2,114 research outputs found

    A theory of the Io phase asymmetry of the Jovian decametric radiation

    Get PDF
    An explanation of an asymmetry in the occurrence probability of the Io-dependent Jovian decametric radiation is proposed. Io generates stronger Alfven waves toward the south when it is in the northern part of the torus. This wave then generates decametric radiation in the northern ionosphere after it reflects in the southern ionosphere. The asymmetry then results from computing the propagation time of the alfven wave along this trajectory. The ray paths of the decameter radiation are calculated using a three dimensional ray tracing program in the Jovian ionosphere. Variations in the expected probability plots are computer for two models of the Jovian ionosphere and global magnetic field, as well as for several choices of the ratio of the radiated frequency to the X-mode cutoff frequency

    Plasma Jets and Eruptions in Solar Coronal Holes: a 3D flux emergence experiment

    Full text link
    A three-dimensional numerical experiment of the launching of a hot and fast coronal jet followed by several violent eruptions is analyzed in detail. These events are initiated through the emergence of a magnetic flux rope from the solar interior into a coronal hole. We explore the evolution of the emerging magnetically-dominated plasma dome surmounted by a current sheet and the ensuing pattern of reconnection. A hot and fast coronal jet with inverted-Y shape is produced that shows properties comparable to those frequently observed with EUV and X-Ray detectors. We analyze its 3D shape, its inhomogeneous internal structure, and its rise and decay phases, lasting for some 15-20 min each. Particular attention is devoted to the field-line connectivities and the reconnection pattern. We also study the cool and high-density volume that appears encircling the emerged dome. The decay of the jet is followed by a violent phase with a total of five eruptions. The first of them seems to follow the general pattern of tether-cutting reconnection in a sheared arcade, although modified by the field topology created by the preceding reconnection evolution. The two following eruptions take place near and above the strong field-concentrations at the surface. They show a twisted, \Omega-loop like rope expanding in height, with twist being turned into writhe, thus hinting at a kink instability (perhaps combined with a torus-instability) as the cause of the eruption. The succession of a main jet ejection and a number of violent eruptions that resemble mini-CME's and their physical properties suggest that this experiment may provide a model for the blowout jets recently proposed in the literature.Comment: Accepted for publication in The Astrophysical Journal (vol 770, June 2013

    A public code for general relativistic, polarised radiative transfer around spinning black holes

    Full text link
    Ray tracing radiative transfer is a powerful method for comparing theoretical models of black hole accretion flows and jets with observations. We present a public code, grtrans, for carrying out such calculations in the Kerr metric, including the full treatment of polarised radiative transfer and parallel transport along geodesics. The code is written in Fortran 90 and efficiently parallelises with OpenMP, and the full code and several components have Python interfaces. We describe several tests which are used for verifiying the code, and we compare the results for polarised thin accretion disc and semi-analytic jet problems with those from the literature as examples of its use. Along the way, we provide accurate fitting functions for polarised synchrotron emission and transfer coefficients from thermal and power law distribution functions, and compare results from numerical integration and quadrature solutions of the polarised radiative transfer equations. We also show that all transfer coefficients can play an important role in predicted images and polarisation maps of the Galactic center black hole, Sgr A*, at submillimetre wavelengths.Comment: 22 pages, 12 figures, submitted to MNRAS. code available at: github.com/jadexter/grtran

    Self-consistent spectra from radiative GRMHD simulations of accretion onto Sgr A*

    Get PDF
    We present the first spectral energy distributions produced self-consistently by 2.5D general relativistic magneto-hydrodynamical (GRMHD) numerical simulations, where radiative cooling is included in the dynamical calculation. As a case study, we focus on the accretion flow around the supermassive black hole in the Galactic Centre, Sagittarius A* (Sgr A*), which has the best constrained physical parameters. We compare the simulated spectra to the observational data of Sgr A* and explore the parameter space of our model to determine the effect of changing the initial magnetic field configuration, ion to electron temperature ratio T_i/T_e and the target accretion rate. We find the best description of the data for a mass accretion rate of ~ 1e-9 Msun/yr, and rapid spin (0.7 < a_* < 0.9). The submillimeter peak flux seems largely independent of initial conditions, while the higher energies can be very sensitive to the initial magnetic field configuration. Finally, we also discuss flaring features observed in some simulations, that may be due to artifacts of the 2D configuration.Comment: Submitted to MNRAS. 13 pages, 15 figure

    Gauge thresholds in the presence of oblique magnetic fluxes

    Full text link
    We compute the one-loop partition function and analyze the conditions for tadpole cancellation in type I theories compactified on tori in the presence of internal oblique magnetic fields. We check open - closed string channel duality and discuss the effect of T-duality. We address the issue of the quantum consistency of the toroidal model with stabilized moduli recently proposed by Antoniadis and Maillard (AM). We then pass to describe the computation of one-loop threshold corrections to the gauge couplings in models of this kind. Finally we briefly comment on coupling unification and dilaton stabilization in phenomenologically more viable modelsComment: 34 pages, 2 figures; references added, major changes to the discussion of the model proposed by Antoniadis and Maillar
    corecore