
DECOMPOSABILITY AND ITS ROLE IN PARALLEL LOGIC-PROGRAM EVALUATION

Ouri Wolfson, Avi Silberschatz

Columbia University
Dept. of Computer Science

Technical Report CUCS-012-90

Decomposability and Its Role in Parallel Logic-Program Evaluation

Ouri Wolfsont

Computer Science Deparunent
Columbia University

New York, NY 10027

and

A vi Si/berschalztt

Computer Science Deparunent
University of Texas at Austin

Austin. TX 78712

ABSTRACT

This paper is concerned with the issue of parallel evaluation of logic pro­
grams. We define the concept of program decomposability, which means that
the load of evaluation can be partitioned among a number of processors, without
a need for communication among them. This in turn results in a very significant
speed-up of the evaluation process. Some programs are decomposable, whereas
others are not. We completely syntactically characterize three classes of single
rule programs with respect to decomposability: nonrecursive, simple linear, and
simple chain programs. We also establish two sufficient conditions for decom­
posability.

t This research was supported in part by DARPA research grant #F·~9601·87-C-0074. and by the Center for Advanced
Technology at Columbia l:niversity under contract ~YSSTF·CA T(89)·5.

it This research was partially supported by NSF Research Grant IRI·8S05215

- 2 -

1. Introduction

We propose a new method of evaluating logic programs in parallel. The method is suitable
for sharing the computation load among an arbitrary number of processors, which either have
common memory or communicate by message passing. This makes it applicable to a large class
of hardware architectures. Let us demonstrate the method using the classical example of the
program computing the transitive closure of a graph. The arcs of the graph are given by the
tuples of a database relation A. The program is written in DA T ALOG (see [MW]):

T(x,y):- T(x,z),A(z,y)

T(x,y):- A (x,y).

If the relation A is replicated at two different processors. pI and p2, we can partition the work of
computing (the relation for) the predicate T as follows. The above program, with the arithmetic
predicate even (x) appended to the body of the second rule, is assigned to processor pl. In other
words, pI executes the program:

T(x,y):- T(x,z).A(z.y)

T(t.y):- A (t.y).even (x).

On the other hand, processor p2 executes the program:

T (x,y):- T (x.z),A (z,y)

T(x,y):- A (x,y),odd(x).

The effect of the evaluation of pI is that it computes the tuples (x,y) of the transitive closure. in
which x is even. Similarly, p2 computes those tuples in which x is odd. For example, if the input
graph is 1 ~ 2 ~ 3 ~ 4 ~ 5, then p I computes the set of output tuples { (1,2), (1,3), (1,4),
(3,4), (3.5) }. and p2 computes the set { (2.3), (2,4), (2,5), (4,5) }.

A moment of reflection will reveal that the above partitioning of the work has several nice
propenies. First. no processor computes a tuple which is also computed by the other processor.
thus there is no work-duplication in this sense. Second. if the relation computed by each proces­
sor is output to the same device. or stored in the same file, the result is always the complete tran­
sitive closure. regardless of the input graph. Third. no conununication between the two proces­
sors is required during the computation. Founh. the work-partitioning does not require compli­
cated program transformations, only adding evaluable predicates to the body of some rules of the
original program.

Assume that the whole relation for T has to be evaluated, and pI and p2 start at the same
time and execute their programs in parallel. Assume further that at the same time a single pro­
cessor. using the original program. starts the evaluation of T. It is quite intuitive that. for an
"average" (large enough) graph, the partitioned evaluation of T will complete much sooner than
the single-processor evaluation. Furthermore, note that the evaluation can be divided among k
processors. for any k~2. The only difference from the above example is that processor pi exe­
cutes a copy of the program with the predicate imod k(x) added to the nonrecursive rule. The
exact time-speedup achieved by the work-partitioning scheme depends on many parameters out­
side the scope of this paper. however. here we are interested in a qualitative issue.

We postulate that in general. a work-partitioning scheme with the properties enumerated
above. is very desirable. If it can be applied to the evaluation of a predicate in a program. then

- 3 -

we say that the predicate is decomposable. Not every predicate is decomposable. Even for the
same problem of computing the transitive closure, we will prove that the predicate r in the pro­
gram:

r(x,y):- T'(x,z),T'(z,y)

T'(x,y):- A (x,y)

is not decomposable. The proof of this fact will be given in section 6. This indicates that decom­
posability is a syntactic rather than semantic propeny. We feel that it is both practically and
theoretically important to first formally define decomposability, and then characterize the
decomposable predicates.

