2,573 research outputs found

    A Note on Graphs of Linear Rank-Width 1

    Full text link
    We prove that a connected graph has linear rank-width 1 if and only if it is a distance-hereditary graph and its split decomposition tree is a path. An immediate consequence is that one can decide in linear time whether a graph has linear rank-width at most 1, and give an obstruction if not. Other immediate consequences are several characterisations of graphs of linear rank-width 1. In particular a connected graph has linear rank-width 1 if and only if it is locally equivalent to a caterpillar if and only if it is a vertex-minor of a path [O-joung Kwon and Sang-il Oum, Graphs of small rank-width are pivot-minors of graphs of small tree-width, arxiv:1203.3606] if and only if it does not contain the co-K_2 graph, the Net graph and the 5-cycle graph as vertex-minors [Isolde Adler, Arthur M. Farley and Andrzej Proskurowski, Obstructions for linear rank-width at most 1, arxiv:1106.2533].Comment: 9 pages, 2 figures. Not to be publishe

    Some results on triangle partitions

    Full text link
    We show that there exist efficient algorithms for the triangle packing problem in colored permutation graphs, complete multipartite graphs, distance-hereditary graphs, k-modular permutation graphs and complements of k-partite graphs (when k is fixed). We show that there is an efficient algorithm for C_4-packing on bipartite permutation graphs and we show that C_4-packing on bipartite graphs is NP-complete. We characterize the cobipartite graphs that have a triangle partition

    Linear rank-width of distance-hereditary graphs I. A polynomial-time algorithm

    Full text link
    Linear rank-width is a linearized variation of rank-width, and it is deeply related to matroid path-width. In this paper, we show that the linear rank-width of every nn-vertex distance-hereditary graph, equivalently a graph of rank-width at most 11, can be computed in time O(n2log2n)\mathcal{O}(n^2\cdot \log_2 n), and a linear layout witnessing the linear rank-width can be computed with the same time complexity. As a corollary, we show that the path-width of every nn-element matroid of branch-width at most 22 can be computed in time O(n2log2n)\mathcal{O}(n^2\cdot \log_2 n), provided that the matroid is given by an independent set oracle. To establish this result, we present a characterization of the linear rank-width of distance-hereditary graphs in terms of their canonical split decompositions. This characterization is similar to the known characterization of the path-width of forests given by Ellis, Sudborough, and Turner [The vertex separation and search number of a graph. Inf. Comput., 113(1):50--79, 1994]. However, different from forests, it is non-trivial to relate substructures of the canonical split decomposition of a graph with some substructures of the given graph. We introduce a notion of `limbs' of canonical split decompositions, which correspond to certain vertex-minors of the original graph, for the right characterization.Comment: 28 pages, 3 figures, 2 table. A preliminary version appeared in the proceedings of WG'1

    Linear rank-width of distance-hereditary graphs II. Vertex-minor obstructions

    Full text link
    In the companion paper [Linear rank-width of distance-hereditary graphs I. A polynomial-time algorithm, Algorithmica 78(1):342--377, 2017], we presented a characterization of the linear rank-width of distance-hereditary graphs, from which we derived an algorithm to compute it in polynomial time. In this paper, we investigate structural properties of distance-hereditary graphs based on this characterization. First, we prove that for a fixed tree TT, every distance-hereditary graph of sufficiently large linear rank-width contains a vertex-minor isomorphic to TT. We extend this property to bigger graph classes, namely, classes of graphs whose prime induced subgraphs have bounded linear rank-width. Here, prime graphs are graphs containing no splits. We conjecture that for every tree TT, every graph of sufficiently large linear rank-width contains a vertex-minor isomorphic to TT. Our result implies that it is sufficient to prove this conjecture for prime graphs. For a class Φ\Phi of graphs closed under taking vertex-minors, a graph GG is called a vertex-minor obstruction for Φ\Phi if GΦG\notin \Phi but all of its proper vertex-minors are contained in Φ\Phi. Secondly, we provide, for each k2k\ge 2, a set of distance-hereditary graphs that contains all distance-hereditary vertex-minor obstructions for graphs of linear rank-width at most kk. Also, we give a simpler way to obtain the known vertex-minor obstructions for graphs of linear rank-width at most 11.Comment: 38 pages, 13 figures, 1 table, revised journal version. A preliminary version of Section 5 appeared in the proceedings of WG1

    A survey on algorithmic aspects of modular decomposition

    Full text link
    The modular decomposition is a technique that applies but is not restricted to graphs. The notion of module naturally appears in the proofs of many graph theoretical theorems. Computing the modular decomposition tree is an important preprocessing step to solve a large number of combinatorial optimization problems. Since the first polynomial time algorithm in the early 70's, the algorithmic of the modular decomposition has known an important development. This paper survey the ideas and techniques that arose from this line of research
    corecore