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ABSTRACT 

This paper is concerned with the issue of parallel evaluation of logic pro­
grams. We define the concept of program decomposability, which means that 
the load of evaluation can be partitioned among a number of processors, without 
a need for communication among them. This in turn results in a very significant 
speed-up of the evaluation process. Some programs are decomposable, whereas 
others are not. We completely syntactically characterize three classes of single 
rule programs with respect to decomposability: nonrecursive, simple linear, and 
simple chain programs. We also establish two sufficient conditions for decom­
posability. 
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1. Introduction 

We propose a new method of evaluating logic programs in parallel. The method is suitable 
for sharing the computation load among an arbitrary number of processors, which either have 
common memory or communicate by message passing. This makes it applicable to a large class 
of hardware architectures. Let us demonstrate the method using the classical example of the 
program computing the transitive closure of a graph. The arcs of the graph are given by the 
tuples of a database relation A. The program is written in DA T ALOG (see [MW]): 

T(x,y):- T(x,z),A(z,y) 

T(x,y):- A (x,y). 

If the relation A is replicated at two different processors. pI and p2, we can partition the work of 
computing (the relation for) the predicate T as follows. The above program, with the arithmetic 
predicate even (x) appended to the body of the second rule, is assigned to processor pl. In other 
words, pI executes the program: 

T(x,y):- T(x,z).A(z.y) 

T(t.y):- A (t.y).even (x). 

On the other hand, processor p2 executes the program: 

T (x,y):- T (x.z),A (z,y) 

T(x,y):- A (x,y),odd(x). 

The effect of the evaluation of pI is that it computes the tuples (x,y) of the transitive closure. in 
which x is even. Similarly, p2 computes those tuples in which x is odd. For example, if the input 
graph is 1 ~ 2 ~ 3 ~ 4 ~ 5, then p I computes the set of output tuples { (1,2), (1,3), (1,4), 
(3,4), (3.5) }. and p2 computes the set { (2.3), (2,4), (2,5), (4,5) }. 

A moment of reflection will reveal that the above partitioning of the work has several nice 
propenies. First. no processor computes a tuple which is also computed by the other processor. 
thus there is no work-duplication in this sense. Second. if the relation computed by each proces­
sor is output to the same device. or stored in the same file, the result is always the complete tran­
sitive closure. regardless of the input graph. Third. no conununication between the two proces­
sors is required during the computation. Founh. the work-partitioning does not require compli­
cated program transformations, only adding evaluable predicates to the body of some rules of the 
original program. 

Assume that the whole relation for T has to be evaluated, and pI and p2 start at the same 
time and execute their programs in parallel. Assume further that at the same time a single pro­
cessor. using the original program. starts the evaluation of T. It is quite intuitive that. for an 
"average" (large enough) graph, the partitioned evaluation of T will complete much sooner than 
the single-processor evaluation. Furthermore, note that the evaluation can be divided among k 
processors. for any k~2. The only difference from the above example is that processor pi exe­
cutes a copy of the program with the predicate imod k(x) added to the nonrecursive rule. The 
exact time-speedup achieved by the work-partitioning scheme depends on many parameters out­
side the scope of this paper. however. here we are interested in a qualitative issue. 

We postulate that in general. a work-partitioning scheme with the properties enumerated 
above. is very desirable. If it can be applied to the evaluation of a predicate in a program. then 
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we say that the predicate is decomposable. Not every predicate is decomposable. Even for the 
same problem of computing the transitive closure, we will prove that the predicate r in the pro­
gram: 

r(x,y):- T'(x,z),T'(z,y) 

T'(x,y):- A (x,y) 

is not decomposable. The proof of this fact will be given in section 6. This indicates that decom­
posability is a syntactic rather than semantic propeny. We feel that it is both practically and 
theoretically important to first formally define decomposability, and then characterize the 
decomposable predicates. 

In this paper we completely characterize three subclasses of single rule programs (sirups) 
with respect to decomposability: nonrecursive, simple linear, and simple chain programs. Sirups 
were first studied as a syntactically restricted class of programs by Cosmadakis and Kanellakis 
([CK]). They have only one output predicate, therefore we interchangeably use the term decom­
posability of a predicate or of a program. We also provide two sufficient conditions for any 
sirup to be decomposable. Simple linear programs and simple chain programs are important 
subclasses of sirups from the practical point of view. 