In this paper we completely characterize three subclasses of single rule programs (sirups)
with respect to decomposability: nonrecursive, simple linear, and simple chain programs. Sirups
were first studied as a syntactically restricted class of programs by Cosmadakis and Kanellakis
([CK]). They have only one output predicate, therefore we interchangeably use the term decom­
posability of a predicate or of a program. We also provide two sufficient conditions for any
sirup to be decomposable. Simple linear programs and simple chain programs are important
subclasses of sirups from the practical point of view.

This work is related to the general subject of parallel evaluation of logic programs. The
subject has recently emerged as a very important and active area of research ([APl. [K], [U],
[UV]). Most existing research is concerned with membership in the complexity class NC. This
class is a mathematical tool for analyzing parallel algorithms in general. Here we show that for
analyzing parallel evaluation of logic programs, a different tool can be used. Loosely speaking,
if a logic program is in NC it does not guarantee that it has all the nice properties of a decompos­
able predicate. In particular, the processors executing an NC type algorithm usually have to
communicate extensively, and therefore communication is assumed to take place through com­
mon memory. Also, a speedup for such an algorithm is not guaranteed unless the number of pro­
cessors is polynomial in the size of the input.

The remainder of the paper is organized as follows. In section 2 we introduce the necessary
definitions and notations used throughout the paper. In section 3 we prove that any nonrecursive
sirup is decomposable. In section 4 we provide two sufficient conditions for a general sirup to
be decomposable, and in section 5 we show that one of these conditions, called pivoting, is also
necessary for decomposability of a simple linear sirup. In section 6 it is proven that a simple
chain program is decomposable if and only if it is regular. In section 7 we discuss future work.

2. Preliminaries

In this section we present the basic definitions and terminology that will be used throughout
this paper.

2.1. Program Structure

An atom is a predicate symbol with a constant or a variable in each argument position. We
assume that the constants are the natural numbers. An R-atom is an atom having R as the predi­
cate symbol. A rule consists of an atom, Q, designated as the head, and a conjunction of one or
more atoms, denoted Q 1, ... , Q k, designated as the body. Such a rule is denoted

- 4 -

Q:- Q 1, ... , Q k, which should be read "Q if Q 1 and Q 2, and, ... , and Qk." A rule or an atom is
an entity. If an entity has a constant in each argument position, then it is a ground entity. For a
predicate symbol, R, a finite set of R-ground-atoms is a relation for R.

A DA T ALOG program P, or a program for short, is a finite set of rules whose predicate
symbols are divided into two disjoint subsets: the base predicates, and the derived predicates.
The base predicates are distinguished by the fact that they do not appear in any head of a rule.
An input to P is a relation for each base predicate. An output of P is a relation for each derived
predicate of P. A substitution applied to an entity, or a sequence of entities, is the replacement
of each variable in the entity by a variable or a constant. It is denoted x l/y Lx 2/y 2, ... , xn/yn
indicating that xi is replaced by yi. A substitution is ground if the replacement of each variable
is by a constant. A ground substitution applied to a rule is an instantiation of the rule.

A database for P is a relation for each predicate of P. The output of P, given an input I, is
the set of relations for the derived predicates in the database, obtained by the following pro­
cedure. called bottom up evaluation:

(1) Start with an initial database consisting of the relations of I.

(2) If there is an instantiation of a rule of P such that all the ground atoms in the body are in the
database generated so far, and the one in the head is not, then: add to the database the
ground atom in the head of the instantiated rule. and reexecute (2).

(3) Stop.

This procedure is guaranteed to terminate, and produce a finite output for any given P and I
([VEK]). The output is unique, in the sense that any order in which bottom up evaluation adds
the atoms to the database will produce the same output. For simplicity we assume that the rules
of a program are range restricted, i.e., every variable in the head of a rule also appears in the
body of that rule. Furthermore. we assume that the rules do not have constants. and each query
is to evaluate a whole relation for a predicate.

A predicate Q in a program P derives a predicate R. if Q occurs in the body of a rule whose
head is a R-atom. Q is recursive if (Q,Q) is in the nonreflexive transitive closure of the
"derives" relation. A program is recursive if it has a recursive predicate. A rule is recursive if
the predicate in its head transitively derives some predicate in its body.

A single rule program (see [CKD is a DATALOG program having a single derived predi­
cate, denoted S in our paper. and consisting of:

1. A nonrecursive rule.

S (x 1. ... , xn):- B (x 1, xn)

where the xi's are distinct variables.

