

a literal. An atom is a literal with a constant or a variable in each argument position. A constant is any

natural number. (The results in this paper are applicable to character strings as well. since their binary

representation is a natural number). We shall denote constanl., by lowercase letters from the beginning of

the alphabet, a through n, and variables by lowercase letters from the end of the alphabet, w, x. y, z. Predi

cate symbols arc denoted by uppercase letters.

If an atom has a constant in each argument position. then it is a/act. An R -atom is an atom having

R a., the predicate symbol. An atom has a repeated variable if it has a variable that appears in more than

one argument position. A rule consists of an atom, Q. designated as the head, and a finite set of one or

more atoms. denoted Q 1 ••••• Q k. designated as the body. Such a rule is denoted Q:- Q 1 , •••• Q k, which

should be read "Q if Q 1 and Q 2 • and, and Q k." A variable that appears in the head of the rule is called a

distinguished variable. An instantiation of a rule. or a set of atoms. /I, is a function that maps each vari

able in H to a constant. If /I is a set, and / is an instantiation of it, then the instantiated set, denoted H"/ is

the set of facts obtained by replacing the variahles in /I according to f. If /I is a rule of the form head :

body. then the instantiated rule. H"/. consists of two sets: head"/. the atom derived by /. and bodyf. When

no confusion can arise, the instantiated rule. 11"/. rather than denoting two sets, shall denote only one set:

head "/Ubody f.

A dataiog program (see [MW]), or a program for shon. IS a finite set of rules whose predicate sym

bols arc divided into two disjoint subsets: the extensionul predicates, and the intentional predicates. The

extensional preDicates are distinguished by the fact that they do not appear in any head of a rule. We res

trict our discussion to ctatalog programs with one intentional predicate. denoted S, that is unary or binary.

-5-

Furthcnnorc, programs do not have any constants, and each onc consisL<; of two rules: an exit rule, dcnotcd

S (x,y):-B (x,y) or S (x):-B (x), and a recursive rule, in which the prcdicatc symbol B does not appear. The

recursivc rulc of a program is range restricted. i.e., every variable in the hcad of a rule also appears in the

body of the rule. The input 1 to a program P is a finite set of R-facts, whcrc R is some extensional predicate

symbol. The outpUl of P for the input I, denoted 0 (P ,1), is a set of S-facts. A fact, a, is in the output if and

only if it has a derivation tree. This is a finite tree, with the nodes labeled by facts; a is the root, the leaves

are facts of I, and for each internal node, b, with children b I, ... ,be. there is an instantiated rule which has

b as the head and b l , •• • ,bk as thc body. For self containmcnt of this paper, we describe in appendix C the

most popular, bottom-up, serial algorithm that produces the output of a program, namely semi-naive

evaluation ([Ban,Bay J). Given an input 1 to a program, an instantiation f of the recursive rule is useless if

(I) the atom head-J has a dcrivation tree of height one (representing the instantiated exit rulc), or (2)

head-Je bodyI A derivation tree for a fact is free from useless instantiations if none of its instantiations is

useless. A derivation tree with useless instantiations can always be replaced by a smaller tree; thus this kind

of tree is not interesting. and whenever we refer to a derivation tree, we a-;sume that it is free from useless

instantiations.

We assume that the recursive rule of a program is minimal, i.e., there is no atom which can be elim

inated from the body of the rule to obtain an equivalent program (i.e. a program that produces the same

output for every input). Sagiv provides a polynomial-time algorithm that minimizes a given sirup ([Sa]).

Let A,B be two predicates symbols, and II a set of facts. Thcn, an A-IO-B substitution of fI is the set of facts

obtained by replacing every occurrcnce of the predicate symbol A in II, by the predicate symbol B. For

example, S-to-B substitution of the set {S (I, I). A (1,2). S (2, I)}, is the set {B (1, I), A (I, 2). B (2, I)}. The

following theorem is an immediate consequence of Sagiv's algorithm.

Theorem 2.1 [Sa): Let P be a program (minimal of course). and f a I-I instantiation of the recursive

rule. Let 1 be a S-to-B substitution of body-J, and f' an arbitrary noncmpty subsct of I. Then head-Jis not in

O(P. I-I'). 0

[n othcr words, the theorem says that if wc take a I-I instantiation of thc recursive rule. eliminate at least

one atom of it, and feed the resulting set as an input to P, then the head of the instantiated rule cannot be

obtained.

3. CHARACTERIZATION OF (STROl'iGLY) DECO\IPOSABLE PROGRA\IS

In this section we study the notion of decomposability. If a program is decomposable, it means that

its output domain, i.e., the infinite SCI of possible output tuples, can be partitioned such that the following

condition is satisfied. For each input, each intentional fact, a. has a derivation tree in which all the inten

tional facts belong to thc same partition-member as a. In other words, the (.!valuation of the decomposable

programs can be partitioned a priori into a number of completd)' independent tasks. each working on a dis

joint set of partition-members. As e shall explain in the first subsection, the decomposability notion is

-6-

important for parallel, as well as sequential processing. We completely characterize the programs that are

decomposable, and an interesting phenomenon is exhibited. If a program has a panition in which more

than one member is "nontrivial" (i.e. contains facl'> that cannot be derived from an exit rule alone). then it

has a partition with an infinite number of members that are nontrivial. We shall argue that programs that

satisfy the above condition are more interesting. We call them strongly decomposable, and completely

characterize them as well.

3.1 Definitions and Complete Characterization of Unary Programs

A program is unary (binary) if the intentional predicate S is unary (binary). For the unary programs

we define the outpUl domain, denoted 0, to be the set of all S-facts, namely the infinite set (S (a) I a is a

constant }. Similarly we define the output domain of binary programs. A set of two or more sets,

M 1, ... ,Mt> . .. is a panition of the output domain if uM, = 0, and each !'vl, is nonempty, and the Mi's are
I

pairwise disjoint. Let D be a partition of the omput domain for the program P, and let Mi be a member of

D. The fact g E Mi is proper, if: for every input! such that g is in the output 0 (P,I), the atom g has a

derivation tree in which all the S-facts are in MI' A program P is decomposable if it has a partition D, for

which every fact in the output domain is proper. Then, the set D is called an eligible partilion of P.

Decomposable programs arc interesting for parallel as well as sequential processing. For parallel

ism, each processor can assume responsibility for producing the output of the program belonging to some

members of an eligible partition. This way, each processor works with a smaller S-relation during bottom

up evaluation (such an algorithm, e.g. semi-naive evaluation in appendix C, consists of iteratively evalua

tion the output, when at each iteration, a join involving the relations S and/or tiS is performed). Further

more, since each output fact is proper, there is no overhead for transmitting intermediate results between

processors, and if each member of the panition is assigned to a processor, then the complete output is

guaranteed to be produced (see strategy DS 1 in the next section).

For sequential processing, once a fix-point is reached within a member of the partition, all the output

facts of the member can be removed from the relation S. This in tum reduces the size of S for further pro

cessing. For example, consider the transitive closure program PI:

PI: S(X,Y) :-S(x,z). A(z.y)

S (x,y) :- B (x,y)

As we shall see it is decomposable, and assume that it is semi-naively evaluated. If at some iteration the

differential tiS does not contain any more tuples of the form (2.k) (but in prior iterations it did), then all

such tuplcs can be output, and removed from S. Thus 5 is reduced for the next iteration.

The next lemma is widely referred to in the proofs of this section concerning unary. as well as

binary programs. We deline two S-facts to be neighbors wilh respect to P. if there is a I-I instantiation/of

the recursive rule of P, such that 5 (7d ' S (72) E rule I

- 7-

Lemma 3.1: If a program I' has an eligible panition D, then every two neighbors with respect to I' are in

the same member of D.

Proof: Assume that there is a 1-1 instantiation. f, of the recursive rule of I' such mat

s (11),5 Ci2) E rule/but 5 Cil)' 5 Ci2) are not in the same member of D. Let I be the input 1= 5-to-B sub

stitution of body·! Suppose that headJis in member Af, of D. At least one of me facts 5 Cil)' 5Ci2) is in

body/and is not in Mi' By the definition of an eligible partition D, head/has a derivation tree in which all

the 5-facts arc in Mi' If B Cil) is a node in this trcc, men 5 (11) must also be a node in the tree (remember

that predicate symbol B does not appear in the recursive rule). Therefore, j-head is in 0(1' ,1-{ B Cil))).

Contradiction to Theorem 2.1. 0

Next we characterize the decomposable programs. First the unary programs and then the binary ones.

Theorem 3.1: A unary program is not decomposable.

Proof: Let P be an unary program in which 5 (x) is the head of the recursive rule. Assume that P has an

eligible partition D. We shall exhibit that every two S-facts in the output domain are in the same member of

D, and therefore D is not a partition. Let 5 (a),5 (b) be two 5-facLs in the output domain. Note that there

exists an 5-atom in the body of the recursive rule, in which the argument is a variable different than x, say

y. Such an atom exists since (1) Pis recursive, so there is at least one 5-atom in the body of the recursive

rule, and (2) P is minimal, so 5 (x) is not in the body of the recursive rule. Let f be a 1-1 instantiation of

the recursive rule of 1', in which x is instantiated to 'a' and y is instantiated to 'b'. By Lemma 3.1,

5 (a),5 (b) are in the same member of D. 0

3.2 Sufficient Conditions for Decomposabilit.Y

For the rest of this section we only consider binary programs. A set of atoms is

first-fixed (second -fixed) if all the 5-atoms in that set have thc same variable in the first (second) argu

ment position. A program P is first-fixed (second -fixed) if the sct of atoms in the recursive rule is first

fixed (second-Ii xed). For example, me transitive closure program I' I, is lirst-IIxed. If the recursive rule is

S (x,y):-A (x.;).S (z,y), then the program is second II xed. Another example of a second-fixed program, mis

time nonlinear, is the following one: 5(x,y):-S(z,y).Slw,:O,A (z,w.x),C(y). For each natural number i.

denote by M, the infinite set of facts (S Ci,k) I k ~ I}. Let P be a first-fixed program. Define the infinite set

{M, I i ~ J} to be the natural partition for the lirst-iixed progranl. Similarly a natural-partition is defined for

a second-fixed program (M, = (5 (k,i) I k ~ I}).

Lemma 3.2: A program. p. which is first-fixed. or sccond-iixed. is decomposable. The natural partition

for I' is also an eligible partition for P.

Proof: Let P be a first-fixed program, and S (i,) a fact in member /1·1, of the natural partition for P. It is

casy to see mat for every I, such that S (i.) E 0 (I' ./). all the derivation trees for 5 (i,j) contain only 5-facts

with the constant i as their lirst argument These S-facL<; belong to member J1.. Therefore any fact is

-8-

proper, and the natural partition is an eligible partition of P. The proof for a second·fixed program is simi

lar. 0

A program is repeating if every S-atom in the recursive rule (head and body) has a repeated variable. For

example, the program with the recursive rule 5 (x,x):-S(y,y), S(z,z), A (x,y,z) is repeating. Define the par

tition {M 1>1\-/21, where M I = {S (i,j) I (i =j)} and M 2 = {S (i,j) I i*j}, to be the degenerate partition. A fact

is a one-constant fact if the same constant appears in its two arguments. Otherwise, the fact is a two

constant fact. For example,S (a,a) is a one-constant S-fact, while 5 (a,b) is a two-constant S-facl.

Lemma 3.3: A repeating program P, is decomposable. An eligible partition for P is the degenerate one.

Proof: Note that in the output of P, the two-constant S-facts are derived only by instantiations of the exit

rule. Therefore, these facts are proper in any partition of the output domain, particularly. in the degenerate

one. The one-constant S-facts have the following propeny. All the derivation trees of a one-constant S-fact

contain only one-constant S-facts. Therefore, these facts are also proper in the degenerate partition. 0

Next we define a discriminating program. The definition, in contrast to the others in this paper, is not

entirely syntactic. For an input I to a program P, define the fUJntrivia/ OUlpUl. denoted nt (I), to be the set of

S-facts which are in 0 (PJ), but not in the B-to-S substitution of /. In other words, S (a,b) can be in nt (I).

only if B (a,b) is not in /. Intuitively, the nontrivial output is the output that cannot be obtained only by

instantiations of the exit rule, i.e, the facts that do not have derivation trees of height one. Furthermore,

define the two-constant subinpUl. denoted /0, to be the input obtained by eliminating from / all the one

constant B-facts. Define a program to be a reverse program if the head of the recursive rule has distinct

variables. and if we denote the head atom of the recursIve rule by S(x,y), then there is an atom S(y,x) in

the body.

