7 research outputs found

    High Performance Computing Applications in Remote Sensing Studies for Land Cover Dynamics

    Get PDF
    Global and regional land cover studies require the ability to apply complex models on selected subsets of large amounts of multi-sensor and multi-temporal data sets that have been derived from raw instrument measurements using widely accepted pre-processing algorithms. The computational and storage requirements of most such studies far exceed what is possible on a single workstation environment. We have been pursuing a new approach that couples scalable and open distributed heterogeneous hardware with the development of high performance software for processing, indexing, and organizing remotely sensed data. Hierarchical data management tools are used to ingest raw data, create metadata, and organize the archived data so as to automatically achieve computational load balancing among the available nodes and minimize I/O overheads. We illustrate our approach with four specific examples. The first is the development of the first fast operational scheme for the atmospheric correction of Landsat TM scenes, while the second example focuses on image segmentation using a novel hierarchical connected components algorithm. Retrieval of global BRDF (Bidirectional Reflectance Distribution Function) in the red and near infrared wavelengths using four years (1983 to 1986) of Pathfinder AVHRR Land (PAL) data set is the focus of our third example. The fourth example is the development of a hierarchical data organization scheme that allows on-demand processing and retrieval of regional and global AVHRR data sets. Our results show that substantial improvements in computational times can be achieved by using the high performance computing technology

    Algorithm engineering for parallel computation

    Get PDF

    Parallel Algorithms for Image Histogramming and Connected Components with an Experimental Study

    No full text
    This paper presents efficient and portable implementations of two useful primitives in image processing algorithms, histogramming and connected components. Our general framework is a single-address space, distributed memory programming model. We use efficient techniques for distributing and coalescing data as well as efficient combinations of task and data parallelism. Our connected components algorithm uses a novel approach for parallel merging which performs drastically limited updating during iterative steps, and concludes with a total consistency update at the final step. The algorithms have been coded in Split-C and run on a variety of platforms. Our experimental results are consistent with the theoretical analysis and provide the best known execution times for these two primitives, even when compared with machine specific implementations. More efficient implementations of Split-C will likely result in even faster execution times. (Also cross-referenced as UMIACS-TR-94-133.

    Procesamiento paralelo : Balance de carga din谩mico en algoritmo de sorting

    Get PDF
    Algunas t茅cnicas de sorting intentan balancear la carga mediante un muestreo inicial de los datos a ordenar y una distribuci贸n de los mismos de acuerdo a pivots. Otras redistribuyen listas parcialmente ordenadas de modo que cada procesador almacene un n煤mero aproximadamente igual de claves, y todos tomen parte del proceso de merge durante la ejecuci贸n. Esta Tesis presenta un nuevo m茅todo que balancea din谩micamente la carga basado en un enfoque diferente, buscando realizar una distribuci贸n del trabajo utilizando un estimador que permita predecir la carga de trabajo pendiente. El m茅todo propuesto es una variante de Sorting by Merging Paralelo, esto es, una t茅cnica basada en comparaci贸n. Las ordenaciones en los bloques se realizan mediante el m茅todo de Burbuja o Bubble Sort con centinela. En este caso, el trabajo a realizar -en t茅rminos de comparaciones e intercambios- se encuentra afectada por el grado de desorden de los datos. Se estudi贸 la evoluci贸n de la cantidad de trabajo en cada iteraci贸n del algoritmo para diferentes tipos de secuencias de entrada, n datos con valores de a n sin repetici贸n, datos al azar con distribuci贸n normal, observ谩ndose que el trabajo disminuye en cada iteraci贸n. Esto se utiliz贸 para obtener una estimaci贸n del trabajo restante esperado a partir de una iteraci贸n determinada, y basarse en el mismo para corregir la distribuci贸n de la carga. Con esta idea, el m茅toEs revisado por: http://sedici.unlp.edu.ar/handle/10915/9500Facultad de Ciencias Exacta
    corecore