This work is related to the general subject of parallel evaluation of logic programs. The 
subject has recently emerged as a very important and active area of research ([APl. [K], [U], 
[UV]). Most existing research is concerned with membership in the complexity class NC. This 
class is a mathematical tool for analyzing parallel algorithms in general. Here we show that for 
analyzing parallel evaluation of logic programs, a different tool can be used. Loosely speaking, 
if a logic program is in NC it does not guarantee that it has all the nice properties of a decompos­
able predicate. In particular, the processors executing an NC type algorithm usually have to 
communicate extensively, and therefore communication is assumed to take place through com­
mon memory. Also, a speedup for such an algorithm is not guaranteed unless the number of pro­
cessors is polynomial in the size of the input. 

The remainder of the paper is organized as follows. In section 2 we introduce the necessary 
definitions and notations used throughout the paper. In section 3 we prove that any nonrecursive 
sirup is decomposable. In section 4 we provide two sufficient conditions for a general sirup to 
be decomposable, and in section 5 we show that one of these conditions, called pivoting, is also 
necessary for decomposability of a simple linear sirup. In section 6 it is proven that a simple 
chain program is decomposable if and only if it is regular. In section 7 we discuss future work. 

2. Preliminaries 

In this section we present the basic definitions and terminology that will be used throughout 
this paper. 

2.1. Program Structure 

An atom is a predicate symbol with a constant or a variable in each argument position. We 
assume that the constants are the natural numbers. An R-atom is an atom having R as the predi­
cate symbol. A rule consists of an atom, Q, designated as the head, and a conjunction of one or 
more atoms, denoted Q 1, ... , Q k, designated as the body. Such a rule is denoted 



- 4 -

Q:- Q 1, ... , Q k, which should be read "Q if Q 1 and Q 2, and, ... , and Qk." A rule or an atom is 
an entity. If an entity has a constant in each argument position, then it is a ground entity. For a 
predicate symbol, R, a finite set of R-ground-atoms is a relation for R. 

A DA T ALOG program P, or a program for short, is a finite set of rules whose predicate 
symbols are divided into two disjoint subsets: the base predicates, and the derived predicates. 
The base predicates are distinguished by the fact that they do not appear in any head of a rule. 
An input to P is a relation for each base predicate. An output of P is a relation for each derived 
predicate of P. A substitution applied to an entity, or a sequence of entities, is the replacement 
of each variable in the entity by a variable or a constant. It is denoted x l/y Lx 2/y 2, ... , xn/yn 
indicating that xi is replaced by yi. A substitution is ground if the replacement of each variable 
is by a constant. A ground substitution applied to a rule is an instantiation of the rule. 

A database for P is a relation for each predicate of P. The output of P, given an input I, is 
the set of relations for the derived predicates in the database, obtained by the following pro­
cedure. called bottom up evaluation: 

(1) Start with an initial database consisting of the relations of I. 

(2) If there is an instantiation of a rule of P such that all the ground atoms in the body are in the 
database generated so far, and the one in the head is not, then: add to the database the 
ground atom in the head of the instantiated rule. and reexecute (2). 

(3) Stop. 

This procedure is guaranteed to terminate, and produce a finite output for any given P and I 
([VEK]). The output is unique, in the sense that any order in which bottom up evaluation adds 
the atoms to the database will produce the same output. For simplicity we assume that the rules 
of a program are range restricted, i.e., every variable in the head of a rule also appears in the 
body of that rule. Furthermore. we assume that the rules do not have constants. and each query 
is to evaluate a whole relation for a predicate. 

A predicate Q in a program P derives a predicate R. if Q occurs in the body of a rule whose 
head is a R-atom. Q is recursive if (Q,Q) is in the nonreflexive transitive closure of the 
"derives" relation. A program is recursive if it has a recursive predicate. A rule is recursive if 
the predicate in its head transitively derives some predicate in its body. 

A single rule program (see [CKD is a DATALOG program having a single derived predi­
cate, denoted S in our paper. and consisting of: 

1. A nonrecursive rule. 

S (x 1. ... , xn):- B (x 1, .... xn) 

where the xi's are distinct variables. 