2. One other, possibly recursive, rule in which the predicate symbol B does not appear.

2.2. Restricted Versions of Programs

An evaluable predicate is an arithmetic predicate (see [BRJ). Examples of evaluable predi­
cates are sum, greater than. modulo. etc. A rule re is a restricted version of some rule r, if r and
re have exactly the same variables. and r can be obtained by omitting zero or more evaluable

- 5 -

predicates from the body of reo In other words, re is r with some evaluable predicates added to
the body, and the arguments of these evaluable predicates are variables of r. For example, if r is:

S (x,y,z):- S (w,x,y), A (w,z)

then one possible re rule is:

S (x,y,z):- S (w,x,y), A (w,z), x-y =5.

A program Pj is a restricted version of program P if each one of its rules is a restricted version
of some rule of P. Note that Pj may have more than one restricted version of a rule r of P. To
continue the above example, if P has the rule r, then P j may have the rule re as well as the rule
re':

S (x,y,z):- S (w,x,y), A (w,z), x-y=6.

Throughout this paper, only restricted versions of a program may have evaluable predicates.

The input of a program with evaluable predicates, i.e. a restricted version, is defined as
before. The output is also defined as before, except that step (2) of the procedure bottom-up­
evaluation also verifies that the substitution satisfies the evaluable predicates in the ground rule~
only then the atom in the head is added to the database and step (2) is reexecuted. For example,
for the rule re' above, the substitution x/14,y/8 satisfies the evaluable predicate x-y=6, whereas
the substitution x/13,y/9 does not do so.

3. Decomposability

In this section we first define and discuss the key notion of decomposability, then prove that
a nonrecursive sirup is decomposable. Let P be a program, let PI, ... , P r be restricted copies of
P. and let T be a derived predicate of P. We denote by Tj the relation output by Pj for T.
(Observe that this is a somewhat unconventional notation, since the relation name is different
than the predicate name).

We say that predicate T is decomposable in P with respect to PI, ... , Pr if the following
two conditions hold:

1. For each input I to P, PI, ... , Pr

1. U T j ~ T (completeness).

11. Tj and Tj are disjoint for each i :t; j; furthermore, if some derived predicate Q transi­
tively derives Tin P, then Qj and Qj are disjoint (lack-of-duplication).

2. For some input I to PI, ... , P r' each T j is nonempty (nontriviality).

The above definition is central to this paper, and we shall discuss it next.

Requirement l.i states that no output is lost by evaluating the relation for T in each P j

rather than the relation for Tin P; the fact that no additional output is generated is implied by the
fact that each P j is a restricted version of P. Requirement l.ii states that in the process of
evaluating T, each new ground atom (or intermediate result) is computed by a unique processor.
Assume that, along the lines suggested in [BR section 4], we measure the cost of evaluating the
relation T. in terms of the number of new ground atoms generated in the evaluation process.
Then. loosely speaking, requirement 1 says the following. For every input (i.e. set of base

- 6 -

relations replicated at each processor), the evaluation by r processors is equivalent, in terms of
the output produced and the total evaluation cost, to the single-processor evaluation.

The strength of requirement 1 enables the relaxed form of requirement 2. It is enough that
for "some" inputs each Tj is nonempty, since for those inputs the evaluation cost incurred by
each processor is smaller than that of a single processor executing the program P. Then the
evaluation of T completes sooner in the distributed case. In other words, since there is nothing
to lose by distributing the computation, it is enough that we gain only in some cases to make the
scheme worthwhile. However, for the decomposable predicates that we discuss in this paper,
nontriviality holds for more than an isolated case input.

For instance, in the transitive closure example nontriviality holds for any input graph in
which arcs exit both, even and odd nodes. Specifically, for the class of predicates that we prove
decomposable in this paper, decomposability is shown using the odd -even predicates alone.
This has two implications. First, the work performed by each processor for an arbitrary input, is
roughly equal (e.g. for an arbitrary graph, the number of odd and even nodes is roughly equal).
In these cases we expect the distributed evaluation to be faster than the single-processor evalua­
tion, by a factor which is close to two, i.e. the number processors. Second, note that the odd and
even predicates are a special case of the i mod r predicates, for r=2. When we show that T is
decomposable in P with respect to P 1 and P 2, then it should be easy for the readers to convince
themselves that for any r, there are restricted copies PI, ... , P r such that T is decomposable in P
with respect to PI, .", Pro This means that the work can be divided among any number of pro­
cessors. For instance, in the transitive closure example, in order to do so processor i evaluates Tj

where:

Pi. T(x,y):- T(x,z),A (z,y).