A program is discriminating if the following two conditions are satisfied:

(1) the program is reverse, and

(2) foreachinput/,nt(l)=nt(lo).

In appendix A we provide an algorithm for detennining whether or not a program P is discriminat

ing. The program with the recursive rule S (x,y):-S (y,x),S (x,:),S (z,y) is an example of a discriminating

program. The [wo conditions in the above definition arc independent. For example, the reverse program

having the recursive rule S(x,y):-S (y,x).S (x,:),A (x,y,:) does not satisfy condition (2). To see this, con

sider the input I =(B (2,1). B (1,1), A (1,2, I)}. 5 (1,2) is in nt (I), but is not in nt (1°).

On the other hand, there are programs, that saLisiy only the second condition. For example, the pro

gram with the recursive rule 5 (x,x) ;- 5 (x,n), 5 (n,x) is not reverse, but satisfies condition (2).

Lemma 3.4: A discriminating program p. is decomposable. An eligible partition ior P is the degenerate

one.

-9-

Proof: In a reverse program, the nontrivial output, nt(/), contains only two-constant 5-facts for every I.

To see that, note that every instantiation of the recursive rule, which derives a one-constant 5-fact, contains

that one-constant S-fact in the body of the instantiat0d rule. Hence, that 5-fact could be derived by an

instantiation of the exit rule. The rest of this proof is similar to the proof of Lemma 3.3. For every I, the

one-constant 5-facts can be derived by an instantiation of the exit rule, so they arc proper in any partition,

particularly in the degenerate one. The two-constant 5-facts have a derivation tree in which alllhe 5-facts

are two-constant S-facts (by condition 2 in Ihe delinition of a discriminating program). Therefore, these

facts are also proper in the degenerate partition. 0

3.3 Necessary Conditions for Decomposability

Next, we characterize all the decomposable programs. We prove that if a program is not first-fixed,

nor second-fixed, nor repeating. nor discriminating, then it is not decomposable. This proof involves a

lengthy case analysis. First, we prove two lemmas that introduce two properties of decomposable pro

grams. Then. Lemma 3.7 shows that among the reverse programs, only the discriminating ones are decom

posable. Lemma 3.8 proves that among the non-reverse and non-repeating programs, only the first-fixed or

second-fixed programs are decomposable. In general, we prove that a program is not decomposable. by

showing that all the output domain facts of that program must be in one member of any eligible partition.

Define a set of atoms flLO be a variant of another set of atoms /I' if fI can be obtained from H' by renam

ing the variables in II' (different variables are renamed by different variables).

Lemma 3.5: Let P be a decomposable program. If the recursive rule r of P, contains two S-atoms. M and

N, such thal:

(1) At most one of the atoms has a repeated variable, and

(2) The sct {N.M} is not first-fixed, nor second-fixed, nor a variant of {5 (x,y),5 (y.x)).

Then in every eligible partition D of p. all the two-constant facLS in the output domain are in the

same member of D.

Proof: Consider two two-constant facts. 5 ee\) = 5 U.j) and 5 ee2) = 5 (k./). We shall divide the proof

into two cases.

case I: Assume that i#c.. and i~/. and j#c.. and j~. Then there are three subcases to consider.

(1.1) .'.1 and N do not have a shared variable. and none of them has a repeated variable. Then there is a 1-1

instantiation f of r such that .IV 'f = 5 (i.n and AI,! = S (k.I). Lsing Lemma 3.1 ends this subcase.

(1.2) M and N have atlcast one shared variable. but do not have any repeated variable. Since {M.N} is not

a variam of {S (x.y).S (y.x)}, there is exactly one variable with two occurrences in the set {M.N}.

Additionally. since the set {.W,N} is notlirst-fixed, nor sccond-Ilxcd, these two occurrences arc not in

the same position. Therefore, {M.N} is {5 (x.y).5 (z.x)) (actually a variant of the sct). Consider the

following two instantiations:

- 10-

Let lbe a 1-1 instantiation of r, in which I (y) = k,f (x) = j,f (z) = i. By Lemma 3.1, S U,k), S (i,j)

are in the same member of D.

Let g be a 1-1 instantiation of r, in which g (y) = I, g (x) = k, g (z) = j. By Lemma 3.1. S (k,l), S U,k)

are in the same member of D.

Therefore, the three facts 5 (i,j), S (k,l), and 5 U,k) are in the same member. particularly the first

two.

(1.3) At least one of the atoms M, N has a repeated variable. Assume thal N = S (x,x) is that alOm. Since

{M,N} is not first-fixed, nor second-fixed, x does not appear in M. Consequently. we can assume that

M is 5 (y,z). Let 0 be a new constanL The following two instantiations end this case.

Let lbe a 1-1 instantiation of r. in which I (x) = o,f (y) = i. I (z) = j. By Lemma 3.1, 5 (0,0). S (i.n.
are in the same member of D.

Let g be a 1-1 instantiation of r, in which g(x)=o. g(y)=k, g(z)=!. By Lemma 3.1,5(0,0) and

5 (k,l) are in the same member of D. As in subcase 1.2.5 (i.}) and S (k.!) are in the same member.

case 2: Assume that i=k, or i=l, or j=k. or j=l. Then. we can lind a third two-constant fact. 5(t3), with

constants that are pairwise-different from both,S (t!) and 5 (t2)' Based on case 1, 5 (t!) and 5 (t3) are in

the same member of D, and S (t2), 5 (t3) are in the same member of D. 0

Lemma 3.6: Let P be a decomposable program, and assume that the recursive rule of p. has three alOms

that are variants of the set (S (z,z). 5 (w.':), S (z. IV)} (Note that no pair of atoms satisfies the condition of

Lemma 3.5). Then, in every eligible partition D of P, all the two-constant S-facts are in the same member

ofD.

Proof: We shall prove that every two two-constant facts, S (i.j) and S (k,l), with pairv,'ise-differem con

stants, are in the same member of D. The proof is obtained by the following five 1-1 instantiations of the

recursive rule.

Let I! be: I,(w) = j,f!(z) = i. By Lemma 3.1, SU.i), SU,}), SU.i) are in the same member of D. Denote

itM j •

Leth be: hew) = i,h(z) = j. By Lemma 3.1, S U.j), 5U.i) and S (i.j) arc in M,.

Leth be: hew) = k. 13(Z) = j. By Lemma 3.1. S U.j). S (k.j). and S U,k) are in M,.

Let/4 be: 14(W) = j, 14(Z) = k. By Lemma 3.1 S (k.k). 5 (k,j) and 5 U,k) are in M,.

Let Is be: 15(w)=I,!5(z)=k. By Lemma 3.1. S(k,k).5(k,!) and S(l.k) are in Mj • Therefore,

5 (k,l), S (i,j) are in the same member of D.

If the twO facts have common constants, the proof is identicallo case 2 of Lemma 3.5. 0

A linear program is a program with only one S-alom in the body of the recursive rule. Define a program to

be S"HIilching if it is reverse and linear. A switching progrnm is, in fact. equivalent 10 a non-recursive pro

gram (replace the S predicate symbol in the body of the recursive rule by 8). Note that this equiValence

- 11-

does not contradicts our notion of minirnality, since we did not delcLe an atom, but rather replaced one

atom by another.

Lemma 3.7: If a reverse program is decomposable, then it is discriminating.

Proof: We first prove the following three claims.

Claim 3.7.1: A reverse program, whose recursive rule has an 5-atom with a repeated variable, is

not decomposable.

Proof: Let P be a reverse program, and N an atom of the recursive rule, r, that has a repeated vari

able. Denote the head of the recursive rule by 5 (x,y). Assume. by way of contradiction, that P is

decomposable. Hence, P has an eligible partition D = (Afl , ... ,iWr, .. .j. We show that all the facts in

the output domain are in the same member of D. First, we show this for the two-constant facts. There

are two cases.

1) The repeated variable in N is not a distinguished variable. In this case, N and the head of r are

two atoms that satisfy the conditions of Lemma 3.5. Consequently, all the two-constant 5-facts are

in the same member of D.

2) The repeated variable in N is a distinguished variable. Let N = 5 (x,x). Then the recursive rule

contains the atoms 5 (x,x), 5 (x,y), 5 (y,x). By Lemma 3.6, all the two-constant 5-facts are in the

same member of D.

Now, suppose that M, is the member of D that contains all the two-constant facts. Let 5(7) be a one

constant fact We select a 1-1 instantiation,f, in which N -J = 5 (7) and head-J is a two-constant fact.

By Lemma 3.1. 5(7) is in Mi' De""",371

Claim 3.7.2: A switching program is discriminating.

Proof: A switching program is a reverse program, and therefore for every input I, the nontrivial

output, nl (I), contains only two-constant fact'>. Additionally, in such a program, every derivation

tree of a fact in nl (I) contains only one B • fact, which is also a two-constant fact Therefore, every

fact in nl (I) is in nl (I'). Del",,,, 3.72

Claim 3.7.3: Let D be an eligible partition of a reverse, non·linear, and decomposable program.

Then. all the two·constant facts in the output domain are in the same member of D.

Proof: By Claim 3.7.1, the referred program does not contain an 5-atom with a repeated variable.

Additionally, because of the non-linearity of the program, there is an S-atom in the body of the recur

sive rule, having at most one distinguished variahle. Denote this aLOm by ,'.f. Denote the head of the

recursive rule by 5 (x,y). Next, we show that there are twO S-atoms in the rule that satisfy the condi

tions of Lemma 3.5. Thus, alJ the two-constant S-fac15 are in the same member of D. If M does not

have a distinguished variable, then 5 (x,y) and M arc the two desired 5-atoms. If M has a dis

tinguished variable, say x, then the following holds. If x appears in the first position of M, then M and

5 (y,x) are the two desired atoms; otherwise M and 5 (x,y) are the twO desired atoms. Dclaun 3.7.3

- l~-

Proof of Lemma 3.7: Consider a decomposable reverse program P. Assume. by way of contradiction.

that P is not discriminating. We shall show that in any eligible partition D of p. all the facts in the output

domain are in the same member of D. contradicting the fact thaL D is a partition. By Claim 3.7.2, P is not

linear; thus by Claim 3.7.3, all the two-constant S-facts are in the same member of D, say Mi'

It remains to show that all the one-constanL S-facts are also in Mi' Let S U.j) be a one-constant fact.

P is a reverse program but not a discriminating one. TIlus there is an input. I, such that nt(/o)cnt(/). We

shall assume without loss of generality, that I has the following property (minima\ity): nl (/')cnt (/), but if

we eliminate anyone-constant B-fact. B (t), from I, then nt «/-{B (t)})") = nl (I-{B (t))). Such an input

can be obtained by starting with an input for which the proper containment is satisfied, and eliminating

one-constant B-facts, repeatedly, until equality is obtained; then return the last eliminated B-fact Now sup

pose. again without loss of generality, that the constant j is not in I (otherwise we can add j+l to all the

constants in I). Obviously I has a fact B (i,i). Denote by 10 • the input obtained from I. by replacing each

occurrence of the constant i by j. It is easy to see that I 0 satisfies the following properties: (i) B U.j) is in

10• and (ii) nl (/~)cnt (/0): in other words there is a two-constant fact, a, in nl (/0). that is not in nt (/~).

Consequently (remember minimality). 10 forces S U.j) and a to be in the same member of D, namely Mi.

°umma3.7

Lemma 3.8: If a non-reverse and non-repeating program is decomposable, then the program is first-fixed

or second-fixed.

Proof: We first prove the following 2 claims.

Claim 3.8.1: A non-reverse and non-repeaLing program. p. that has aL least two S-aLOms with

repeated variables in the recursive rule. is not decomposable.

Proof: Assume. by way of contradiction. that the program P has an eligible partition D. We show

that all the facts in the output domain arc in the same member of D. Every two one-constant faclS are

in the same member of D because they are neighbors with respect to P. Denote this member by Mj •

P is not a repeating program. therefore the recursive rule includes an S-aLOm with two different vari

ables. Denote it N. Now consider a two-constanL S-fact. 5 (t). and let f be a I-I instantiation of the

recursive rule in which N f = S (7). Since rule f contains a one-constant S-fact. we obtain. using

Lemma 3.1. thatS(t) is in /o.f i . Dcz..u.. 3S.1

Claim 3.8.2: If a non-reverse and non-repeating program. p. is decomposable, and has an eligible

partition. D, then, there are two two~onstant S-facL-; that arc not in the same member of D.

Proof: Assume. by way of contradiction. that all the two-constant S-facts are in one member. MI'

of D. Then. there is a onc-constant S-fact that is not in Jr.. Denote this fact by 5 (i,i). We consider

two cases.