2. One other, possibly recursive, rule in which the predicate symbol B does not appear. 

2.2. Restricted Versions of Programs 

An evaluable predicate is an arithmetic predicate (see [BRJ). Examples of evaluable predi­
cates are sum, greater than. modulo. etc. A rule re is a restricted version of some rule r, if r and 
re have exactly the same variables. and r can be obtained by omitting zero or more evaluable 
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predicates from the body of reo In other words, re is r with some evaluable predicates added to 
the body, and the arguments of these evaluable predicates are variables of r. For example, if r is: 

S (x,y,z):- S (w,x,y), A (w,z) 

then one possible re rule is: 

S (x,y,z):- S (w,x,y), A (w,z), x-y =5. 

A program Pj is a restricted version of program P if each one of its rules is a restricted version 
of some rule of P. Note that Pj may have more than one restricted version of a rule r of P. To 
continue the above example, if P has the rule r, then P j may have the rule re as well as the rule 
re': 

S (x,y,z):- S (w,x,y), A (w,z), x-y=6. 

Throughout this paper, only restricted versions of a program may have evaluable predicates. 

The input of a program with evaluable predicates, i.e. a restricted version, is defined as 
before. The output is also defined as before, except that step (2) of the procedure bottom-up­
evaluation also verifies that the substitution satisfies the evaluable predicates in the ground rule~ 
only then the atom in the head is added to the database and step (2) is reexecuted. For example, 
for the rule re' above, the substitution x/14,y/8 satisfies the evaluable predicate x-y=6, whereas 
the substitution x/13,y/9 does not do so. 

3. Decomposability 

In this section we first define and discuss the key notion of decomposability, then prove that 
a nonrecursive sirup is decomposable. Let P be a program, let PI, ... , P r be restricted copies of 
P. and let T be a derived predicate of P. We denote by Tj the relation output by Pj for T. 
(Observe that this is a somewhat unconventional notation, since the relation name is different 
than the predicate name). 

We say that predicate T is decomposable in P with respect to PI, ... , Pr if the following 
two conditions hold: 

1. For each input I to P, PI, ... , Pr 

1. U T j ~ T (completeness). 

11. Tj and Tj are disjoint for each i :t; j; furthermore, if some derived predicate Q transi­
tively derives Tin P, then Qj and Qj are disjoint (lack-of-duplication). 

2. For some input I to PI, ... , P r' each T j is nonempty (nontriviality). 

The above definition is central to this paper, and we shall discuss it next. 

Requirement l.i states that no output is lost by evaluating the relation for T in each P j 

rather than the relation for Tin P; the fact that no additional output is generated is implied by the 
fact that each P j is a restricted version of P. Requirement l.ii states that in the process of 
evaluating T, each new ground atom (or intermediate result) is computed by a unique processor. 
Assume that, along the lines suggested in [BR section 4], we measure the cost of evaluating the 
relation T. in terms of the number of new ground atoms generated in the evaluation process. 
Then. loosely speaking, requirement 1 says the following. For every input (i.e. set of base 
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relations replicated at each processor), the evaluation by r processors is equivalent, in terms of 
the output produced and the total evaluation cost, to the single-processor evaluation. 

The strength of requirement 1 enables the relaxed form of requirement 2. It is enough that 
for "some" inputs each Tj is nonempty, since for those inputs the evaluation cost incurred by 
each processor is smaller than that of a single processor executing the program P. Then the 
evaluation of T completes sooner in the distributed case. In other words, since there is nothing 
to lose by distributing the computation, it is enough that we gain only in some cases to make the 
scheme worthwhile. However, for the decomposable predicates that we discuss in this paper, 
nontriviality holds for more than an isolated case input. 