T(x,y):-A (x,y), x=i mod r.

These facts stress the robustness of the decomposability definition.

We say that predicate T is decomposable in P if it is decomposable with respect to some
restricted copies PI, ... , P r for r > 1.

Theorem 1: If a sirup P is nonrecursive, then its derived predicate is decomposable.

Proof: Assume that Pis:

Sex 1, ... , xn):- Ql(. ...), ... , Qk(....)

S(xl, "', xn):-B(xl, xn)

where B and each Q j are base predicates. Consider the following restricted copies of P:

Pl' Sex 1, ... , xn):- Q te), "', Qk(. ...), even (x 1)

Sex 1, ... , xn):- B(x 1, ... , xn), even (x 1)

P 2 . Sex 1, ... , xn):- Q 1(. ...), ... , Qk(. ...), odd(x 1)

Sex 1, ... , xn):- B(x 1, ... , xn), odd(x 1).

It is easy to see that S is decomposable in P with respect to P 1 and P 2. 0

- 7 -

4. Sufficient Conditions for Decomposability

In this section we provide two sufficient conditions for decomposability of a general sirup.
The first one is motivated by the next example, which also merits attention for the following rea­
son. From the preceding discussion one might suspect that our notion of decomposability is
equivalent to "naive" propagation of variable bindings (see introduction of [BKBR]). The latter
notion means simply substituting a constant for a variable in some rules. The constant is usually
taken from a query. For example, in order to find all the arcs exiting the node 2 in the transitive
closure of a graph, the constant can be naively propagated into the program as follows:

T(2,y):- T(2,z),A(z,y)

T (2,y):- A (2,y).

It is quite clear that if a sirup is amenable to naive propagation of variable bindings, then it is
decomposable. However, the reverse is not true. For example, consider the program:

S (x,y):- S (y,x)

S (x,y):- A (x,y).

which outputs an arc in both directions for every arc of an input graph. It is easy to see that a
binding cannot be naively propagated into this program, but the sirup is decomposable; one res­
tricted copy has the nonrecursive rule:

S (x,y):- A (x,y),even(x+y).

and the other:

S (x,y):- A (x,y),odd(x+y).

Note that appending to the body of the nonrecursive rule the predicates odd,even(x*y), or any
other commutative function of x and y, works as well. Our first sufficient condition for decompo­
sability, introduced below, is based on the preceding observation.

Let R be a set of atoms, each of which has a variable in each argument position. The set R
is pivoting if there is a subset d of argument positions, such that in the positions of d:

1. The same variables appear (possibly in a different order) in all atoms of R, and

2. Each variable appears the same number of times in all atoms of R.

A member of d is called a pivot. Note that a variable that appears in a pivot mayor may not
appear in a nonpivot position of the same atom.

The recursive rule of a sirup is pivoting if all the occurrences of the recursive predicate in
the rule constitute a pivoting set. For example, the rule

S(w.x,x,y,z) :-S(u,y,x,x,w), S(v,x,y,x,w), A(u,v.z)

is pivoting, with argument positions 2, 3 and 4 of S being the pivots.

Theorem 2: If the recursive rule of a sirup is pivoting, then the sirup is decomposable.

Proof: Assume that argument positions iI, ... , ik of S are the pivots. Consider restricted
copy PI of P which has the same recursive rule as P, and a nonrecursive rule

Sex!' ... , xn) :-B(xl, ... , xn), even (xi 1 +Xi2 +, ... , +Xik)'

- 8 -

Restricted copy P 2 of P is the same. except that the nonrecursive rule is

S(x1, ... , xn) :-B(xl, ... , xn), odd (xi 1 +Xi2 +, ... , +xik)·

Assume that for input J, the ground atom a=S (c 1, ... , cn) is in the relation S output by P.
Assume further, without loss of generality, that C=Ci

l
+, ... , + Cit is even. Denote by t the neces­

sary and sufficient number of iterations of step (2) of bottom-up-evaluation for adding a to the
database, in evaluating P. It is easy to see by induction on t, that t iterations are necessary and
sufficient to add a to S l' It is also easy to see that a is not in S 2, and that nontriviality holds. 0

Theorem 2 can be extended to general DA TALOG programs, not necessarily sirups, pro­
vided that they do not have repeated variables in the heads of rules. A rule in such a program is
pivoting, if all its derived-predicate-atoms (in the head and the body) constitute a pivoting set. A
program is pivoting if each one of its rules is pivoting, with the same argument positions being
the pivots in all the rules. For example, the program

S (x,y,z):- R (y,x,w), A (w,z)

R (x,y,z):- R (x,y, w), B (w,z)

R (x,y,z):- C (x,y,z)

is pivoting, with positions 1 and 2 being the pivots. A predicate in such a program is decompos­
able if the rules which derive the predicate constitute a pivoting program. For example, predi­
cate S in the program above is decomposable (add odd -even (x +y) to the body of the third rule).