1) The recursive rule includes an S-atom with a repeated variable. Assume it is M = S (z,z). Since

the program is not repeating. there is an S-atom with two different variables. Denote this atom by N.

Letjbe a 1-1 instantiation such thatj(z)=i. By Lemma 3.1. both .W-jand Nfare in the same

-13-

member of D, Mi. Contradiction to S (i,i) not ocing in AI,.

2) The recursive rule does not include an S-atom with a repeated variable. Denote Lhe head of Lhe

recursive rule by S (x,y), and let/be the following instantiation: / (x) = / (y) = i (which means Lhat /

is nOLI-I) and for all the oLher variables / substitutes distinct constants, Lhat are different from i. Let

{ be Lhe input consisting of the S-to-B substitution of body·I. The relation B in { contains only two

constant facts since (i) Lhe recursive rule does not include an atom wiLh a repeated variable, and (ii)

the program is non-reverse. Therefore, I forces S (i,i) to be in the same member of the partition as

some two-constant S-fact. This member is M i , contradiction. Dclaim 3.8.2

Proof of Lemma 3.8: Let P be a decomposable, non-reverse and non-repeating program. By Claim

3.8.1, P contains at most one S-atom with a repeated variable. Assume, by way of contradiction, that Pis

neither first-fixed, nor second-fixed. We shall show Lhat in any eligible partition D of P, all Lhe two

constant S-facts are in Lhe same member of D, which contradicts Claim 3.8.2.

There are two cases:

(1) The head of Lhe recursive rule has two distinct variables. Since the program is non-reverse, Lhere are

two S-atoms in the r<x:ursive rule, that satisfy the conditions of Lemma 3.5. From Lemma 3.5 we

conclude Lhat all Lhe two-constant S-facts are in the same member of D.

(2) The head of Lhe recursive rule has a repeated variable. In Lhis case, one can find either twO S-atoms

thal satisfy the conditions of Lemma 3.5 or, two S-atoms in Lhe body of Lhe recursive rule that

togeLher with the head satisfy the conditions of Lemma 3.6. In either case, all the two-constant S

facts are in the same member of D. Dumma 3.8

Theorem 3.2: A program is d<x:omposable if and only if it is first-fixed, or s<x:ond-fixed, or repeating, or

discriminating.

Proof: (if) from Lemmas 3.2, 3.3, 3.4.

(Only if) from Lemmas 3.7, 3.8. 0

3--' Strong Decomposability

For some d<x:omposable programs, having multiple processors docs not provide a real advantage

compared to a single processor, particularly if the latter, as explained in subsection 3.1, removes members

as it reaches member-fixpoinL For example, consider a repeating program wiLh Lhe degenerate partition.

We can assign responsibility for each one of Lhe two members LO a different processor, but the processor

that receives Lhe member M 2 = (S (i,j) I i:t=j) cannot produce any nontrivial output. i.e. output for which the

r<x:ursive rule has to be instantiated. It docs remove from the oLher processor the burden of handling the

members of M 2, when generating the members of .\11' But a single processor can also remove the

members of Jf 2, after Lhe tirst iteration of (scmi-) naive evaluation. Well, maybe a repeating program can

have another partition, in which more Lhan one processor can produce nontrivial facts. We shall prove in

- 1':-

Theorem 3.3 that this is not the case. i.e .• for every partition of a repeating program. there must be one

member which contains all the facts of M I. The same arguments can be made for discriminating pro·

grams. For them. the "rcal" work is carried out by the processor which is assigned responsibility for M 2.

Therefore. for the purpose of parallelization. we arc more interested in the programs with an eligible

partition, in which the recursive rule has 10 be "used" for more than one partition-member. In this subsec

tion we completely characterize the strongly decomposable programs. i.e the program for which there is an

eligible partition such that more than one processor does "real" work. We determine that of the decompos

able programs. only the first-fixed. second-fixed. and switching are strongly decomposable. Funhermore. a

program in each of these classes has a natural partition. i.e .. a partition with an infinite number of members.

each of which requires real work to produce. Conse4uently. as we shall show in the next section. an arbi

trary number of processors can be effectively utilized for producing the output. given a large enough input.

For a program p. and an input!, a fact a E 0 (P,I) is nontrivial if it belongs to the nontrivial outpUl.

The program P is strongly decomposable if it is decomposable. and has an eligible partition. D. such that

for some input. more than one partition member contains a nontrivial fact. The partition D is called a

strongly eligible partition. Although the definition required some nontrivial facts for some input, we shall

demonstrate in corollary 3.4, that if a program is strongly decomposable. then every fact in the output

domain is nontrivial for some input. Therefore. the "real" work is distributed among the processors.

In Claim 3.7.2 we proved that a switching program is discriminating. In addition to the degenerate

eligible partition. it has the eligible partition D = (.'vI" I i ~ I.j ~ I) where each M" is (S (i,j).S U.i)}. This

partition is called the natural partition of the switching program (different than the natural partition of a

first-fixed program).

Theorem 3.3: A program is strongly decomposable if and only if it is first-fixed. or second-fixed. or

switching.

Proof: (if) It is easy 10 see that the natural partition for each program in one of these classes. is a

strongly eligible partition. and therefore those programs are strongly decomposable. For example, if the

program is first-iixed. then the desired input is obtained in the following way. Let/be a I-I instantiation of

the recursive rule in which / (x): I. Let g be a I-I instantiation of the same rule. in which g (x)=2. Then. I

is the S-to-8 substitution of (bodylubody·g).

(only if) All the programs that are n01 decomposable cannot, of cour~. be Strongly decomposable. Thus. it

suffices to show that repeating programs. and non-linear discriminating programs. are n01 strongly decom

posable. We do it so by showing that for every eligible partition, the nontrivial facts must belong to the

same partition member.

(1) Repealing programs - The recursive rule contains at I~st two S-atoms with repeated variables: the

head. and at least one atom in the body. Thus. cv~ry two one-constant facts are neighbors with

respect to the program. Note that only one-constant facts can be nontrivial. and that by Lemma 3.1

these facts are in the same member of any digible partition.

- 15-

(2) Non-linear discriminating programs - These programs an: reverse programs, so only two-constant S

facts can be nontrivial. Additionally, by Theorem 3.2, the discriminating programs are decompos

able, and by Claim 3.7.3, in every eligible partition for the program, all the two-constant S-facts are

in one member. 0

The next corollary establishes the robustness of the strong-decomposability concept; when a program is

strongly decomposable, then it has a partition with an infinite SCt of members containing nontrivial facts,

and furthermore, every fact can be nontrivial.

Corollary 3.4: If a program is strongly decomposable. then it ha'; an infinite eligible partition (e.g. the

natural partition). Furthermore, for each k members of the partition R 1 , ... ,Rb and for each k facts ai E R i ,

for i= I , ... ,k, there is an input for which each ai is nontrivial. 0

The next proposition indicates that for the strongly decomposable programs there is no strongly eligi

ble partition which is "finer" than the natural partition.

Proposition 35: Let P be a strongly decomposable program, and let a, b be two facts of a member, say

Mi , of the natural partition of P. Then, in every strongly eligible partition of P, a and b belong to the same

member.

Proof: Consider a first-fixed program P. The fact'; a and b have the same constant in their first position;

thus they are neighbors with respect to P. By Lemma 3.1, a, b are in the same member of any eligible par

tition of P.

Similar arguments are used to prove the proposition for a second-fixed program, or a switching one. 0

The next proposition establishes the relationship between the family of strongly decomposable pro

grams and the family of programs in the NC complexity cla<;s (assuming P#JC).

Proposition 3.6: There are strongly decomposable programs that arc also in NC (e.g. the linear transitive

closure), there are strongly decomposable programs that arc not in ~C (e.g. the first-fixed program

S(w,x):- S(w,y),S(w,z),H(x,y,z», and there arc programs in NC that are nOl strongly decomposable (e.g.

the program S(x,y):-A(x,.:),S(z,w),C(w,y».

Proof: The linear transitive closure, and the progmm S (x,y) :- A (x,:), S (z, w), C (w,y) are in NC by

results from [AP, UV). The program P 2: S (w,x) :- S (w,Y), S (w,:),/1 (x,y,::) is P-complete. We prove it

by a reduction from the first known P-complele program, path-systems ([Cl), which is

S(x):- S(y), S(z), H(x,y,z). Given an input., I, to path-systems, we transform it to an input, t,to program

P 2 as follows. The relation H in t is the same a" in I. Let 'a' he some constant. The relation B in r consists

of all the tuples B (a,i) such that B (1") is in I. Then 5 (a,i) is in 0 (P 2, n if and only if S (i) is in

o (path-systems, I). 0

The next comment concerns the extension or the positive results of theorem 3.3. If a program is

first-fixed, or second-fixed, or switching, then it is strongly decomposable even if we allow the body of the

recursive rule to contain negated extensional-atoms, provided that the variables in these atoms also appear

in nonnegated atoms in thc body (stratified and safc negation). Furthermore, such programs arc strongly

-16-

decomposable even if the predicate symbol B is allowed to appear in the body of the recursive rule.

In sum, in this section we defined two propenies of programs: decomposability and strong decompo

sability. We completely characterized the programs that have each one of these properties, and the result is

that only a narrow class of programs possesses them. In the next section, we prove that only the strongly

decomposable programs can be evaluated by several processors that do not communicate, nor duplicate any

work. Thus, the importance of the above characterization is in its "only if' direction, that is, the negative

result. Except for the strongly decomposable programs, there is no program that can be evaluated with

minimal total evaluation cost and without communication. New strategies, that involve (minimal) commun

ication or duplication of work, are needed. Sections 4.4, 5, and 6 discuss such strategies. Furthermore, in

[WO] we have extended the decomposability definition to arbitrary datalog programs (not necessarily

binary sirups), and we have shown that for such programs decomposability is undecidable. Similarly, the

strong decomposability definition can be extended, and the proof of [WO) can be repeated verbatim to

show that strong decomposability is also undecidable. Thus, complete characterization can be obtained

only for subclasses of programs, such as the binary sirups considered in this paper. Moreover, in [WS] we

syntactically define the pivoting property for arbitrary datalog progrdms. The strongly decomposable pro

grams (semantic property) are exactly the pivoting binary sirups. Also, every pivoting arbitrary-datalog

program is strongly decomposable.

4. PURE PARALLELlZA TION

In the previous section we have seen that strongly decomposable programs are amenable to paraJIeli

zation that does not incur communication or synchroni7.ation overhead, namely pure parallelization. It is

achieved by replicating the input at multiple processors, and assigning output responsibility for each

member of a strongly-cligible-partition to some processor. Two questions immediately arise. First, what is

the performance of this paraIlelization method? Second, what are the limits of pure parallelization, i.e., can

other programs be purely paraUelized, possibly by another method? In this section we answer these ques

tions, which tum out to be related as follows. There are other programs, although not all of them, that can

be purely paralIelized. However, the ones that can oc purely parallelizcd while guaranteeing minimal total

evaluation-cosl. are exactly the strongly decomposable ones. Therefore, we discover a class-structure of

programs with respect to pure parallelization. This structure is illustrated in figure I (following the refer

ences).

4.1 Parallelization Schemes

In this subsection we provide the formal delinition of a pardllelization scheme, i.e., a set of parallel

algorithms that together evaluate a program. Each algorithm in the scheme evaluates the program with less

than the whole input; consequently, it is faster, but, on the other hand, does not produce the whole output.

Then we distinguish between two types of parallelization schemes: decomposition and sharing. Both of

them guarantee that the whole output is obtained as the union of all the facts produced by the algorithms,

- 17-

therefore, if these facts are sent to an output processor. or a common file, completeness of the result is

ensured. However, decomposition schemes also guarantee that the processors executing the parallel algo

rithms do not duplicate one another's work. Finally, we define pure parallelization schemes, i.e. schemes

that do not incur any overhead.

Let P be a program, and let / be an input to p, A partial compuuuion. denoted AI(/). is a partially

ordered set of facts from I U 0 (P ,/). The subscript i in Ai(l) stands for the identity of the processor that

produces the partial computation, Each fact S (e) in Ai(1) is labeled computed or transmitted, If S (e) is

computed, then it must be preceded in Ai{l) by all the facts of one of it" derivation trees. Intuitively. the

partial order in Ai(l) represents the time-order in which the output of P is evaluated, and the requirement

that S (e) must be preceded by all the facts in some derivation tree means that i must "know" all these facts

before being able to compute S (e). The set Ai{l) is called a "partial" computation. since not all facts of

o (P J) have to be in Ai(l). A transmitted fact is received from another processor. thus a derivation tree

does not necessarily precede it For example. the semi-naive evaluation by a single processor produces a

partial computation consisting of the input facts. followed by all the output facts, in the order in which they

are evaluated; aU the facts are computed.

