1,775 research outputs found

    Toward Entity-Aware Search

    Get PDF
    As the Web has evolved into a data-rich repository, with the standard "page view," current search engines are becoming increasingly inadequate for a wide range of query tasks. While we often search for various data "entities" (e.g., phone number, paper PDF, date), today's engines only take us indirectly to pages. In my Ph.D. study, we focus on a novel type of Web search that is aware of data entities inside pages, a significant departure from traditional document retrieval. We study the various essential aspects of supporting entity-aware Web search. To begin with, we tackle the core challenge of ranking entities, by distilling its underlying conceptual model Impression Model and developing a probabilistic ranking framework, EntityRank, that is able to seamlessly integrate both local and global information in ranking. We also report a prototype system built to show the initial promise of the proposal. Then, we aim at distilling and abstracting the essential computation requirements of entity search. From the dual views of reasoning--entity as input and entity as output, we propose a dual-inversion framework, with two indexing and partition schemes, towards efficient and scalable query processing. Further, to recognize more entity instances, we study the problem of entity synonym discovery through mining query log data. The results we obtained so far have shown clear promise of entity-aware search, in its usefulness, effectiveness, efficiency and scalability

    Hierarchical Classification and its Application in University Search

    Get PDF
    Web search engines have been adopted by most universities for searching webpages in their own domains. Basically, a user sends keywords to the search engine and the search engine returns a flat ranked list of webpages. However, in university search, user queries are usually related to topics. Simple keyword queries are often insufficient to express topics as keywords. On the other hand, most E-commerce sites allow users to browse and search products in various hierarchies. It would be ideal if hierarchical browsing and keyword search can be seamlessly combined for university search engines. The main difficulty is to automatically classify and rank a massive number of webpages into the topic hierarchies for universities. In this thesis, we use machine learning and data mining techniques to build a novel hybrid search engine with integrated hierarchies for universities, called SEEU (Search Engine with hiErarchy for Universities). Firstly, we study the problem of effective hierarchical webpage classification. We develop a parallel webpage classification system based on Support Vector Machines. With extensive experiments on the well-known ODP (Open Directory Project) dataset, we empirically demonstrate that our hierarchical classification system is very effective and outperforms the traditional flat classification approaches significantly. Secondly, we study the problem of integrating hierarchical classification into the ranking system of keywords-based search engines. We propose a novel ranking framework, called ERIC (Enhanced Ranking by hIerarchical Classification), for search engines with hierarchies. Experimental results on four large-scale TREC (Text REtrieval Conference) web search datasets show that our ranking system with hierarchical classification outperforms the traditional flat keywords-based search methods significantly. Thirdly, we propose a novel active learning framework to improve the performance of hierarchical classification, which is important for ranking webpages in hierarchies. From our experiments on the benchmark text datasets, we find that our active learning framework can achieve good classification performance yet save a considerable number of labeling effort compared with the state-of-the-art active learning methods for hierarchical text classification. Fourthly, based on the proposed classification and ranking methods, we present a novel hierarchical classification framework for mining academic topics from university webpages. We build an academic topic hierarchy based on the commonly accepted Wikipedia academic disciplines. Based on this hierarchy, we train a hierarchical classifier and apply it to mine academic topics. According to our comprehensive analysis, the academic topics mined by our method are reasonable and consistent with the real-world topic distribution in universities. Finally, we combine all the proposed techniques together and implement the SEEU search engine. According to two usability studies conducted in the ECE and the CS departments at our university, SEEU is favored by the majority of participants. To conclude, the main contribution of this thesis is a novel search engine, called SEEU, for universities. We discuss the challenges toward building SEEU and propose effective machine learning and data mining methods to tackle them. With extensive experiments on well-known benchmark datasets and real-world university webpage datasets, we demonstrate that our system is very effective. In addition, two usability studies of SEEU in our university show that SEEU has a great promise for university search

    Finding Relevant Answers in Software Forums

    Get PDF
    Abstractā€”Online software forums provide a huge amount of valuable content. Developers and users often ask questions and receive answers from such forums. The availability of a vast amount of thread discussions in forums provides ample opportunities for knowledge acquisition and summarization. For a given search query, current search engines use traditional information retrieval approach to extract webpages containin

    A New Web Search Engine with Learning Hierarchy

    Get PDF
    Most of the existing web search engines (such as Google and Bing) are in the form of keyword-based search. Typically, after the user issues a query with the keywords, the search engine will return a flat list of results. When the query issued by the user is related to a topic, only the keyword matching may not accurately retrieve the whole set of webpages in that topic. On the other hand, there exists another type of search system, particularly in e-Commerce web- sites, where the user can search in the categories of different faceted hierarchies (e.g., product types and price ranges). Is it possible to integrate the two types of search systems and build a web search engine with a topic hierarchy? The main diffculty is how to classify the vast number of webpages on the Internet into the topic hierarchy. In this thesis, we will leverage machine learning techniques to automatically classify webpages into the categories in our hierarchy, and then utilize the classification results to build the new search engine SEE. The experimental results demonstrate that SEE can achieve better search results than the traditional keyword-based search engine in most of the queries, particularly when the query is related to a topic. We also conduct a small-scale usability study which further verifies that SEE is a promising search engine. To further improve SEE, we also propose a new active learning framework with several novel strategies for hierarchical classification

    Experience versus Talent Shapes the Structure of the Web

    Full text link
    We use sequential large-scale crawl data to empirically investigate and validate the dynamics that underlie the evolution of the structure of the web. We find that the overall structure of the web is defined by an intricate interplay between experience or entitlement of the pages (as measured by the number of inbound hyperlinks a page already has), inherent talent or fitness of the pages (as measured by the likelihood that someone visiting the page would give a hyperlink to it), and the continual high rates of birth and death of pages on the web. We find that the web is conservative in judging talent and the overall fitness distribution is exponential, showing low variability. The small variance in talent, however, is enough to lead to experience distributions with high variance: The preferential attachment mechanism amplifies these small biases and leads to heavy-tailed power-law (PL) inbound degree distributions over all pages, as well as over pages that are of the same age. The balancing act between experience and talent on the web allows newly introduced pages with novel and interesting content to grow quickly and surpass older pages. In this regard, it is much like what we observe in high-mobility and meritocratic societies: People with entitlement continue to have access to the best resources, but there is just enough screening for fitness that allows for talented winners to emerge and join the ranks of the leaders. Finally, we show that the fitness estimates have potential practical applications in ranking query results
    • ā€¦
    corecore