For instance, in the transitive closure example nontriviality holds for any input graph in 
which arcs exit both, even and odd nodes. Specifically, for the class of predicates that we prove 
decomposable in this paper, decomposability is shown using the odd -even predicates alone. 
This has two implications. First, the work performed by each processor for an arbitrary input, is 
roughly equal (e.g. for an arbitrary graph, the number of odd and even nodes is roughly equal). 
In these cases we expect the distributed evaluation to be faster than the single-processor evalua­
tion, by a factor which is close to two, i.e. the number processors. Second, note that the odd and 
even predicates are a special case of the i mod r predicates, for r=2. When we show that T is 
decomposable in P with respect to P 1 and P 2, then it should be easy for the readers to convince 
themselves that for any r, there are restricted copies PI, ... , P r such that T is decomposable in P 
with respect to PI, .", Pro This means that the work can be divided among any number of pro­
cessors. For instance, in the transitive closure example, in order to do so processor i evaluates Tj 

where: 

Pi. T(x,y):- T(x,z),A (z,y). 

T(x,y):-A (x,y), x=i mod r. 

These facts stress the robustness of the decomposability definition. 

We say that predicate T is decomposable in P if it is decomposable with respect to some 
restricted copies PI, ... , P r for r > 1. 

Theorem 1: If a sirup P is nonrecursive, then its derived predicate is decomposable. 

Proof: Assume that Pis: 

Sex 1, ... , xn):- Ql(. ... ), ... , Qk( .... ) 

S(xl, "', xn):-B(xl, .... xn) 

where B and each Q j are base predicates. Consider the following restricted copies of P: 

Pl' Sex 1, ... , xn):- Q te .... ), "', Qk(. ... ), even (x 1) 

Sex 1, ... , xn):- B(x 1, ... , xn), even (x 1) 

P 2 . Sex 1, ... , xn):- Q 1(. ... ), ... , Qk(. ... ), odd(x 1) 

Sex 1, ... , xn):- B(x 1, ... , xn), odd(x 1). 

It is easy to see that S is decomposable in P with respect to P 1 and P 2. 0 
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4. Sufficient Conditions for Decomposability 

In this section we provide two sufficient conditions for decomposability of a general sirup. 
The first one is motivated by the next example, which also merits attention for the following rea­
son. From the preceding discussion one might suspect that our notion of decomposability is 
equivalent to "naive" propagation of variable bindings (see introduction of [BKBR]). The latter 
notion means simply substituting a constant for a variable in some rules. The constant is usually 
taken from a query. For example, in order to find all the arcs exiting the node 2 in the transitive 
closure of a graph, the constant can be naively propagated into the program as follows: 

T(2,y):- T(2,z),A(z,y) 

T (2,y ):- A (2,y). 

It is quite clear that if a sirup is amenable to naive propagation of variable bindings, then it is 
decomposable. However, the reverse is not true. For example, consider the program: 

S (x,y):- S (y,x) 

S (x,y):- A (x,y). 

which outputs an arc in both directions for every arc of an input graph. It is easy to see that a 
binding cannot be naively propagated into this program, but the sirup is decomposable; one res­
tricted copy has the nonrecursive rule: 

S (x,y):- A (x,y),even(x+y). 

and the other: 

S (x,y):- A (x,y),odd(x+y). 

Note that appending to the body of the nonrecursive rule the predicates odd,even(x*y), or any 
other commutative function of x and y, works as well. Our first sufficient condition for decompo­
sability, introduced below, is based on the preceding observation. 

Let R be a set of atoms, each of which has a variable in each argument position. The set R 
is pivoting if there is a subset d of argument positions, such that in the positions of d: 

1. The same variables appear (possibly in a different order) in all atoms of R, and 

2. Each variable appears the same number of times in all atoms of R. 

A member of d is called a pivot. Note that a variable that appears in a pivot mayor may not 
appear in a nonpivot position of the same atom. 

The recursive rule of a sirup is pivoting if all the occurrences of the recursive predicate in 
the rule constitute a pivoting set. For example, the rule 

S(w.x,x,y,z) :-S(u,y,x,x,w), S(v,x,y,x,w), A(u,v.z) 

is pivoting, with argument positions 2, 3 and 4 of S being the pivots. 

Theorem 2: If the recursive rule of a sirup is pivoting, then the sirup is decomposable. 