An r-parallelization-scheme. A. for partial computation of P, is a function which maps each input,

I. inlO r partial computations. A (/) = {A 1 (I) A,(I)}. such that if some fact is transmitted in some Ai(l),

then it is computed in some A/I) 3. A is called a scheme for short. The set of all partial computations with

subscript i constitutes the (output of) algorithm AI of A. We denote by p, the processor that executes Ai' A

scheme. A. is sharing if (i) (completeness) for every input I, each fact a E 0 (P,I) is in some partial com

putation of A (I), and (ii) (time-saving input) for at least one input, 1'. there is no partial computation in

A (I') that contains the whole nontrivial output. A scheme. A. is a decomposition scheme if (i) it is shar

ing. and (ii) (disjoinLness) for every input I. no fact is a computed fact in more than one partial computa

tion of A (I). Intuitively. a complete scheme docs not lose output. and. assuming that a certain amount of

work is necessary to produce each output fact. processors executing (the algorithms of) a decomposition

scheme do not duplicate one another's work. Existence of a time saving input, simply ensures that the

scheme is not trivial. i.c .• docs not consists of a single-processor evaluation algorithm.

A scheme A is independent if for every input I. each partial computation in A (I) docs not contain any

transmitted facts (i.e all the intentional facLS are wmputed). Independence ensures that facts arc not

transmitted between algorithms, i.e. there is no data overhead. In this se<:tion we discuss only independent

schemes. An independent scheme, A. is data-driven if for each input I. and for each fact bE 0 (P,I), and

for each set of input facts. Z. the following two conditions are satislied for each algorithm AI E A:

(1) (contribution) If b E A,(I) and the set of derivation trees of h for thc input I u Z is a superset (not

necessarily proper) of the set of derivation trees of b for the input I. then b E A, (I u Z).

1 Actually. addiuonaJ ~ulrcments have to be salls lIed by the set A(1). but we omit them since they arc no(used in this paper.

-18-

(2) (noncontribution) If b e A j (/), and the set of derivation trees of b for the input 1 is a superset (not

necessarily proper) of the set of derivation trees oi b for the input 1 u Z. then b e A;(I u Z).

Intuitively, the fact that a scheme is data driven ensures that the output of each processor depends

solely on the input, and not on communication with another processor; in other words, there is no control

overhead. The contribution requirement is simply that if the fact b is in A, (I), and Z contributes to the

derivation of b, then its addition to 1 cannot suppress the production of b. Note that if Aj is monotonic, then

the contribution requirement is satisfied, but if stratified negation is allowed, Ai is not monotonic but may

still satisfy the contribution rcquiremenL The noncontribution requirement is that if the fact b is not in

A;(/), and the set Z does not "contribute" to the derivation of b (i.e., there is no derivation tree which con

tains a fact in Z), then b is also not in Aj(/uZ).

Remark 4.1: It can be shown that an independent decomposition scheme that satisfies the contribution

requirement, also satisfies the noncontribution requirement.

Let A be an independent, data-driven, parallelization scheme for the partial computation of P. A is

called a pure parallelizalion scheme. or, for short, a pure scheme. Such a scheme does not incur the over

head of communication among the algorithms.

4.2 Strong Decomposability and Pure Parallelization

In this subsection we prove that the programs having pure parallclization schemes are exactly the

strongly decomposable programs. Then we outline a strategy (i.e. a class of schemes), called DS I, that

contains all the pure decomposition schemes.

Lemma 4.1: Assume that A is a pure decomposition scheme for a program P, and let b be a fact of the

output domain. If for some input, I, and for some algorithm A, of A. the fact b E A,(I), then for every other

input, J', if b E 0 (P ,/') then b E AP,).

Proof: Assume. by way of contradiction, that b e 04/1'). Then, by completeness of the scheme.

b E A((/'), j 1:- k. Let J" be the input 1 u r. By the contribution requirement of a data-driven scheme,

b E A((I") beQiuse b E A((/'). By the same requirement, h E 04,(1") bc~ause b E AP). Contradiction to

the disjoinmess requirement. i.e that every fact is computed in a unique processor. 0

Under the assumptions of the previous lemma we say that A, is the home-algorithm of b in A. Note that

every fact in the output domain has a unique home algorithm (by disjointness and completeness of A).

Given a program p. a restricted version P, of P (sec !WS)) is a program obtained from P by appending

evaluable predicates to the body of some, or all, of the rules of P. For example the program with the recur

sive rule S (x,y) :- S (x,:), A (z,y). odd (x) is a restricted \ersion of PI, de Ii ned in subsection 3.1. A set of

facts 1 is an input to P, if and only if it is an inputLO P. The output of P, is defined as the output of P, with

the following exception: in a derivation tree. every instantiation of a rule, r, must satisfy the evaluable

predicate appended to r.

-19-

Theorem 4.1: A program P has a pure decomposition scheme if and only if it is strongly decomposable.

Furthermore, let A be a pure decomposition r·scheme. and denote by M; the set of facts in the output

domain, which have Ai as their home-algorithm, for i = 1. ... ,r. Then {M I,' .. , M,} is a strongly eligible

partition for P.

Proof: (it): Let P be a strongly decomposable program. By Theorem 3.3 P is first-fixed or second

fixed or switching. Assume P is first-fixed. We show a pure decomposition scheme A = {AloAJ for P. A,

is the semi-naive evaluation (see appendix C) of the restricted version, Pi' PI (P 2) is P with the evaluable

predicate odd(x) (even(x» appended to the recursive and exit rules. Now, let us prove that A is a pure

decomposition scheme. Given an input I, the partial computation in processor i consists of the input facts

(unordered), followed by all the output facts, in the order in which they are evaluated. A 1 (I) contains all the

facts in 0 (P.I) with an odd constant in their first position. A 2(/) contains all the other facts in 0 (P,I) (i.e.

the output facts with an even constant in their first position). Therefore, completeness and disjoinmess are

satisfied. A also has a time-saving input, e.g. the input provided in the proof of Theorem 3.3, the (it) part

Consequently, A is a decomposition scheme. Moreover, all the facts in the partial computations are com

puted, and therefore A is an independent scheme. Additionally, A 1 and A2 are monotonic; hence the contri

bution requirement is satisfied. The non-contribution requirement is also satisfied by Remark 4.1. Conse

quently, A is pure.

Similarly, we can prove that second-fixed and switching programs have decomposition schemes (for

switching programs the odd-even(x+y) evaluable predicates arc used).

(only it): P has a pure decomposition scheme A = {A I, ... ,A,}. Let D be the following partition of the

output domain of P. D = {M I, ... ,M,} where 1\-[, contains all the facL~ that their home-algorithm is A,. We

shall show that D is a strongly eligible partition. Leti be an input to P, and SCiI) a fact in 0 (P,I) with the

home-algorithm A,. By Lemma 4.1, SCiI) E A,(I), and by the independence of the scheme, SCi!) is pre

ceded in A,(I) by a derivation tree: thus all the intentional facts of that tree are in member Mi of D. Conse

quently, D is an eligible partition. It remains to show that D is a strongly digiblc partition, i.e. there is an

input for which two nontrivial facts belong to different members of D. It is easy to see that the input that is

time-saving in A, is such an input. 0

Next we describe a set of pure decomposition schcmcs, namdy a 51r(J{eg)',

Strateg), DS 1:

A strongly decomposable program P, is evaluated by algorithms fA 1 " •. ,A,}, for any number of processors,

r. Let h be some hash function that maps each natural number (pair of natural numbers for switching pro

grams) into a unique member of the set A ={I , r} (for c:xamplc. the modulo r function). We assume that

some number is mapped by h into each member of A. Each algorithm, A" evaluates the restricted version

of P with the predicate h (x)=i, or h (y)=i, or h (x,y)=i (for P a lirst-fixed, or second-fixed, or switching pro

gram. respectively) appended to the exit and recursive rules. Thus, for a first-fixed program, processor i is

assigned responsibility for the members "'1. of the natural partition, for which h (k) = i. If P is switching.

- 20-

then h must be commutative. 0

A scheme in the strategy OS I is oblained by fIxing the hash function, the number of processors, and

each Ai (naive, semi-naive, or some other evaluation method). The scheme oblained is obviously a pure

decomposition-scheme. Observe that uniting several (but not all) members of the natural partition into one

member, leaves an eligible partition.

It can be shown that a schemc is a pure decomposition scheme if and only if it is in D51. The (if)

part of the proof is similar to the if part in Theorem 4.1. For showing the converse, let A' be a pure decom

position scheme for r processors. Theorem 4.1 and Proposition 3.5 indicatc that in A', each algorithm is

responsible for some members of the natural partition. We select a hash function h' which maps each

natural number to the set {l, ... ,r}, such that for every two natural numbers, i and j, the following is

satisfied: h'(i) = h'U) (h'(i l,i2) = h'U l,j2) for switching programs) if and only if members Mi and Mj

(Mil •i2 and Mjl ./ 2 for switching programs) of the natural partition belong to the same member of D_ Then

A' is a scheme in OSI, for which the hash function is h'. 0

4.3 E"aluation Cost of Strategy DSl

In this subsection, we consider schemes in OS 1, where the algorithm of each processor is semi-naive

evaluation (see appendix C). We eSlablish that for these schemes, for each given input, the LOIaI amount of

work performed by all processors in evaluating a program is minimal, i.e., not higher than the amount of

work in semi-naively evaluating the program by a single processor. Therefore, given a good hash function,

the speed-up is maximum. Intuitively, OS 1 saves time for a ftrst-iixed program, because at each iteration

of naive or semi-naive evaluation, the predicate hex) = i cuts (approximately by a factor of lIr) the size of

every relation, extensional or intentional, having the attribute x. Additionally, it can be shown that the

number of iterations does not incrca'ie. Identical results can be shown for the naive evaluation algorithm

([UJ).

Next we deiine three cost measures to quantify the amount of work performed by an algorithm for

evaluating a program P given an input I. These measures will be used in our cost analysis of the strategies.

The first.. denoted cost 1, assumes that the cost of an iteration i of semi-naive evaluation is c·1 5,-1 I, where

I 5,-1 I is the number of tuples in the relation 5 at the end of the i-I iteration (i.e. at the beginning of the

i-th iteration). c is fixed for a given input (the results presented in lhis section still hold if cost 1 is a super

linear function of 15' I). Then, cost 1 of evaluating 0 (P,I), is the total cost of aU the iterations performed

during the evaluation. Note that the cost of an iteration increases as the evaluation proceeds.

The second cost measure, denoted COS(2, is the number of "successful inferences of rules" performed

during the evaluation. An inference of a rule is a substitution of facts, one for each atom in the rule body.

For example, every join can be regarded as a sequence of such substitutions. If the inference succeeds,

namely, equal COnSlanLS replace the same variable, then it is a successful inference. Note that a fact can be

- 21-

derived by several successful inferences; then, the price of deriving that fact is greater than one. The meas

ure was introduced and justified in [BRJ.

In the third measure. cost3 , the cost of a join of two relations is the multiplication of their sizes.

Here we assume that the join is computed by a trivial nested loop. As before. cost 3 of evaluating 0 (P,I) is

the total cost of all the joins in all the iterations.

In all the three measures, the instantiations of the exit rule are ignored. The reason is. that these

instantiations can be done immediately by copying all the relation 8 to S. Thus. the first iteration of semi

naive evaluation. that we speak of in the proofs is the first iteration of the "repeat loop" (see appendix C).

and contains only instantiations of the recursive rule. Anyway, our results are valid even if the price of the

instantiations of the exit rule is not zero.

We demonstrate the three measures by the following example. Consider the transitive closure pro

gram PI of subsection 3.1. and the input 1= (8(1,2). B(2.4). B(1.3) .B(3,4). B(4,5).

A (l.2). A (2,4), A (1 ,3) ,A (3,4). A (4,5)}. The costs of perfonning semi-naive evaluation on PI and 1 are:

cost 1 = c'(5+6+ 7) • cost 2 = 2+ 1+0 ,and cost 3 = 5·5 + 1·5 + 1·5.