The condition of theorem 2 is not necessary for decomposability. For example, the sirup

S (x,x):- S (y,y), A (x,y)

S (x,y):- B (x,y)

is obviously not pivoting, but it is decomposable. Again, odd-even (x+y) is added to the body
of the nonrecursive rule. The intuition indicates that in this example the computation load for an
arbitrary input is not evenly divided between the processors executing the two restricted versions
of the program (because only the processor executing the copy with the even evaluable predicate
can output an atom as a result of instantiation of the recursive rule). The example is unique
(throughout the paper) in this respect. Expectedly, the last example motivates our next sufficient
condition for decomposability of a sirup. It is defined as follows. Assume that R is a set of atoms
with each atom having the same predicate symbol, Q, and a variable in each argument position.
The set R is repeating if there are at least two argument positions of Q, i and j, such that the
same variable appears in position i and position j, and this is true for each member of R (note
that the variable of one member of R may be different than the variable of another). The recur­
sive rule of a sirup is repeating if all the occurrences of the recursive predicate in the rule consti­
tute a repeating set. For example, the rule

S(x,z,x) :-S(z,z,z), S(x,x,x)

is repeating because of argument positions 1 and 3.

Theorem 3: If the recursive rule of a sirup is repeating, then the sirup is decomposable.

Proof: Very similar to the proof of theorem 2 thus omitted. The only difference between
the proofs is that odd -even (xi + xj) replaces odd -even (xi 1 + ... + xit), where i and j are the
positions of the repeated variable. 0

- 9 -

Obviously, the condition of theorem 3 is not necessary for decomposability either.

5. Simple Linear Sirups

In this section we completely characterize the class of simple linear sirups with respect to
decomposability. A sirup is linear if it is recursive, and in the body of the recursive rule there is
exactly one occurrence of the recursive predicate. A linear sirup is simple if it does not have
repeated variables in an occurrence of the recursive predicate.

The characterization of simple linear sirups with respect to decomposability is done by
proving that the sufficient condition of theorem 2 is also necessary. We assume that the recur­
sive rule is:

S (x 1, ... , xn):- S (Y 1, ... , Yn),A 1 (.), ... , Ak(. ...)

where the Aj' s are base predicates. Observe the notation used in this section to distinguish
between two types of variables. The ones starting with a lowercase letter are logic program vari­
ables, or variables for shon, as before. The ones starting with an upper case letter (e.g. Y 1), are
metalinguistic-variables. They denote program variables. For example, Y 1 may denote the vari­
able xn.

If the predicate S(x 1, ... , xn) in a (not necessarily linear) sirup P is decomposable with
respect to PI, ... , P r' then we define the home-site of a sequence of n constants, C = C 1, ... , c".
It is the Sj to which the output atom S (C) belongs, if each Pj is given the input consisting of a
unique atom, B (C). Note that the home-site of a sequence is unique (lack-of-duplication), every
sequence of n constants has a home-site (completeness), and ea,:h Sj, l~i~r, has a sequence of
constants for which Sj is the home-site. Let C = c 1, ... , c" and d = d 1, ... , dn be two sequences
of constants. The ordered pair of ground atoms <S (d), S (C» is a one-step-derivation if there
is an instantiation of the recursive rule of P, in which the first atom is in the head and the second
is in the body.

Lemma 1: If the derived predic!te, S, of a simple linear sirup, P, is decomp~sable, and
there are two sequences of constants d = d 1, ... , d" and c = c 1, ... , Cn such that <S (d),S (C» is
a one-step-derivation, then the home-site of d and c is identical.

Proof: Let the instantiation of the recursive rule which results in the one-step-derivation
be:

Consider the input:

II = (A 1 <£i 1), ... , Ak(ak), B (C)}.