Proof: Assume that argument positions iI, ... , ik of S are the pivots. Consider restricted 
copy PI of P which has the same recursive rule as P, and a nonrecursive rule 

Sex!' ... , xn) :-B(xl, ... , xn), even (xi 1 +Xi2 +, ... , +Xik)' 



- 8 -

Restricted copy P 2 of P is the same. except that the nonrecursive rule is 

S(x1, ... , xn) :-B(xl, ... , xn), odd (xi 1 +Xi2 +, ... , +xik )· 

Assume that for input J, the ground atom a=S (c 1, ... , cn) is in the relation S output by P. 
Assume further, without loss of generality, that C=Ci

l 
+, ... , + Cit is even. Denote by t the neces­

sary and sufficient number of iterations of step (2) of bottom-up-evaluation for adding a to the 
database, in evaluating P. It is easy to see by induction on t, that t iterations are necessary and 
sufficient to add a to S l' It is also easy to see that a is not in S 2, and that nontriviality holds. 0 

Theorem 2 can be extended to general DA TALOG programs, not necessarily sirups, pro­
vided that they do not have repeated variables in the heads of rules. A rule in such a program is 
pivoting, if all its derived-predicate-atoms (in the head and the body) constitute a pivoting set. A 
program is pivoting if each one of its rules is pivoting, with the same argument positions being 
the pivots in all the rules. For example, the program 

S (x,y,z):- R (y,x,w), A (w,z) 

R (x,y,z):- R (x,y, w), B (w,z) 

R (x,y,z):- C (x,y,z) 

is pivoting, with positions 1 and 2 being the pivots. A predicate in such a program is decompos­
able if the rules which derive the predicate constitute a pivoting program. For example, predi­
cate S in the program above is decomposable (add odd -even (x +y) to the body of the third rule). 

The condition of theorem 2 is not necessary for decomposability. For example, the sirup 

S (x,x):- S (y,y), A (x,y) 

S (x,y ):- B (x,y) 

is obviously not pivoting, but it is decomposable. Again, odd-even (x+y) is added to the body 
of the nonrecursive rule. The intuition indicates that in this example the computation load for an 
arbitrary input is not evenly divided between the processors executing the two restricted versions 
of the program (because only the processor executing the copy with the even evaluable predicate 
can output an atom as a result of instantiation of the recursive rule). The example is unique 
(throughout the paper) in this respect. Expectedly, the last example motivates our next sufficient 
condition for decomposability of a sirup. It is defined as follows. Assume that R is a set of atoms 
with each atom having the same predicate symbol, Q, and a variable in each argument position. 
The set R is repeating if there are at least two argument positions of Q, i and j, such that the 
same variable appears in position i and position j, and this is true for each member of R (note 
that the variable of one member of R may be different than the variable of another). The recur­
sive rule of a sirup is repeating if all the occurrences of the recursive predicate in the rule consti­
tute a repeating set. For example, the rule 

S(x,z,x) :-S(z,z,z), S(x,x,x) 

is repeating because of argument positions 1 and 3. 

Theorem 3: If the recursive rule of a sirup is repeating, then the sirup is decomposable. 

Proof: Very similar to the proof of theorem 2 thus omitted. The only difference between 
the proofs is that odd -even (xi + xj) replaces odd -even (xi 1 + ... + xit ), where i and j are the 
positions of the repeated variable. 0 
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Obviously, the condition of theorem 3 is not necessary for decomposability either. 

5. Simple Linear Sirups 

In this section we completely characterize the class of simple linear sirups with respect to 
decomposability. A sirup is linear if it is recursive, and in the body of the recursive rule there is 
exactly one occurrence of the recursive predicate. A linear sirup is simple if it does not have 
repeated variables in an occurrence of the recursive predicate. 

The characterization of simple linear sirups with respect to decomposability is done by 
proving that the sufficient condition of theorem 2 is also necessary. We assume that the recur­
sive rule is: 

S (x 1, ... , xn):- S (Y 1, ... , Yn),A 1 (. .... ), ... , Ak(. ... ) 

where the Aj' s are base predicates. Observe the notation used in this section to distinguish 
between two types of variables. The ones starting with a lowercase letter are logic program vari­
ables, or variables for shon, as before. The ones starting with an upper case letter (e.g. Y 1), are 
metalinguistic-variables. They denote program variables. For example, Y 1 may denote the vari­
able xn. 