In the rest of this subsection, let {A 1 , •..• A r} denote the execution of a scheme in DS 1, that evaluates a

strongly decomposable program. p. with an arbitrary input, I. Each Ai is the semi-naive evaluation of the

restricted version of p. for some hash function denoted h. The semi-naive evaluation of P, on a single

processor. given the same input I, is called A. We denote the S-relation at the end of the i-th iteration of A

(i.e. at the beginning of the i + 1 iteration). by S' (So is the S-relation at the beginning of the first iteration,

i.e. the set of facts obtained by instantiations of the exit rule). Moreover. the set of new facts derived at

that iteration is denoted~' (~' = S'-S,-1 except for ~So = S°). Similarly, the S-relation at the end of the

i-th iteration of Al is denoted S~, and the set of new facts derived at that iteration is denoted ~Sj. Thus

M~ = S~-S~-I except for ~ = SJ. Another notation is h,(M'}: the set of facts in~', that are mapped by

the hash function to j. Similarly, hiS') is the set of facts in 5' that II maps to j. For example, if the pro

gram is first·fixed, then h2(~') is the set of facts in M' such that h maps their first argument to 2.

Lemma ~.2: For every processor j. and for every iteralJon i, ~S~ = hiM').

Proof: Simple induction on the iteration number. 0

Corollary 4.3: For each j, the number of iterations in algorithm Al is not higher than the number of

iterations in algorithm A (because if in the i-th iteration Al derives a new fac!., so docs A). 0

CorOllary ~A: Every successful inference perfonned in iteration i of algorithm AI' is also perfonned in

iteration i of A, and is perfonned the same number of times (because at the beginning of iteration i,

S~-I =h/Si-l)andM~-1 =hl(M'-I». 0

Theorem 4.2: The following inC{}ualitics hold for A.A 1 •...• A,:

(I) iCOs{I(A,)~cos{I(A) (2) i:cOS{2(A.)~cOS{2(A) (3) iCOS{\4.)~COS{3(A).
:=1 ,=1 ,=1

- 22 -

Proof:

(1) By Lemma 4.2. and the disjointness and complcteness requirements, wc obtain that in every iteration

i:

(4.1) LIS~I ~ 15'1
)=1

(I X 1 denotes the number of faclS in relation X).

If i is greater than the number of iterations in processor j. then I S~ 1 = O.

For j = 1,. ..• r we denote by mj (m). the number of iterations thaL algorithm Aj (A) performs when

evaluating I. By Corollary 4.3. max (m 1 ••••• m,) ~ m.

We obtain:
"',

cost I (A) = c'L 15)-11. and
i=1

m

cost I (A) = c· L ISi-l I.
1=1

Based on equation 4.1. it is easy to see that:

,
Lcost I (Aj) ~cost 1 (A)

)=1

(2) By Corollary 4.4. and the facL that every successful inference is performed by a unique algorithm of

the scheme. we obtain that for every iteration i:

(4.2) Ip~ ~ p' .
)=1

where p~ (pi) is the number of successful inferences performed during iteration i of algorithm

A) (A).

An arithmetic manipulation. similar to the one done for cost I in (I). completes the proof.

(3) Assume that in the body of the recursive rule. there an.: k S-aLOms. Suppose that the sizes of the

extensional relations joined by algorithms A). for j = I •...• r. at each iteration are I). 1 lj •d • (The sizes

obviously do not change from iteration LO iteration). Let 1,=1,. 1 • ••• ·I).d. Similarly. we denote the size

of the extensional relations joined by A. by I I • Id. and 1=/ 1 ·Id. Clearly. I, ~ I for j = 1 •.... r. Note

that I, may be strictly smaller than I. For example. in the restricted version

5 (x.y):- 5 (y.x). A (x.y). even (x+y). the evaluable predicate "cuts" the size of the relation A.

By Lemma 4.2. and the disjointness and completeness requirements, we obtain that in every iteration

i:

(4.3) LILlS~I~ILlS'1
j=l

If i is greater than the number of iterations in processor j. then I LlS~ I = O.

Additionally:
"',-I

cost\A,) = I/k· I (I 5~ 11:-1·1 LlSj I), and
l:()

",-I

cosr 3(A) = I·k· L (15 ' 11:-1·1 LlS' I).
,:()

, ..
-.c-" -

An arithmetic manipulation, similar to the one done for cosc i in (1), shows that:
r nt-I ,

Lcosc 3(A,) $ H· L :t(l5) I k-l'l ~j I).
j=i ;=0 j=l

Thus, using inequalities (4.1) and (4.3), it is easy to see that:
,

Lcost\A j) $ cost 3(A) 0
j=1

4.4 Pure Parallelization of Other Programs

Theorem 4.2 indicates that if we insist on pure parallelization of programs, we must relax the dis

joinmess requirement, and consequently the minimal total evaluation COSL This approach was taken in [W],

where pure sharing (not decomposition) schemes were examined (pure sharing schemes were defined in

section 4.1). Programs that have a pure sharing scheme are named sharable. [W] showed that all linear

programs are sharable, while there are programs, such as path-systems. blue-blooded-frenchman (see

[CK)). and others. all of which belong to a syntactic class called propagating programs. are not sharable.

The class of sharable programs is strictly larger than the class of strongly decomposable programs. and is

incomparable to the class of decomposable programs (see figure I).

For evaluating the linear programs in parallel, the following strategy of pure sharing schemes was

proposed in [W]. The strategy is denoted 551 in this paper. It evaluates a linear program P that is not

strongly decomposable, by algorithms fA 1, •..• Ar}. Each algorithm. A" evaluates the restricted version of P

having the predicate h (x)=i appended to the exit rule only 4; h is some hash function.

Intuitively. a pure sharing scheme does not guarantee a minimal total evaluation cost, since the algo

rithms of the scheme do nOl necessarily produce disjoint seLS of facts. and therefore. the same fact may be

"examined" in the scheme by more than one algorithm. It can be easily shown that there are programs and

inputs. for which the algorithms of 5S 1 do not satisfy the inequalities of Theorem 4.2.

However. it can be shown that when considering COS{2, the following is satisfied. For each input, the

maximum (among all participating processors) amount of work in semi-naively evaluating a program by

5S I, is nOl higher than the amount of work in evaluating the program by a single processor.

In conclusion. the class-strucrure of programs with respect to pure-paralleli7.ation is illustrated in

figure I. Finally, consider the following question. Can the class of sharable programs be characterized in

terms of output domain partitioning. as we have done for programs that have a pure decomposition scheme

? This is an open problem at this point, but observe that the natural way of doing so does not work. This

natural way is in terms of an output domain "cover", i.e. set of fact-sets that are not necessarily disjoinL

For example. 5 (x.y):-5 (w,z),A (x.y. w,z) does not have such a cover but is sharable.

h (y)=i or h (x +)i)=i ork .lS well.

- 24-

5. DYNAMIC LOAD DISTRIBUTION

Pure parallelization pays for lack of overhead with two limitations. First, it is applicable only to

decomposable programs. Second, even for decomposable programs, the evaluation-load cannOL be bal

anced dynamicaUy among the processors; thus. for OS 1 we cannot ensure that minimal total-cost translates

into Lime minimality. Consequently, in this section we examine independent-parallelization i.e., paralleli

zation with control-overhead but without data-overhead. We suggest a strategy, OS2, for the parallel

evaluation of a strongly decomposable program. Strategy OS2 is an adaptation of OS I that balances the

work-load dynamically, by using control messages. We assume that every two processors can communi

cate and every transmitted message arrives to its destination (no failures).

Strategy DS2:

By using a restricted version of a program, as in DS 1, every one of the r processors assumes respon

sibility for computing some members of the natural partition (see subse.ction 3.2) of the program. Each pro

cessor performs its evaluation, one member at a time, in increasing order of members. For example if pro

cessors 0 and 1 cooperate, and processor 0 is responsible for the even members, then it evaluates M 2 first.

then M~, then M 6. etc. When some processor. i, terminates evaluating all its members. it announces com

pletion to all the other processors. In response. each one of them broadcasts the identif1cation of the parti

tion member it is currently working on. Processor i assumes responsibility for l/r of the unprocessed

members of each processor. Consequently, each processor is left with (r-I)/r of the members it had

before the announcement of i. To continue the cxample, if processor 0 tenninatcs the even members, it

sends a control message indicating so to processor I. Processor I, that is responsible for the odd members.

responds with the identification of the member it is working on. say 7. This indicates to processor 0 that

responsibility for the odd partitions that succeed 7. is divided; processor 0 takes the members M 9.

M 13, JI I7 • and processor 1 takes members MIl' M 15. M 19," .• etc. The work continues with each algo

rithm notifying its companion upon completion, and the latter responding with the partition number it is

working on at that time. 0

Note that only control messages. i.e. partition-idenlilicalions and tennination messages, are sent between

processors, by OS2. It is easy to realize that every scheme in OS2 is an independent parallelization scheme

(see definitions in subsection 4.1).

For thc rest of this section assume thal thc algorithm executed by cach processor is semi-naive

evaluation. For example, a processor of OS2 semi-naively evaluates A1 2, then it semi-naively evaluates

M 4, thcn M 9. etc. It is casy to show that each scheme in OS2 has minimal evaluation cost. by the three

measures introduced in section 4.3, COSI I , [051
2

• and cose 3. In other words. an analog to Theorem 4.2 can

be shown for schemes in DS2. The proof is based on the observation that the cost of semi-naive evaluation

of a sequence of members by a processor in OS2, is not higher than the cost of a processor in DS 1 that is

assigned responsibility for the same members (the latter evaluates all of them togcther, and nOL one by one

- 25-

as the fonner does}.

We argue that schemes in OS2 are optimal within the strategy of partition-oriented independent

de{:omposition schemes. Intuitively, this is the strategy of independent decomposition schemes in which for

every input, the output in a member of the natural partition is never "split" between two or more partial

computations. Such splitting necessitates extra work to detennine that every fact is proper for an input, and

a partition-oriented independent decomposition scheme avoids this extra work. Observe that only strongly

de{:omposable programs have a partition oriented independent decomposition schemes.

Schemes of DS2 are optimal, up to one partition-member 5 , for the following two reasons combined.

First., the total work-load of all the processors is minimal, i.e. not higher than the work-load of one proces

sor perfonning the evaluation single-handedly. Second, all processors arc busy until completion.

Finally, note that strategy SS 1 can also be extended to strategy SS2, that distributes the load dynami

cally. A scheme in SS2 evaluates any linear program, P, as follows. "Member" Mi consists of the set of

output facts derived from the input, where the relation B is restricted to the set (B (i,e) I e is a constant}.

Each processor evaluates the members in increasing order. The evaluation of a member consists of the

evaluation of the restricted version of P having x=i appended to the exit rule. Work redistribution occurs

when a processor completes, as in OS2.

6. A PARALLELIZATION STRATEGY APPLICABLE TO ALL PROGRAMS

In this section we present a general purpose paralleli7.<ltion strategy, OS3. In contrast to the stra

tegies presented thus far, OS3 can be used for the paralleli7.<ltion of every program. It incurs a data

overhead involved in transmitting tuples among the processors, but we show that in some sense the over

head is minimal. We also show that for the linear programs, the total evaluation cost of the processors is

minimal.

6.1 The Strategy DS3

As the previous strategies, OS3 is a data-reduction strategy, i.e., each processor evaluates a program

P, using less than the whole database. Given a hash function h, processor i is responsible for computing the

facts that satisfy h(x)=i, where x is the first variable in the head of the recursive rule 6. In OS3, each pro

cessor eXe{:utes a modified version of semi-naive evaluation (an adaptation of naive evaluation is also pos

sible, and even simpler). To ensure completeness, each processor communicates with the others in the fol

lowing way. Processor i has a set of predicates, T'l for)=1 , .. , rand);;;i. Each Til depends on the program

being evaluated, and the hash function. Processor i transmits processor) all the facts that i computes, and

that satisfy predicate T'l" Next we provide the fonnal description.

S This means that m any other scheme. say DSm. for some mput, the last processor to complete may do so before the last pro
cessor of DS2 completes. But If so, then the last processor of DS2 traus the last processor of DSm by at most the time it takes to
evalu.atc one partition·member in that inpuL

• ObVIOusly. an analog of DS3 e:mts for h (y)=j where Y IS the second vanable In the head of the rules.

- 26-

Strategy OS3:

Given a system of r processors. a hash fWlction h that maps the natural numbers imo {I, .. ,r}, and a pro

gram P, processor i executes the following procedure:

(1) If P is strongly decomposable - execute OS I or DS2 (no facts have to be transm itted).

(2) Determine the transmission predicates Tij for }=1, .. ,r and }:t:i, according to the ftow-chart in figure

6.2 (next subsection).

(3) Let Pi be P with the hash function h (x)=i appended to the exit and recursive rules; x is the first vari

able in the head of both rules. Compute 0 (P,I) by semi-naive evaluation.

At the end of each iteration do:

end.

3.1 Denote by Mi the set of new tuples that i computed during its last iteration. For

} = I, " ,r }:t:i transmit processor} all the facts in M, that satisfy the predicate Ti}.