Assume that P is decomposable with respect to PI, ... , Pro Note that S (C) must be in the output
of some restricted version of P. Assume that S(C) is in Sj. By completeness, S (d) is also in the
output of some restricted version. This output must be of Pj' for the following reason. In the
input II there is only one B-ground-atom, therefore the output of any restricted version other
than Pj is empty. Now cO'2.sider the input 12 = 11 U (8 (d)}. By lack of duplication, for the
inp~t 12 the ground atom Sed) is .,:;till in Sj. Therefore, for the input consisting of the single atom
B (d), the output ground atom Sed) must be in Sj. 0

- 10 -

Let P be a simple linear sirup, having the recursive predicate denoted S, and the recursive
rule denoted r. Let us define the sequence of S-atoms Distinct-Vars as follows. The first
member, mo, is S (x 10, ... , xno), where the xio's are variables. Subsequently, member mj is
defined as the head of the recursive rule, r', obtained by applying to r a substitution which
satisfies the following two conditions:

1. Each one of the variables in the S-atom in the body of r is replaced by another variable,
such that mj-l appears in the body of r ' .

2. Each one of the other variables in r is replaced by a distinct variable that does not appear in

For example, consider the recursive rule: S(xl,x2,x3) :-S(x4,xl,x2),A(x4,x3). Then the
following is a prefix of the sequence Distinct-Vars: S(x10,x20,x30), S(x20,x30,x31),
S (x 30,x 31,x 32), and S (x 3l>x 32 ,x 33).

We shall prove that S is not decomposable, if the sequence Distinct-Vars has a member in
which none of the variables is one of the xi 0 's; then we shall prove that if so, then the recursive
rule of P is not pivoting.

By definition of Distinct-Vars. we immediately obtain the following.

Lemma 2: Assume that S(Y1, ... , Yn) and S(ZI, ... , Zn) are two consecutive members of
Distinct-Vars. Furthermore, assume that there is a ground substitution p of the program vari­
ables in the sequence S(Y1 • ... , Yn). S(ZI, ...• Zn), resulting in the sequence of ground atoms
S (c 1, ... , cn), S (d 1, ... , dn). Then the pair <S (d 1, ... , dn), S (c 1, ...• cn» is a one-step­
derivation.

Lemma 3: Assume that mi is a member of Distinct-Vars, such that no variable in the set
x 10, ...• xno appears in mi. Then P is not decomposable.

Proof: Assume that P is decomposable with respect to PI, ... , P r, and let c 1> ...• Cn and
d 1, ...• dn be two arbitrary sequences of constants. We will show that both have the same
home-site, contradicting nontriviality. Consider the sequence of atoms
s:ml=S(xlO• xno) •...• mj=S(Zl, ... ,Zn). The substitution
p =x10Icl' ... , xnolcn,Zl/dl, Znldn is valid for any values of Cl cn,d 1, ... , dn, since
{x 10 , ... , xno, Z 1, Zn} is a set of distinct variables. Let p' be an extension of p to a ground
substitution of the sequence s. The sequence of ground atoms sp' has the property that any two
consecutive atoms in it constitute a one step derivation (by Lemma 2). Therefore, by Lemma 1,
the constant-sequences c 1, ... , Cn and d 1, dn have the same home-site. 0

Lemma 4: If the recursive rule of P is not pivoting, then there is a member, mi, of
Distinct-Vars, such that no variable in the set {x 10 , xno} appears in mi.

Proof: Construct a graph, G, in which the nodes are the argument positions of S, and there
is an additional node called "new". There is an edge from p to q if the same variable appears in
position p in the occurrence of S in the body of the recursive rule, and in position q in the
occurrence of S in the head. If in position q in the occurrence of S in the head there is a variable
which does not appear in the occurrence of S in the body, then draw an arc from "new" to q.
Every node except "new" has exactly one entering arc and one exiting arc, because there are no
repeated variables in an occurrence of the recursive predicate. It is easy to see that if G has a

- 11 -

cycle, then P is pivoting, with the nodes of the cycle being the pivots. Since P is not pivoting, G
is acyclic, and we conclude that there must be a path from "new" to every other node in G.
Assume that the shortest path from "new" to some other node, p, is of length k. It can be shown
by induction on k, that position p of mk will have a variable which is not in the set
{x 10, ... , xno}. By definition of Disrinct-Vars the lemma follows. 0

Theorem 4: A simple linear sirup is decomposable if and only if its recursive rule is pivot-
ing.

Proof: (if) Special case of Theorem 2.
(only if) Immediate from Lemmas 3 and 4. 0

6. Simple Chain Programs

A simple chain program is a recursive sirup in which:

(a) All the predicates are binary.

(b) The argument positions in the left hand side of the recursive rule have distinct variables,
and these variables appear in the first argument position of the first atom in the body, and in
the last argument position of the last atom, respectively.