If the predicate S(x 1, ... , xn) in a (not necessarily linear) sirup P is decomposable with 
respect to PI, ... , P r' then we define the home-site of a sequence of n constants, C = C 1, ... , c". 
It is the Sj to which the output atom S (C) belongs, if each Pj is given the input consisting of a 
unique atom, B (C). Note that the home-site of a sequence is unique (lack-of-duplication), every 
sequence of n constants has a home-site (completeness), and ea,:h Sj, l~i~r, has a sequence of 
constants for which Sj is the home-site. Let C = c 1, ... , c" and d = d 1, ... , dn be two sequences 
of constants. The ordered pair of ground atoms <S (d), S (C» is a one-step-derivation if there 
is an instantiation of the recursive rule of P, in which the first atom is in the head and the second 
is in the body. 

Lemma 1: If the derived predic!te, S, of a simple linear sirup, P, is decomp~sable, and 
there are two sequences of constants d = d 1, ... , d" and c = c 1, ... , Cn such that <S (d),S (C» is 
a one-step-derivation, then the home-site of d and c is identical. 

Proof: Let the instantiation of the recursive rule which results in the one-step-derivation 
be: 

Consider the input: 

II = (A 1 <£i 1), ... , Ak(ak), B (C)}. 

Assume that P is decomposable with respect to PI, ... , Pro Note that S (C) must be in the output 
of some restricted version of P. Assume that S(C) is in Sj. By completeness, S (d) is also in the 
output of some restricted version. This output must be of Pj' for the following reason. In the 
input II there is only one B-ground-atom, therefore the output of any restricted version other 
than Pj is empty. Now cO'2.sider the input 12 = 11 U (8 (d)}. By lack of duplication, for the 
inp~t 12 the ground atom Sed) is .,:;till in Sj. Therefore, for the input consisting of the single atom 
B (d), the output ground atom Sed) must be in Sj. 0 
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Let P be a simple linear sirup, having the recursive predicate denoted S, and the recursive 
rule denoted r. Let us define the sequence of S-atoms Distinct-Vars as follows. The first 
member, mo, is S (x 10, ... , xno), where the xio's are variables. Subsequently, member mj is 
defined as the head of the recursive rule, r', obtained by applying to r a substitution which 
satisfies the following two conditions: 

1. Each one of the variables in the S-atom in the body of r is replaced by another variable, 
such that mj-l appears in the body of r ' . 

2. Each one of the other variables in r is replaced by a distinct variable that does not appear in 

For example, consider the recursive rule: S(xl,x2,x3) :-S(x4,xl,x2),A(x4,x3). Then the 
following is a prefix of the sequence Distinct-Vars: S(x10,x20,x30), S(x20,x30,x31), 
S (x 30,x 31,x 32), and S (x 3l>x 32 ,x 33). 

We shall prove that S is not decomposable, if the sequence Distinct-Vars has a member in 
which none of the variables is one of the xi 0 's; then we shall prove that if so, then the recursive 
rule of P is not pivoting. 

By definition of Distinct-Vars. we immediately obtain the following. 

Lemma 2: Assume that S(Y1, ... , Yn) and S(ZI, ... , Zn) are two consecutive members of 
Distinct-Vars. Furthermore, assume that there is a ground substitution p of the program vari­
ables in the sequence S(Y1 • ... , Yn). S(ZI, ...• Zn), resulting in the sequence of ground atoms 
S (c 1, ... , cn), S (d 1, ... , dn). Then the pair <S (d 1, ... , dn), S (c 1, ...• cn» is a one-step­
derivation. 

Lemma 3: Assume that mi is a member of Distinct-Vars, such that no variable in the set 
x 10, ...• xno appears in mi. Then P is not decomposable. 

Proof: Assume that P is decomposable with respect to PI, ... , P r, and let c 1> ...• Cn and 
d 1, ...• dn be two arbitrary sequences of constants. We will show that both have the same 
home-site, contradicting nontriviality. Consider the sequence of atoms 
s:ml=S(xlO ....• xno) •...• mj=S(Zl, ... ,Zn). The substitution 
p =x10Icl' ... , xnolcn,Zl/dl, .... Znldn is valid for any values of Cl ..... cn,d 1, ... , dn, since 
{x 10 , ... , xno, Z 1, .... Zn} is a set of distinct variables. Let p' be an extension of p to a ground 
substitution of the sequence s. The sequence of ground atoms sp' has the property that any two 
consecutive atoms in it constitute a one step derivation (by Lemma 2). Therefore, by Lemma 1, 
the constant-sequences c 1, ... , Cn and d 1, .... dn have the same home-site. 0 

Lemma 4: If the recursive rule of P is not pivoting, then there is a member, mi, of 
Distinct-Vars, such that no variable in the set {x 10 .... , xno} appears in mi. 