3.2 Add to the relation M i , the set of all tuples that were received from other processors dur

ing i's last iteration (this set may be empty).

3.3 If dS, is empty, then wait Wltil some tuples are received from other processors.

The computation ends when all processors are in step 3.3, and no tuples are "in transit" i.e. have been sent

bUl not received yet. 0

Note that the processors perform their computation completely asynchronously. Also, the only

assumption that we make about the commWlication network is that each tuple that is sent, eventually

reaches the destination processor (no FIFO arrival of massages is necessary). In appendix B we provide an

example of evaluating a program by a scheme in OS3, and discuss its performance.

6.2 The Transmission Predicates

In strategy OS3, processor i sends to processor j the facts that i computes, and that satisfy the

transmission predicate Tir In this subsection we define these predicates, whose purpose is to reduce the

number of transmitted facts. Intuitively, a fact does not have to be transmitted to}, if once arrived there, it

will either be eliminated by j's hash fWlction, or, it will not contribute to the evaluation performed by pro

cessor j. Such facts will not satisfy the predicate Tlr For example, assume that the head of the recursive

rule is S(x,y). and there is a single S-atom in the body, S(:,x). Then. the program is not decomposable,

but regardless of the input, a fact 5 (c .d) such that j:t:h (d). docs not have to be scm to j. Such a fact is never

instantiated in the body of the recursive rule of j. because j's ha"h function prevents this.

In an unary program. TI, is TRUE for any i and j. In other words. each processor transmits all its

computed facts to all the other processors. Thus. for the rest of this subsection we consider only binary pro

grams.

The predicate TI , depends on the class of binary program. P, being evaluated. We define several

classes of programs, each with its own set of transmission predicates. DenOLe the recursive rule of P by r.

-27-

and let the first variable in its head be x. A program is first-consistent if every S-atom in the body of r con

tains the variable x. For example, the program with the recursive rule S (x.y) :- 5 (x,z), S (y,x) is first

consistent. A program is partially-first-consistent (partially-first-fixed) if the removal of all the S·alOms

with repeated variables from the body of r, leaves a IIrst-consistent program (a first-fixed program, or a

program with an empty r-body). For example the program with the recursive rule

S (x,y):- S (x,z), S (y,x), S (z,z) is a partially-first-consistent program, while the program with the recursive

rule S (x,y) :- S (x,z), S (x,m), S (y,y), A (z,m) is partially-first-fixed.

Now we define a partially-discriminating program. Given an instantiation, /. of the recursive rule of

P, denote by Ij the following input to P. It consists of {the facLS in S-lO-B substiwtion of body·f] minus

{all the one-constant B-facLS, except B if (x),j (x»). P is partially-discriminating if head-je 0 (P,Ij) for

any instantiation t of r. In other words, a program is partially-discriminating if for every instantiation, t,
there exist a derivation tree of head'/' as follows. Each leaf of the tree is in body-j(the S predicate symbol

is replaced by B); also, each B-fact in the tree is either a two-constant fact. or the fact B if (x),t (x». In a

discriminating program, for every instantiation. t, that derives a new fact. there exist a derivation tree in

which each B-fact is a two-constant facL Thus, every discriminating program is also a partially

discriminating program. The algorithm that decides whether or not a program is partially-discriminating is

described appendix A.

The definition of Ti) is given using the flow-chart in Figure 6.2.

A fact S (a ,b)
satisfiu T·· iff

h(bP;j
AfactS(a,b)
slLisfiea Tij iff

a=b

A fact S (a .b)
IlLisfiea T ij iff

h (b)=j or a=b

A fact S (a ,b)
Ian.fiu Tij iff

a#J

Figure 6.2; Defining the transmission predicates

N Every fact
sati.sflU Tij

We end this subsection with the following remark. The decomposable programs. along with the new

program classes detined in this section, comprise the set of "coverable" programs. We shall not formally

define here this extension of the decomposability concept, but will just mention that, a coverable program

has a cover of the output domain, for which every fact is proper. The notion of a cover is weaker than the

notion of a partition. in the sense that the members of a con:r need not be disjoint, but each one is smaller

than the whole output domain.

- 28-

6.3 Correctness of the Strategy DS3

In this subsection we establish that each scheme in strategy DS3 is actually a decomposition scheme.

A moment of thought will reveal that two of the three properties of such a scheme, disjointness and

existence of a time-saving input, are trivially satisfied. Completeness is not, particularly since a processor

executing DS3 does not send to all the other processors, all the facts Ulat it computes.

Theorem 6.1: Any scheme in DS3 satisfies the completeness requirement.

Proof: Assume, by way of contradiction, that there is a scheme, A, in DS3, an input I, and a fact

S~ E 0 (P,/) that is not computed in anyone of the partial computations A,(/). Consider a derivation tree

of S~, with leaves in I. We select an instantiation, f, in that tree that satisfies the following two condi

tions: (i) / derives a fact, 5 (a,b), which is not computed in anyone of the processors, and Oi) every S -fact

in body I is computed by one of the processors. Such an instantiation exists since in the considered deriva

lion tree, the root is not computed in anyone of the processors, but every S-fact in the bottom of the tree

(derived by the exit rule) is computed by one of the processors. Assume without loss of generality that

h (a) = } (i.e. processor) is "responsible" for producing S (a,b ». Since the evaluation had terminated, but

S (a.b) was not computed, we conclude (remember condition (ii) off> that there is at least one fact, S (c ,d),

in body I that is computed in another processor. but not transmiued to}. Suppose that S (c.d) = MI. where

M is some atom in the body of the recursive rule, and that S (c. d) was computed by processor i, i *}. Obvi

ously. P is not first-fixed (otherwise h(c)=)). We shall prove that for any other program, S(c,d) must

satisfy the predicate Ti], and therefore must have been transmitted LO}.

(1) A first-consistent program. In such a prol:,rram, x appears in all the S-atoms in the body of the recur

sive rule. We know that h(c)*} and that/maps x LO a, and that h(a)=}. Thus a=d, and S(c.d) must

satisfy T,j'

(2) A partially-first-fixed program, but not first-consistenl In such a program, every atom in the recur

sive rule is either an atom with a repeated variable, or an atom with the variable x in the first position.

Since h (c)*h (a), and consequently a*C. M is an aLom with a repeated variable. Thus S(c,d) is a

one-constant fact, and therefore satisfies T'r

(3) A panially-first-consistent program, bUL not tirst-consistl!nt. nor partially-first-fixed. In such a pro

gram, every atom in the recursive rule is either an atom \ltith a repeated variable. or it has the vari

able x in one of its positions. Since h (c)*h la) •. \1 is either with a repeawd variable. or x is in its

second position. Therefore c =d, or d=a 1\ h (d)=), and consequently S (c,d) satisfies T",

(4) A partially-discriminating program, but nOL tirst-consistent, nor partially-first-fixed, nor partially

lirst-consistenl. By definition of a panially-discriminating program, S (a,b) can be derived from

bodYIwithouL using anyone-constant facts other than S(a,a). We also know that if S(a,a) is com

puted, then it must be computed by processor). Since S (a,b) is not computed, we conclude that

S (c,d) is a two-constant fact, and thereforl! satislies 1',1'

(5) A program which is not of the previous kind.,. In such a program, every fact satisfies Tii , particularly

S(c,d). 0

6.4 The Performance of Strategy DS3

To esLirnmc OS3 performance, we consider two factors: evaluation cost and data-communication

overhead. In this subsection we refer to these factors, and we start with the evaluation cosL Intuitively,

time-saving occurs in OS3 compared to the single-processor evaluation, for the following reasons. First, for

a given input, each one of the processors computes approximately II r of the output tuples. Second, when

ever Tij is a proper subset of the computed tuples, the evaluation cost of processor j (smaller S), is reduced.

Third, the evaluable predicate h (x)=i cuts the size of every relation having x 3..<; an attribute; consequently

the joins involving such relations are cheaper. Formally, Vie establish in the next theorem, that for linear

programs the total evaluation-cost of all the processors participating in OS3 is minimal.

Theorem 6.2: Let fA I, ... ,A r) be a scheme in OS3 that evaluates a linear program P. Denore by A the

algorithm that semi-naively evaluates P on a single processor. For every input I to P:
,

LCOSI
2(A i)ScOSl

2(A) (COSI
2 is the measure introduced in subsection 4.3).

i=1

Proof: We show that (i) Among the algorithms A \ ,A" every successful inference is performed by at

most one of the algorithms, and in that algorithm, the successful inference is performed only once. (ii)

Every successful inference performed in {A I' ... , A,}, is also performed in A.

(i) The scheme {A I' ... ,Ar} is disjoint, thus every successful inference is performed by at most one of

the algorithms. Additionally, each Ai is semi-naive, and the program is linear, thus every successful

inference performed by A" is performed only once (when the differential relation includes the S-fact

in the body of the instantiated rule).

(ii) Consider a successful inference, performed by some algorithm in {A \, ... ,Ar}. The S-fact in the

body of the instantiated rule is in the output of A (Theorem 6.1), thus belongs to the differential rela

tion in one of the iterations of A. In that iteration, the inference is performed by A. 0

Next, we establish overhead minimality in the following sense. Let A be a decomposition scheme for

the partial computation of a program P. For an input Ito P, the total number of transmiued facts in

A 1 (I),A2(1), ... ,A,(I) is the overhead of A for I (transmiued facts are defined in subsection 4.1). Given a

scheme B in OS3, a de.composition scheme A for the partial computation of the same program, is called B

alike if it satislies the following condition: for every input, A computes the same facts as B at every proces

sor (although A may transmit more or less of them).

For an input I to P, let S(7) be a computed fact in A.(/), and a transmined fact in AP). In other

words, i lransmils S ce) to j. Then, A is simple if for every input, J' to P, the following is satisfied. If S ce) is

- 30-

a computed fact in Aj(l'), then it is a transmined fact in Ail'). IntuitiVely, in a simple scheme, if for some

input, a processor, i, sends a computed fact, 5 (e), to another processor, j, then for every other input, i will

send S (7) to j. This means that processor i does not incur the additional work of determining when to send

a fact and when not 10 do so. Note that every scheme in DS3 is simple.

To prove the minimal overhead theorem, we first prove the following lemma.

Lemma 6.1: Let P be a program, let A ={A!, ... ,Ar} be a scheme in DS3 for partial computation of P,

and let h be its hash function. Let lbe a 1-1 instantiation of the recursive rule of P, such thaI S (a,b) is the

instantiated head, and 5(c,d) is in the instantiated body. Assume that h(a)=j and h(c)=i. Then, in every

simple A-alike scheme, B ={B J, .•• ,Br }, and for every input I, if 5 (c,d) is computed in Bj(l), then 5 (c.d)

is transmitted in Bj (/).

Proof: Let lobe the 5-to-B substitution of body·f. In any scheme for the partial computation of P, for the

input I 0, S (a,b) is preceded by all the facts in body I, as computed facts or as transmitted ones. Since B is

A-alike, S(a,b) is a computed fact in Bpo), but S(c,d) is not; thus S(c,d) is a transmitted fact in BJ<!o).

Since B is simple, this is satisfied for every input. 0

The following theorem indicates that DS3 cannot transmit less facts than it actually does.

Theorem 6.3: For every input, a scheme, A, in DS3 has a minimal overhead, among all the simple A-

alike schemes.

Proof: Consider an input Ito A={A 1, .•• ,Ar}, and a fact S (c,d) which is a computed fact in A,(l), and a

transmitted fact in AP), i.e. Tj/S (c,d» = TRUE. We show that in every simple A-alike scheme,

B={B 1,'" ,Br}, with the input I, the fact S(c,d) is transmitted from ito j. We show it by demonstrating

a I-I instantiation of the recursive rule, in which S (c,d) is in the instantiated body, and another fact S (a,b),

such that h(a)=j, is the instantiated head. Since 5(c,d) is computed by processor i in A, h(c)=i, then using

Lemma 6.1 the theorem follows.

We break down the analysis by program classes.

(l) A first-consistent program, but not first-fixed. 5 (c,d) is a transmitted fact in AP) and h (c)=i. Thus

(see flow-chart in figure 6.2) it is a two-constant fact, and h (d)=j. In such a program the head of the

recursive rule has the variable x in the first position while there is an alOm N in the body with x in the

second position. A I-I instantiation.!, in which N-j = 5 (c.d) is the desired one.

(2) A partially-first-fixed program, but neither first-consistent. nor first-fixed. Again, by the flow-chart in

figure 6.2. c =d. In the body of the recursive rule there is an atom with a repeated variable, S (z.z). A

1-1 instantiation I in which I (z)=c, and I (x)=a such that h (a)= j, is the desired one.

