34,565 research outputs found

    Inductive Construction of 2-Connected Graphs for Calculating the Virial Coefficients

    Full text link
    In this paper we give a method for constructing systematically all simple 2-connected graphs with n vertices from the set of simple 2-connected graphs with n-1 vertices, by means of two operations: subdivision of an edge and addition of a vertex. The motivation of our study comes from the theory of non-ideal gases and, more specifically, from the virial equation of state. It is a known result of Statistical Mechanics that the coefficients in the virial equation of state are sums over labelled 2-connected graphs. These graphs correspond to clusters of particles. Thus, theoretically, the virial coefficients of any order can be calculated by means of 2-connected graphs used in the virial coefficient of the previous order. Our main result gives a method for constructing inductively all simple 2-connected graphs, by induction on the number of vertices. Moreover, the two operations we are using maintain the correspondence between graphs and clusters of particles.Comment: 23 pages, 5 figures, 3 table

    Steering law for parallel mounted double-gimbaled control moment gyros

    Get PDF
    Parallel mounting of double-gimbaled control moment gyros (DG CMG) is discussed in terms of simplification of the steering law. The steering law/parallel mounted DG CMG is considered to be a 'CMG kit' applicable to any space vehicle where the need for DG CMG's has been established

    Total Curvature of Graphs after Milnor and Euler

    Full text link
    We define a new notion of total curvature, called net total curvature, for finite graphs embedded in Rn, and investigate its properties. Two guiding principles are given by Milnor's way of measuring the local crookedness of a Jordan curve via a Crofton-type formula, and by considering the double cover of a given graph as an Eulerian circuit. The strength of combining these ideas in defining the curvature functional is (1) it allows us to interpret the singular/non-eulidean behavior at the vertices of the graph as a superposition of vertices of a 1-dimensional manifold, and thus (2) one can compute the total curvature for a wide range of graphs by contrasting local and global properties of the graph utilizing the integral geometric representation of the curvature. A collection of results on upper/lower bounds of the total curvature on isotopy/homeomorphism classes of embeddings is presented, which in turn demonstrates the effectiveness of net total curvature as a new functional measuring complexity of spatial graphs in differential-geometric terms.Comment: Most of the results contained in "Total curvature and isotopy of graphs in R3R^3."(arXiv:0806.0406) have been incorporated into the current articl

    Hamilton cycles in 5-connected line graphs

    Get PDF
    A conjecture of Carsten Thomassen states that every 4-connected line graph is hamiltonian. It is known that the conjecture is true for 7-connected line graphs. We improve this by showing that any 5-connected line graph of minimum degree at least 6 is hamiltonian. The result extends to claw-free graphs and to Hamilton-connectedness
    corecore