(c) All the argument positions in the body of the recursive rule have distinct variables, except
that the first argument position of the second atom has the same variable as the last argu­
ment position of the first atom, the first argument position of the third atom has the same
variable as the last argument position of the second atom, etc.

For example, the following is a simple chain program:

5 (x,y):- A (x,z 1),5 (z 1 ,Z2),S(Z2,Z3),C(Z3,Z4),D(Z4,y)

5 (x,y):- B (x,y)

where the A,B,C,D are base relations. A simple chain program is regular if in its recursive rule
there is one occurrence of the predicate S and this occurrence is the first or the last in the body of
the recursive rule. Note that a simple chain program is pivoting if and only if it is regular.

Theorem 5: A simple chain program P is decomposable if and only if it is regular.

Proof: (if) Immediate, based on Theorem 2.
(only if) Assume that P is not regular, and is decomposable with respect to restricted copies PI,
P2, ... , Pr of P, for r>l. Denote the recursive rule of P by:

5 (x,y):- Q 1 (X,Z 1)' ... , Q'(Z,-l,Y)

where some of the Q i, S are 5' s, and t> 1. Using the usual notation, the nonrecursive rule is:

5 (x,y):- B (x,y).

By non triviality there are two sequences of constants, j 1, k 1 and j 2, k 2 with home sites 51 and
52 respectively. Since the recursive rule of P is not regular, there are two cases to analyze:

Case 1: There is a subsequence in the body of the recursive rule, of the following fonn:

Qi-l (Zi-2,Zi-l),5 (Zj-l ,Zi),Qi+l (Zj,Zi+l)'

- 12 -

Let /2 consist of the set of ground atoms:

Q 1 (c I,C2),Q2(C2,C3), ... , Qi-l (Ci-l ,j d,BU 1 ,k 1),Qj+l (k 1 ,Ci+l),Qi+2(Ci+l ,Ci+2), ... , Ql(CI_l ,cI)

where:

1) Each predicate S (m, n) in the list is a notation for B (m, n).

2) Each pair of different c's represents different constants.

3) None of the c's is in the set {h,k lth,k2 }.

For the input [2, the ground atom S (c 1 ,cl) is in the output S of P. By completeness, for this
input, S(c 1 ,ct) is in some Sj. We will show that S(c I ,Ct) is in S 1. Assume otherwise, i.e.
S(c 1, ct) is in Sb for b:;el. The atom B (c 1 ,ct) is not in /2 because t> 1, therefore S(c 1, Ct) must
be added to the database by instantiating the recursive rule of Pb in step 2 of bottom-up­
evaluation. However, to generate an atom using the recursive rule of Pb , requires a 'chain' of
atoms of length t. But /2-B U l,k d does not contain such a chain, since it only contains t-1
atoms, and has no cycles (by the choice of constants).

Therefore, for input /2 to PI, ... , Pr , S(c 1 ,Ct) is in S 1. Now consider the input /3, which is
defined identically to /2, except that the constants it, k 1 are replaced by h, k 2 respectively.
Similar arguments as before will reveal that S(Cl,C1) is in S2. The proof of this case is com­
pleted by noticing that for the input [2 U [3, the ground atom S(CI ,cI) is in both, S 1 and S 2,

contradicting lack-of-duplication.

Case 2: The body of the recursive rule of P is of the following fonn:

S(x,z), S (z,y).

Consider the input [4 consisting of the ground atom B U3,k 3), where 13 and k3 are distinct. and
none of them is in the set {h ,h, k 1, k 2 }. Assume without loss of generality that the home site
of 13,k3 is Sd, for d:;el (otherwise the analysis below can be carried out by replacing it,k 1 by
h,k2 respectively).

Subcase 2.1: Assume that h:;ek l . Let input /5 = (BUl,k l), B(kl,13), BU3,k3)}. This
input relation can be regarded as a graph consisting of a path, therefore SUI ,h) and S (k I ,k 3)

are in S. Assume that the home site of k 1 .13 is Si for i:;el. But then it is easy to see that
SUI ,j 3) is not in any Sj: contradicting completeness. If the home site of k 1 ,j 3 is S 1. then it is
easy to see that for input [5 the atom S(k I ,k3) is not in any Sj; again contradicting complete­
ness.