(3) A partially-first-consistent program, but neither partially-tirsl-fixed, nor first-consistent, nor first

fixed. In this case, 5 (c,d) is either a one-constant fact, i.e. c =d, or a two-constant fact, and h (d)=j.

If c=d. then the desired instantiation exisL~ as argued in case (2). If c~, then the desired

- 31-

instantimion exists as argued in case (1).

(4) A partially-discriminating program, but neilhcr partially-tirst-consistcnt nor partially-first-tlxed, nor

first-consistent nor first-fixed. In this case, c1=d. Also, there is an 5-atom in the recursive rule, N,

without a repeated variable and without the variable x (otherwise the program is of previous kinds, or

first-fixed). Let a be a constant different than both, e and d, such that h (a)=j. Then a 1-1 instantia

tion,/, in which Nj = 5 (c.d), and! (x)=a is the desired instantiation.

(5) A program which is neither of the four previous kinds, nor first-fixed. If c1=d, then the desired instan

tiation exists as argued in case (4). If c =d, we do nOl search for a \-\ instantiation as before, but use

a different approach. Since the program is not partially-discriminating, there is an instantiation, /',

such that if / is the 5-to-B substitution of body'/', then the following holds. Every derivation tree to

head'/' with leaves in / contains a one-constant B-fact other than B (j'(x),f'(x». Consider a subset of

/, denoted t, such that head·/, E 0 (P J'), and the number of one-constant B-facts in t is minimal

(i.e., if we eliminate a one-constant B -fact from t. then head,/, is nOl any more in the output). Obvi

ously, J' has a one-constant B-fact other than B (j'(x),/,(x). Assume it is B (m,m), and m~/,(x). Let

a be a constant satisfying h(a)=i, and suppose, without loss of generality. that the constants c and a

arc not in f' (otherwise we can add a+c+l to all the constants in n. Furthermore, denote by /", the

input obtained from t, by replacing each occurrence of the constant m by c, and each occurrence of

the constant /'(x) by a. The number of one-constant B-facts in [" is minimal. Thus, for the input /",

5 (c,c) has to be transmitted from processor i to processor j in any A- alike scheme, B (otherwise pro

cessor j cannot compute 5 (a,b), contradicting completeness for /"). If B is also simple, then 5 (e,e)

has LO be transmitted from processor i to processor j for every input that produces it. 0

~ote that DS3 can be easily extended LO arbitrary datalog programs, provided that an algorithm sends

all the new tuples computed at each iteration, to all the other processors. In conclusion, the properties of

the strategies discussed in this paper are summarized in the table of Figure 2 (following the references sec

tion).

7. CONCLUSION AND FUTURE WORK

In this paper we first defined the notions of decomposability and strong decomposability, and pro

vided a complete characterization of all the unary and binary single-rule programs, with respect to both

notions. Our notion of prograrn-decomposability may be related to algebraic-operator decomposition, dis

cussed in [IW], and to clausal decomposition, discussed in [L\11 (although both papers, in contrast to ours,

do nOl require disjoinmess of the output sets, and nm provide a syntactic characterization of programs). In

the future, we intend LO investigate these possible relationships.

Then we studied data-reduction parallelization and started by examining pure parallelization. We

showed that the programs that can be purely paralklizcd · ... ·ith minimalLOtal evaluation cos1, arc exactly the

strongly decomposable ones. Strategy DS \ can be used for this purpose. All linear programs can also be

- 32-

purely parallelized (strategy SS 1), but nO[at minimal cost. Although strategy DS 1 has minimal total cost,

this cost may nO[be evenly balanced among the processors. Strategy DS2, that is not pure but incurs only

control-overhead, overcomes this limitation for the strongly decomposable programs. It is in some sense

optimal. Strategy SS2 is an adaptation of SS 1 to balance the load. for linear programs. Finally, we pro

posed strategy DS3, that can be used for parallelization of every program. Strategy DS3 incur data

overhead. but it is in a sense minimal; also, DS3 ha~ minimal total evaluation cost, for the linear programs.

An obvious future-research direction is to extend the concept of data-reduction parallelization to all

Datalog programs, and other rule-based languages, such as OPS5 ([BFKt\-I)). Also, it would be interesting

to devise general methods of combining data-reduction parallelization, with single processor optimization

techniques. At this point let us observe that some strategies are applicable in conjunction with the magic

sets method (see [BMSU)). For example the same generation program produced by the method in response

to a query is:

MAGIC (xp):- MAGIC (x), PARENT (x,xp)

MAGIC (a)

SG (x,x):- II (x)

SG(x,y):- MAGIC (xp), PARENT(x,xp), PARENT(y,yp), SG (xp,yp)

Then schemes SS 1, SS2, and DS3 can be applied in the evaluation of the program.

Finally, we intend to study the enhancement of data-reduction with some interesting ideas on parallel

processing, that appeared in the literature ([D, GST, HAC, R, RSL, VK}).

Acknowledgement:

We thank the referees, Michael Kifer, Oded Shmueli, and Victor Vianu, for helpful suggestions and com

ments on this paper. Oded Shmueli also suggested the method of communication among the processors

used in DS3.

8. REFERENCES

[AI] R. Agrawal and H.V. Jagadish, "Multiprocessor Transitive Closure Algorithms ", AT&T Bell

Laboratories Manuscript, 1988.

[API F. Afrati and C. H. Papadimitriou "The Parallel Complexity of Simple Chain Queries". ?roc.

6th ACM Symp. on PODS. pp. 210-213. 1987.

[B] C. Beeri "Data Models and Languages for Databases" , Proc. ICDT 1988.

IBan] F. Bancilhon "Naive Evaluation of Recursively Defined Relations", in On Knowledge Base

Management Systems - Integrated Database and AI Systems. Brodie and Mylopoulos. Eds .•

Springer-Verlag.

[Bay] R. Bayer, "Query Evaluation and Recursion in Deductive Database Systems". unpublished

manuscripL. 1985.

- 33-

[BBDW] D. Binon, H. Bora}, DJ. DeWitt and W.K. Wilkinson, "Parallel Algorithms for the Execution

of Relational Database Operations", ACM TODS, 8(3), 1983.

[BFKM] L. Brownston, R.Farre II , E. Kant, N. Manin, "Programming Expert Systems in OPS5",

Addison Wesley, Reading, Massachusetts, 1985.

[BMSU] F. Bancilhon, D. Maier, Y. Sagiv, J. Ullman "Magic Sets and Other Strange Ways to Imple

ment Logic Programs", Proc. 5th ACM Symp. on PODS, pp. 1-15, 1986.

[BR] F. Bancilhon and R. Ramakrishnan "Perfonnance Evaluation of Data Intensive Logic Pro

grams" in Foundations of Deductive Databases and Logic Programming, Ed. J. Minker,

Morgan-Kaufman, 1988.

[C] S. Cook, "An Observation on Time Storage Tradeoff', JCSS 9(3), pp. 308-316, 1974.

[CK] S. S. Cosmadakis and P. C. Kanellakis "Parallel Evaluation of Recursive Rule Queries", Proc.

5th ACM Symp. on PODS, pp. 280-293, 1986.

[D] G. Dong, "On Distributed Processibility of Logic Programs by Decomposing Databases", Proc.

ACM-SIGMOD con£., 1989.

[DIY] D.M. Dias, B.R. Iyer. P.S. Yu, "On Coupling Many Small Systems for Transaction Process

ing", Research Report RCII722, IBM TJ. Watson Research Center.

[DL) D. DeGroot and G. Lindstrom cds. " Logic Programming - Functions Relations and Equa

tions", Prentice Hall, 1986.

IGST] S. Ganguly, A. Silberschatz, S. Tsur, "A Framework for the Parallel Processing of Queries",

Manuscript., Compo Sci. Dept., Univ. of Texas at Austin, 1989.

[HAC]

[lSI

M. W. Houtsma, P. M. G. Apers, and S. Ceri, "Parallel Computation of Transitive Closure

Queries on Fragmented Databases", University of Twente, TR INF-88-56, Dec. 1988.

T. Ishida, SJ. Stolfo, "Towards the Parallel Execution of Rules in Production System Pro

grams", Proc. of the 13th annual international symposium on Computer Architecture, pp. 28-

37, IEEE/ACM, 1986.

[IW) Y. E. Ioannidis and E. Wong, "Towards an Algebraic Thwry of Recursion", University of

Wisconsin, CS department, TR #801. Oct. 1988.

[K) P. C. Kanellakis "Logic Programming and Parallel Complexity", Proc. lCDT '86, International

Conference on Database Theory, Springer-Verlag Lecture NOles in CS Series, no. 243, pp. 1-

30,1986.

[LM) J. -L. Lassez and M. J. Maher, "Closures and Fairness in the Semantics of Programming

Logic", Theoretical Computer Science 29. pp. 167-184, 1984.

[LYl M. S. Lakshmi, P. S. Yu "Effect of Skew on Join Performance in Parallel Architectures". to

appear, Proc. of the lnt. Symp. on Databases in parallel and Distributed Systems. Austin TX,

- 3'+-

Dec. 1988.

[M) D.P. Miranker, "Recent Developments in Parallel Production System Algorithms", University

of Texas at Austin, manuscript, 1988.

[MNSUYj K. Morris, 1. Naughton, Y. Saraiya, 1.0. Ullman and A. Van Gelder, "YAWN! (Yet Another

Window on NAIL!)" Unpublished Manuscript.

[MW] D. Maier and D. S. Warren "Computing with Logic: Introduction to Logic Programming",

Benjamin-Cummings Publishing Co., 1987.

[P) A.1. Pasik, "A Methodology for Programming Production Systems and its Implications on

Parallelism", Ph.D. Thesis, Columbia University, 1989.

[RJ R. Ramakrishnan, "Parallelism in Logic Programs", Univ. of Wisconsin, Computer Sci. Dept,

TR #892, Nov. 89.

[RSL) L. Raschid, T. Sellis, and C. C. Lin, "Exploiting Concurrency in a DBMS Implementation of

production Systems, Proc. International Symposium on Databases in Distributed and Parallel

Systems, Austin TX, Dec. 1989.

[Sa) Y. Sagiv "Optimizing DataJog Programs," Proc. 6th ACJf Symp. on PODS, pp. 349-362,1987.

[Sh) E. Y. Shapiro "Concurrent Prolog, Collected Papers", MIT Press, 1987.

[Sl) S.1. Stolfo, "Five Parallel Algorithms for Production System Execution on the DADO

Machine", Proc. of the National Conference of Artificial Intelligence, 1984.

[SMM] S.1. Stolfo, D.P.Miranker and R.Mills, "A simple processing scheme to extract and load bal

ance implicit parallelism in the concurrent malch of production rules", In proc. of the AFIPS

s}mp. on fifth generation computing, AFlPS, 1985.

(TMI M.F.M. Tenorio, 0.1. Moldovan, "Mapping Production Systems into Multiprocessors", Proc.

of the 13th annual international symposium on Computer Architecture. IEEE/ ACM, 1986.

[UI J.D. Ullman, "Database and Knowledge-ba-;e Systems Volume 1", Computer Science Press,

1988.

IVY] J.D. Ullman and A. Van Gelder, "Parallel Complexity of Logic Programs", TR STAN-CS-85-

1089, Stanford University.

[YKI P. Valduriez and S. Khoshafian, "Parallel evaluation of the Transitive Closure of a Database

Relation", International Journal of Parallel Programming 17.1, Feb. 1988.

[WI O. Wolfson, "Parallel Bouom-Up Evaluation of DataJog Programs by Load Sharing", TR

CUCS-509-89 computcr science dept.. Columbia Univ., Some of the results appear in Proc. of

the IntI. Symp. on Databases in Parallel and Distributed Systcms, Austin. TX. Dec. 1988.

[WOI O. Wolfson and A. Ozeri, "A New Paradigm for Parallel and Distributed Rule-Processing",

Proceedings of the ACM-SIGMOD 1990, International Conference on Management of Data,

- 35-

Atlantic City, NJ, May 1990. Also, TR CUCS-OII-90, Department of Computer Science,

Columbia University.

fWSJ O. Wolfson and A. Silberschatz, "Distributed Processing of Logic Programs," Proc. of the

ACM-SIGMOD Conf., pp. 329-336, 1988.