Proof: Construct a graph, G, in which the nodes are the argument positions of S, and there 
is an additional node called "new". There is an edge from p to q if the same variable appears in 
position p in the occurrence of S in the body of the recursive rule, and in position q in the 
occurrence of S in the head. If in position q in the occurrence of S in the head there is a variable 
which does not appear in the occurrence of S in the body, then draw an arc from "new" to q. 
Every node except "new" has exactly one entering arc and one exiting arc, because there are no 
repeated variables in an occurrence of the recursive predicate. It is easy to see that if G has a 
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cycle, then P is pivoting, with the nodes of the cycle being the pivots. Since P is not pivoting, G 
is acyclic, and we conclude that there must be a path from "new" to every other node in G. 
Assume that the shortest path from "new" to some other node, p, is of length k. It can be shown 
by induction on k, that position p of mk will have a variable which is not in the set 
{x 10, ... , xno}. By definition of Disrinct-Vars the lemma follows. 0 

Theorem 4: A simple linear sirup is decomposable if and only if its recursive rule is pivot-
ing. 

Proof: (if) Special case of Theorem 2. 
(only if) Immediate from Lemmas 3 and 4. 0 

6. Simple Chain Programs 

A simple chain program is a recursive sirup in which: 

(a) All the predicates are binary. 

(b) The argument positions in the left hand side of the recursive rule have distinct variables, 
and these variables appear in the first argument position of the first atom in the body, and in 
the last argument position of the last atom, respectively. 

(c) All the argument positions in the body of the recursive rule have distinct variables, except 
that the first argument position of the second atom has the same variable as the last argu­
ment position of the first atom, the first argument position of the third atom has the same 
variable as the last argument position of the second atom, etc. 

For example, the following is a simple chain program: 

5 (x,y):- A (x,z 1 ),5 (z 1 ,Z2),S(Z2,Z3),C(Z3,Z4),D(Z4,y) 

5 (x,y ):- B (x,y) 

where the A,B,C,D are base relations. A simple chain program is regular if in its recursive rule 
there is one occurrence of the predicate S and this occurrence is the first or the last in the body of 
the recursive rule. Note that a simple chain program is pivoting if and only if it is regular. 

Theorem 5: A simple chain program P is decomposable if and only if it is regular. 

Proof: (if) Immediate, based on Theorem 2. 
(only if) Assume that P is not regular, and is decomposable with respect to restricted copies PI, 
P2, ... , Pr of P, for r>l. Denote the recursive rule of P by: 

5 (x,y):- Q 1 (X,Z 1)' ... , Q'(Z,-l,Y) 

where some of the Q i, S are 5' s, and t> 1. Using the usual notation, the nonrecursive rule is: 

5 (x,y):- B (x,y). 

By non triviality there are two sequences of constants, j 1, k 1 and j 2, k 2 with home sites 51 and 
52 respectively. Since the recursive rule of P is not regular, there are two cases to analyze: 

Case 1: There is a subsequence in the body of the recursive rule, of the following fonn: 

Qi-l (Zi-2,Zi-l ),5 (Zj-l ,Zi),Qi+l (Zj,Zi+l)' 
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Let /2 consist of the set of ground atoms: 

Q 1 (c I,C2),Q2(C2,C3), ... , Qi-l (Ci-l ,j d,BU 1 ,k 1),Qj+l (k 1 ,Ci+l),Qi+2(Ci+l ,Ci+2), ... , Ql(CI_l ,cI) 

where: 

1) Each predicate S (m, n) in the list is a notation for B (m, n). 

2) Each pair of different c's represents different constants. 

3) None of the c's is in the set {h,k lth,k2 }. 

