626 research outputs found

    Information-theoretic analysis of MIMO channel sounding

    Full text link
    The large majority of commercially available multiple-input multiple-output (MIMO) radio channel measurement devices (sounders) is based on time-division multiplexed switching (TDMS) of a single transmit/receive radio-frequency chain into the elements of a transmit/receive antenna array. While being cost-effective, such a solution can cause significant measurement errors due to phase noise and frequency offset in the local oscillators. In this paper, we systematically analyze the resulting errors and show that, in practice, overestimation of channel capacity by several hundred percent can occur. Overestimation is caused by phase noise (and to a lesser extent frequency offset) leading to an increase of the MIMO channel rank. Our analysis furthermore reveals that the impact of phase errors is, in general, most pronounced if the physical channel has low rank (typical for line-of-sight or poor scattering scenarios). The extreme case of a rank-1 physical channel is analyzed in detail. Finally, we present measurement results obtained from a commercially employed TDMS-based MIMO channel sounder. In the light of the findings of this paper, the results obtained through MIMO channel measurement campaigns using TDMS-based channel sounders should be interpreted with great care.Comment: 99 pages, 14 figures, submitted to IEEE Transactions on Information Theor

    Capacity evaluation of LoS-optimised and standard MIMO antenna arrays at 5.2 GHz

    Get PDF

    Pedestrians effects on indoor MIMO-OFDM channel capacity

    Get PDF
    Temporal variations caused by pedestrian movement can significantly affect the channel capacity of indoor MIMOOFDM wireless systems. This paper compares systematic measurements of MIMO-OFDM channel capacity in presence of pedestrians with predicted MIMO-OFDM channel capacity values using geometric optics-based ray tracing techniques. Capacity results are presented for a single room environment using 5.2 GHz with 2x2, 3x3 and 4x4 arrays as well as a 2.45 GHz narrowband 8x8 MIMO array. The analysis shows an increase of up to 2 b/s/Hz on instant channel capacity with up to 3 pedestrians. There is an increase of up to 1 b/s/Hz in the average capacity of the 4x4 MIMO-OFDM channel when the number of pedestrians goes from 1 to 3. Additionally, an increment of up to 2.5 b/s/Hz in MIMO-OFDM channel capacity was measured for a 4x4 array compared to a 2x2 array in presence of pedestrians. Channel capacity values derived from this analysis are important in terms of understanding the limitations and possibilities for MIMO-OFDM systems in indoor populated environments

    Experimental investigation of V2I radio channel in an arched tunnel

    Get PDF
    This paper describes the results of the experimental radio channel sounding campaign performed in an arched road tunnel in Le Havre, France. The co-polar and cross-polar channels measurements are carried out in the closed side lane, while the lane along the center of the tunnel is open to traffic. We investigate the channel characteristics in terms of: path loss, fading distribution, polarization power ratios and delay spread. All these parameters are essential for the deployment of vehicular communication systems inside tunnels. Our results indicate that, while the H-polar channel gain attenuates slower than the V-polar channel due to the geometry of the tunnel, the mean delay spread of the H-polar channel is larger than that of the V-polar channel
    • …
    corecore