1,336 research outputs found

    Farthest-Polygon Voronoi Diagrams

    Get PDF
    Given a family of k disjoint connected polygonal sites in general position and of total complexity n, we consider the farthest-site Voronoi diagram of these sites, where the distance to a site is the distance to a closest point on it. We show that the complexity of this diagram is O(n), and give an O(n log^3 n) time algorithm to compute it. We also prove a number of structural properties of this diagram. In particular, a Voronoi region may consist of k-1 connected components, but if one component is bounded, then it is equal to the entire region

    Searching edges in the overlap of two plane graphs

    Full text link
    Consider a pair of plane straight-line graphs, whose edges are colored red and blue, respectively, and let n be the total complexity of both graphs. We present a O(n log n)-time O(n)-space technique to preprocess such pair of graphs, that enables efficient searches among the red-blue intersections along edges of one of the graphs. Our technique has a number of applications to geometric problems. This includes: (1) a solution to the batched red-blue search problem [Dehne et al. 2006] in O(n log n) queries to the oracle; (2) an algorithm to compute the maximum vertical distance between a pair of 3D polyhedral terrains one of which is convex in O(n log n) time, where n is the total complexity of both terrains; (3) an algorithm to construct the Hausdorff Voronoi diagram of a family of point clusters in the plane in O((n+m) log^3 n) time and O(n+m) space, where n is the total number of points in all clusters and m is the number of crossings between all clusters; (4) an algorithm to construct the farthest-color Voronoi diagram of the corners of n axis-aligned rectangles in O(n log^2 n) time; (5) an algorithm to solve the stabbing circle problem for n parallel line segments in the plane in optimal O(n log n) time. All these results are new or improve on the best known algorithms.Comment: 22 pages, 6 figure

    The projector algorithm: a simple parallel algorithm for computing Voronoi diagrams and Delaunay graphs

    Full text link
    The Voronoi diagram is a certain geometric data structure which has numerous applications in various scientific and technological fields. The theory of algorithms for computing 2D Euclidean Voronoi diagrams of point sites is rich and useful, with several different and important algorithms. However, this theory has been quite steady during the last few decades in the sense that no essentially new algorithms have entered the game. In addition, most of the known algorithms are serial in nature and hence cast inherent difficulties on the possibility to compute the diagram in parallel. In this paper we present the projector algorithm: a new and simple algorithm which enables the (combinatorial) computation of 2D Voronoi diagrams. The algorithm is significantly different from previous ones and some of the involved concepts in it are in the spirit of linear programming and optics. Parallel implementation is naturally supported since each Voronoi cell can be computed independently of the other cells. A new combinatorial structure for representing the cells (and any convex polytope) is described along the way and the computation of the induced Delaunay graph is obtained almost automatically.Comment: This is a major revision; re-organization and better presentation of some parts; correction of several inaccuracies; improvement of some proofs and figures; added references; modification of the title; the paper is long but more than half of it is composed of proofs and references: it is sufficient to look at pages 5, 7--11 in order to understand the algorith

    Preventing Location-Based Identity Inference in Anonymous Spatial Queries

    Get PDF
    The increasing trend of embedding positioning capabilities (for example, GPS) in mobile devices facilitates the widespread use of Location-Based Services. For such applications to succeed, privacy and confidentiality are essential. Existing privacy-enhancing techniques rely on encryption to safeguard communication channels, and on pseudonyms to protect user identities. Nevertheless, the query contents may disclose the physical location of the user. In this paper, we present a framework for preventing location-based identity inference of users who issue spatial queries to Location-Based Services. We propose transformations based on the well-established K-anonymity concept to compute exact answers for range and nearest neighbor search, without revealing the query source. Our methods optimize the entire process of anonymizing the requests and processing the transformed spatial queries. Extensive experimental studies suggest that the proposed techniques are applicable to real-life scenarios with numerous mobile users

    Kinetic Voronoi Diagrams and Delaunay Triangulations under Polygonal Distance Functions

    Full text link
    Let PP be a set of nn points and QQ a convex kk-gon in R2{\mathbb R}^2. We analyze in detail the topological (or discrete) changes in the structure of the Voronoi diagram and the Delaunay triangulation of PP, under the convex distance function defined by QQ, as the points of PP move along prespecified continuous trajectories. Assuming that each point of PP moves along an algebraic trajectory of bounded degree, we establish an upper bound of O(k4nλr(n))O(k^4n\lambda_r(n)) on the number of topological changes experienced by the diagrams throughout the motion; here λr(n)\lambda_r(n) is the maximum length of an (n,r)(n,r)-Davenport-Schinzel sequence, and rr is a constant depending on the algebraic degree of the motion of the points. Finally, we describe an algorithm for efficiently maintaining the above structures, using the kinetic data structure (KDS) framework

    On the impact of communication complexity in the design of parallel numerical algorithms

    Get PDF
    This paper describes two models of the cost of data movement in parallel numerical algorithms. One model is a generalization of an approach due to Hockney, and is suitable for shared memory multiprocessors where each processor has vector capabilities. The other model is applicable to highly parallel nonshared memory MIMD systems. In the second model, algorithm performance is characterized in terms of the communication network design. Techniques used in VLSI complexity theory are also brought in, and algorithm independent upper bounds on system performance are derived for several problems that are important to scientific computation
    corecore