For the input [2, the ground atom S (c 1 ,cl ) is in the output S of P. By completeness, for this 
input, S(c 1 ,ct ) is in some Sj. We will show that S(c I ,Ct) is in S 1. Assume otherwise, i.e. 
S(c 1, ct ) is in Sb for b:;el. The atom B (c 1 ,ct ) is not in /2 because t> 1, therefore S(c 1, Ct ) must 
be added to the database by instantiating the recursive rule of Pb in step 2 of bottom-up­
evaluation. However, to generate an atom using the recursive rule of Pb , requires a 'chain' of 
atoms of length t. But /2-B U l,k d does not contain such a chain, since it only contains t-1 
atoms, and has no cycles (by the choice of constants). 

Therefore, for input /2 to PI, ... , Pr , S(c 1 ,Ct) is in S 1. Now consider the input /3, which is 
defined identically to /2, except that the constants it, k 1 are replaced by h, k 2 respectively. 
Similar arguments as before will reveal that S(Cl,C1) is in S2. The proof of this case is com­
pleted by noticing that for the input [2 U [3, the ground atom S(CI ,cI ) is in both, S 1 and S 2, 

contradicting lack-of-duplication. 

Case 2: The body of the recursive rule of P is of the following fonn: 

S(x,z), S (z,y). 

Consider the input [4 consisting of the ground atom B U3,k 3), where 13 and k3 are distinct. and 
none of them is in the set {h ,h, k 1, k 2 }. Assume without loss of generality that the home site 
of 13,k3 is Sd, for d:;el (otherwise the analysis below can be carried out by replacing it,k 1 by 
h,k2 respectively). 

Subcase 2.1: Assume that h:;ek l . Let input /5 = (BUl,k l ), B(kl,13), BU3,k3)}. This 
input relation can be regarded as a graph consisting of a path, therefore SUI ,h) and S (k I ,k 3) 

are in S. Assume that the home site of k 1 .13 is Si for i:;el. But then it is easy to see that 
SUI ,j 3) is not in any Sj: contradicting completeness. If the home site of k 1 ,j 3 is S 1. then it is 
easy to see that for input [5 the atom S(k I ,k3) is not in any Sj; again contradicting complete­
ness. 

Subcase 2.2: Assume that j I =k I. In other words, the home site of j I ,j I, is S 1. Let input 
[6 = (B U 1,13), B U 3, k 3), B (k 3 ,h) ). This input relation can be regarded as a graph consisting 
of a cycle, therefore SUI,h) is in S. Since SU3,k3) is in Sd only. for the input [6, SUI,h) can­
not be in any Sj other than Sd' But then, for the input/ 6 u (B U 1 ,h)} the ground atom SU I,j d 
is in both, S 1 and Sd: this contradicts lack of duplication. 0 

Note that theorem 5, combined with the results in [AP, UV], indicate that in the class of 
simple chain programs, the subclass of programs in NC properly contains the subclass of decom­
posable programs. The reason for this is that, clearly, every regular chain program is in NC, and 
the program: 
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S (X,y):- B (x,Y) 

is one of the programs in NC that is not decomposable. Recent results from [CW] indicate that, 
outside the class of simple chain programs, there are decomposable programs that are P­
complete. 

7. Future Work 

We shall continue the work on decomposability in several directions. One of them is to 
extend the characterization of decomposable predicates to other sirups first, e.g. typed (see [K]). 
and then to general logic programs. Another direction is to determine whether decomposition 
implies that the work can be evenly divided among the processors, as we have seen that can be 
done using the mod predicate. For this purpose a notion of fair decomposition should be 
defined. Another topic which merits attention is minimizing communication when evaluating 
nondecomposable predicates in a distributed environment. We feel that the work on decomposa­
bility should also be helpful in this area. More specifically, observe that the method proposed in 
this paper to partition the load in evaluating decomposable predicates, can be applied to non­
decomposable ones as well; however in that case communication among the processors is neces­
sary. The question is, how does the amount of necessary communication compare in different 
partitioning schemes. Finally, we shall mention that we intend to study the relationship between 
the class of decomposable programs and the programs in the complexity class NC. Also, OUf 

notion of program-decomposability may be related to algebraic-operator decomposition, dis­
cussed in [IW], and to clausal decomposition, discussed in [LM] (although both papers, in con­
trast to ours, do not require disjointness of the output sets, and not provide a syntactic characteri­
zation of programs). We intend to investigate these possible relationships as well. 
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