Subcase 2.2: Assume that j I =k I. In other words, the home site of j I ,j I, is S 1. Let input
[6 = (B U 1,13), B U 3, k 3), B (k 3 ,h)). This input relation can be regarded as a graph consisting
of a cycle, therefore SUI,h) is in S. Since SU3,k3) is in Sd only. for the input [6, SUI,h) can­
not be in any Sj other than Sd' But then, for the input/ 6 u (B U 1 ,h)} the ground atom SU I,j d
is in both, S 1 and Sd: this contradicts lack of duplication. 0

Note that theorem 5, combined with the results in [AP, UV], indicate that in the class of
simple chain programs, the subclass of programs in NC properly contains the subclass of decom­
posable programs. The reason for this is that, clearly, every regular chain program is in NC, and
the program:

- 13 -

S (X,y):- B (x,Y)

is one of the programs in NC that is not decomposable. Recent results from [CW] indicate that,
outside the class of simple chain programs, there are decomposable programs that are P­
complete.

7. Future Work

We shall continue the work on decomposability in several directions. One of them is to
extend the characterization of decomposable predicates to other sirups first, e.g. typed (see [K]).
and then to general logic programs. Another direction is to determine whether decomposition
implies that the work can be evenly divided among the processors, as we have seen that can be
done using the mod predicate. For this purpose a notion of fair decomposition should be
defined. Another topic which merits attention is minimizing communication when evaluating
nondecomposable predicates in a distributed environment. We feel that the work on decomposa­
bility should also be helpful in this area. More specifically, observe that the method proposed in
this paper to partition the load in evaluating decomposable predicates, can be applied to non­
decomposable ones as well; however in that case communication among the processors is neces­
sary. The question is, how does the amount of necessary communication compare in different
partitioning schemes. Finally, we shall mention that we intend to study the relationship between
the class of decomposable programs and the programs in the complexity class NC. Also, OUf

notion of program-decomposability may be related to algebraic-operator decomposition, dis­
cussed in [IW], and to clausal decomposition, discussed in [LM] (although both papers, in con­
trast to ours, do not require disjointness of the output sets, and not provide a syntactic characteri­
zation of programs). We intend to investigate these possible relationships as well.

Acknowledgement: We thank the referees for constructive comments that helped us improve
the presentation in this paper.

8. References

[AP] F. Afrati and C. H. Papadimitriou "The Parallel Complexity of Simple Chain
Queries", Proc. 6th ACM Symp. on PODS. pp. 210-213, 1987.

[BKBR] C. Beeri, P. Kanellakis, F. Bancilhon, R. Ramakrishnan "Bounds on the Propagation
of Selection into Logic Programs", Proc. 6th ACM Symp. on PODS. pp. 214-226,
1987.

[BR] F. Bancilhon and R. Ramakrishnan "An Amateur's Introduction to Recursive Query
Processing", Proc. SIGMOD COllf pp. 16-52, 1986.

[CK] S. S. Cosmadakis and P. C. Kanellakis "Parallel Evaluation of Recursive Rule
Queries", Proc. 5th ACM Symp. 011 PODS, pp. 280-293, 1986.

[CW] S. Cohen and O. Wolfson "Why a Single Parallelization Strategy is Not Enough in
Knowledge Bases", Proc. of 8th ACM Symp. 011 PODS. pp. 200-216, 1989. Also,

[IW]

[K]

[LM]

[MW]

[U]

[UV]

[VEK]

- 14 -

invited and submitted for publication in a special issue of the Journal of Computer
and Systems Sciences (JCSS).

Y. E. Ioannidis and E. Wong, "Towards an Algebraic Theory of Recursion", Univer­
sity of Wisconsin, CS department, TR #801, Oct. 1988.

P. C. Kanellakis "Logic Programming and Parallel Complexity", Proc. ICDT '86,
International Conference on Database Theory, Springer-Verlag Lecture Notes in CS
Series, no. 243, pp. 1-30, 1986.

1. -L. Lassez and M. J. Maher, "Closures and Fairness in the Semantics of Program­
ming Logic", Theoretical Computer Science 29, pp. 167-184, 1984.

D. Maier and D. S. Warren "Computing with Logic: Introduction to Logic Program­
ming", Benjamin-Cummings Publishing Co., 1987.

J. D. Ullman "Database Theory: Past and Future", Proc. 6th ACM Symp. on PODS,
pp. 1-10, 1987.

1.0. Ullman and A. Van Gelder, "Parallel Complexity of Logic Programs", TR
STAN-CS-85-1089, Stanford University.

M. H. Van Emden and R. A. Kowalski "The Semantics of Predicate Logic as a Pro­
gramming Language", JACM, 23(4) pp. 733-742,1976.