- 36-

ALL PROGRAMS

palh-l)'ltemI •

NC

HARABLE PROGRAMS
CI rwmical-atrongl y-linear •

DECOMPOSABLE A·
PROGRAMS

Be

STII ONGl Y DECOMPOSABLE PROGRAMS
c. trmuitive-clolUl'e •

Figure I: When considering amenability to pure paralklizauon, the following logic-program class structure

is exhibited. The strongly decomposable programs arc most amenable to pure parallelization. A represen

tative of this class IS the transitive closure program: S(x,y):- S(x,z),A(z,y). Next in the hierarchy, is the

class of sharable programs. A representative of this class is the canonical strongly linear program: S(x.y):

UP(x.z).S(z.w).DOWN(w.y). Finally. the class of nonsharable programs is nOl amenable to pure paralleli

{ation. A representative of this class IS the path-sysLCms program: S(x):- S(z).S(y).H(x,z.y). For com

pleLCness. we also show the class of decomposable programs. and the ~C complexity class. Point A

represcnts the program: S(x.x):-S(y,y),A(x.y). Pomt B represents the program: S(x.x):

Sty ,y),S(l,z),H(x.y ,z). Point C represents the program: S~ x):-S(w ,y),S(w ,1),H(x.y ,L).

- 37-

Applicable to Programs Overhead Load Distribution Total Cost

DSl strongly decomposable no overhead static minimal

SSl linear no overhead static not minimal

DS2 strongly decomposable control overhead dynamic minimal

SS2 linear control overhead dynamic not minimal

DS3 all minimal data overhead static minimal for linear programs

Figure 2

- 38-

APPENDIX A: DISCRIMINATING PROGRAMS

In this appendix we providc two algorithms. The first, A.I, lO determine whether or not a program is

partially-discriminating, and the other, A2, to determine whether or not it is discriminating. The two algo

rithms are quite similar. Both check all the partitions of the variables in the recursive rule, r, of the tested

program, P. A partition of the variables is a set of pairwise disjoint subsets, such that each variable is in

some subset. For each partition, the algorithms consider a corresponding instantiation. An instantiation, Ji,

of r, corresponds to a partition Pi if for every two variables, the following is satisfied: they are mapped to

different constants by.li, if and only if they are in different subsets of Pi' Note that any instantiation of the

recursive rule corresponds to a partition of the variables of that rule .. Additionally, instantiations

corresponding to the same partition are equivalent, and consequently, only one representative of each

equiValence class is considered in our algorithms.

Algorithm A.I below determines whether or not a program is partially-discriminating. It does so by

simply checking the definition, and thus its correctness is trivial.

Algorithm A.l:

(1) Denote by PI, ... , Pk: the partitions of the variables in r.

For each partition, Pi, do:

Consider an instantiationJi of r, corresponding to Pl' If head·Ji E 0 (P,Ij) then P is not partially

diSCriminating. Hall (The notation Ii. is introduced in subsection 6.2).

End.

(2) P is partially-discriminating. 0

The algorithm is exponential in the size of the program, but we assumed, as other works (e.g. lUY]),

that the size of the program is a constanL Next we provide the algorithm, A.2, for dctermining whether or

not a program is discriminating.

Algorithm A.2:

(1) If the head of r is an atom with a repeated variable, then P is not discriminating. Halt.

Otherwise, denote the head of r by S (.t,y) . If S (y,x) is not in the body of r, then P is not discriminat

ing. Hall.

(2) Denote by PI, ... ,Pi; the partitions of the variables In r.

For each partition, P., do:

Consider an instantiation, J:, of r, corresponding to P •. Let' be the input obtained by the S-to-B

substitution of body·J:. If head'J: E body·J: and head·J: E ncU'), then P is not discriminating.

Hall. (The notation " is explained in subsection 3.2 l.

End.

- 39-

(3) P is discriminating. 0

In contrast to A.I, correctness of A.2 is not trivial, and the difficulty is due to the difference in

definitions of partially-discriminating and discriminating programs. A partially-discriminating program is

defined in terms of inputs created by instantiations of the recursive rule. In contrast, the definition of a

discriminating program is in terms of an arbitrary input.

Theorem A.3: Algorithm A.2 correctly determines whether or not a program is discriminating.

Proof: If the algorithm halLS in step (2), then we found an instantiation Ii, and an input I (which is the S

to-B substitution of body'/;) such that (i) head'/; E nt (I) (because we required that head'/; fi. body'/;), and

(ii) head-/; e nJ (r). Thus for this input, nt (I)i:nt(l°).

If the algorithm halLS in step (3), then we shall show that the program is discriminating. Assume, by way of

contradiction, that it is not discriminating. The program is reverse, thus there is an input INP, for which

nl (INP)i:nt(lNP '). Thus, there is a derivation tree, T, that satisfies the following condition: the root, S (e),

of T is in nJ (INP) (i.e. cannot be derived by the exit rule), but is not in nl (lNP'), Without loss of general

ity, we assume minimality in the following sense. T does not have any subtree whose root is in

nl(INP) - nt(INP'). Furthermore, we shall assume, again without loss of generality, that for every subtree

of T, if iLS root is in nt (INP 0), then all iLS B-leaves are two-constant facLS (by delinition of nc(INP'), the

root has such a derivation tree). Since the root of T is not in nt (lNP'), T has a one-constant B-leaf, say

B (i.i). Consider its father, S (i,i), and all 5 (i,irs brothers. They represent an instantiation, say g. Clearly.

head'g is not in nc(INP'), since its derivation tree has B (i,i) as a leaf. By minimality, head'g is the root.

5 (e). Denote by 18 the S-to-B substitution of body·g. We shall show that S(e)e nl(l;). If 5(7) E nt(l;),

then either every S-fact in body-g is not in nl(INP) (i.e. can be derived from the exit rule). or is in nt(lNP')

(by minimality). In both cases, S (7) E nt (INP 0), contradicting the way T was chosen. Consequently,

5(:)e nc(l;). Let/be the instantiation we created at step (2) of algorithm A.2, when we considered the

same partition of variables as g performs. Let If be the S-to-B substitution of bodyf. Clearly,

headI E bodyI if and only if head·g E body·g. Since the tree is free of useless instantiations,

head"/e body"/. Also head"/E m(lj) if and only if head'g E nt(l;). Thus, head"/fi. nt(lj), and the algo

rithm must have stopped at step (2). 0

APPENDIX B: EXAMPLES

This appendix demonstrates by an example the execution of strategy DS3, using two processors, PO

and P 1. The evaluation method of each processor is semi-naive. We usc the canonical slrongly linear (cs/)

program:

5 (x,y):= UP (x,w),5 (w,z),DOWN (:,y)

5 (x,)'):= FLAT (x,y)

The extensional-database relations UP, FLAT, and DOW;-.J represent a directed graph with three types of

arcs. The csl program defines a tuple (a,b) to be in S, if and only if there is a path from a to b having k UP

arcs, one FLAT are, and k DOWN arcs, for some integer k.

Let the input to csl be the extensional database relations of Figure B.I. UP is the relation

{(1.2),(2,3)(3,4).(4.5)}. DOWN is the relation {(6.7),(7,8).(8.9).(9.1O)}. and FLAT is the relation

{(i. 6) Ii = 1, 5}.

Figure B.l; Sample input to the csl program.

For simplicity. we assume that both processors fiOiSh each iteration of the semi-naive evaluation at the

same time. and then messages exchange occurs. This assumption is justified in this example. since both

processors do approximately the same amount of work at each iteration.

Next we explain the example. and figure B.2 which summarizes iL PO evaluates csl with the predi

cate x mod 2 = 0 appended to the exit and recursive rules. therefore. it starts with the differential

[(2.6).(4.6)}. P I appends the predicale x mod 2 = I and starts with the differential [(1.6).(3,6),(5.6)} .

After the first iteration both processors reach a temporary lix-polOt. and PO transmilS the set {(2.6).(4.6)}

while P I transmilS the set [(1.6),(3.6).(5.6»). Each processor adds the receIved sct of tuples to ilS present

differential. PO obtains {(l,6).(3,6),(5,6») and P I obtains {(2.6).(4.6)}. After the second iteration PO

obtains the differential {(2.7).(4.7)} and PI obtains {(1.7),O.7»). As result of tuples-exchange the dif

ferentials of both processors become the same. Actually after all the followlOg tuples-exchanges. the dif

ferentials are the same. Iteration 3 ends with the differential of PO belOg {(2.8)} and the differential of P 1

. being {(1.8).(3.8»). The rest of the evaluauons are in me table of figure B.2. A fmal fix-point is reached

after the sixth iteration.

For comparison. consider strategy SS I. in which PO (P I) evaluates csl with the predicate

x mod 2 = 0 (x mod 2 = I) appended to the exit rule only. The dIfferentials at the beginning of each itera

tion of P 1 (which performs worse than PO) are: [(1.6).(3.61.(5.6)}. ((4.7).(2.71). [(3.8).(l,8)}. {(2.9)}.

-41-

({l ,1O)}. respectively.

For SS I, OS3 and the serial semi-naive evaluation, we summarize the relation sizes at each iteration

of each strategy, in the table of Figure B.3. The conclusions from this comparison are as follows. For each

one of the strategies, SS 1 and OS3, the hardest-working processor performs better than the single proces

sor. In SS 1, P 1 that works harder, has the same number of iterations as a single processor, and at three of

the five iterations the size of the differential is approximately half the size of the single-processor's dif

ferentials. In DS3, PO and PI perform six iterations (five for the single processor), at each iteration the

size of UP is half the size in the single processor case.

Finally, observe that for OS3 the csl program is a worst-case example in two respects. First, the pro

gram classification that enables less tuples to be transmitted between processors, thus reducing overhead

and evaluation-cost, does not help in the csl case. Second, the size-cutting variable x, appears in only one

relation.

Processor 0 Processor 1

iteration sizes of the differentials sizes of the differentials

UP,t:.S,DOWN t:.S UP ,t:.S ,DOWN t:.S

1 2,2,4 (2,6)(4,6) 2,3,4 (5,6)(3,6)(1 ,6)

1.1 0 0

2 2,3,4 (1,6)(3,6)(5,6) 2.204 (2,6)(4,6)

2.1 (2,7)(4,7) (1,7)(3,7)

3 2,4,4 (2,7)(4,7)(1,7)(3,7) 2,4,4 (2,7)(4,7)(1,7)(3,7)

3.1 (2,8) (1,8)(3,8)

4 2,3,4 (2,8)(I ,8)(3,8) 2,3,4 (2,8)(1,8)(3,8)

4.1 (2,9) (1,9)

5 2,2,4 (2,9)(I ,9) 2,2,4 (2,9)(1,9)

5.1 0 (1,10)

6 2,1,4 (1,10) 2,1,4 (1,\0)

6.1 0 0

Figure B.2: csl execution by strategy OS3. In a line marked by iteration i we specify the differentials at the

beginning of the i-th iteration and after messages-exchange. In a line marked by i. 1 we specify the dif

ferentials at the end of the i-th iteration, and before the messages-exchange.

-42 -

single-processor SSI DS3

iteration DrocessorO processor 1 DrocessorO orocessor 1

1 4,5,4 4,2,4 4,3,4 2,2,4 2,3,4
2 4,4,4 4,2,4 4,2,4 2,3,4 2,2,4
3 4,3,4 4,1,4 4,2,4 2,4,4 2,4,4
4 4,2,4 4,1,4 4,1,4 2,3,4 2.3.4
5 4,1,4 4,1,4 2,2,4 2,2,4
6 214 2,14

Figure B-3: Perfonnance comparison. The table Gntries consist of three numbers. for the size of relations

UP. the differential M, and DOWN respectively.

APPE~DIX C

In this appendix we provide the semi-naive evaluation algorithm for a single rule program. We use

Ullman's terminology ([U)). Denote the atoms in the body of the recursive rule by T I •••• .Tk • The func

tion HrAL _RULE (T I •...• Tk). is a relation for the predicate S. The relation consists of all the tuples that

can be derived by instantiations of the recursive rule. that use facts from relations assigned to the T, ·s. It is

obtained by joining these relations. EF AL _RULE -,NCR (TI ,Tk), that computes the differential relation

'" obtained from the recursive rule, is defined as U EVAL _RULE (T I, •.. ,T,_I , !!.T, , Ti + l , ••• ,Tk) where

the assigned relations are as follows. For I~i. the assigned relation is the extensional relation. or s, depend

ing on the predicate symbol of T, (the lowercase letters denote the relations for the corresponding upper

case predicate symbols). For j=i, if T, has an e:<tGnsionai predicate symbol, then the assigned relation is <P.

otherwise it is!!.s (the differential relation computed by the previous iteration).

Semi-l\ah'e Evaluation:

!!.s +- the B -1O-S-substitution of the relation b.

repeat

* renwve tuples that appeared before *

until !!.s = <II

