22 research outputs found

    Reasoning with Inconsistencies in Hybrid MKNF Knowledge Bases

    Get PDF
    This article is concerned with the handling of inconsistencies occurring in the combination of description logics and rules, especially in hybrid MKNF knowledge bases. More precisely, we present a paraconsistent semantics for hybrid MKNF knowledge bases (called para-MKNF knowledge bases) based on four-valued logic as proposed by Belnap. We also reduce this paraconsistent semantics to the stable model semantics via a linear transformation operator, which shows the relationship between the two semantics and indicates that the data complexity in our paradigm is not higher than that of classical reasoning. Moreover, we provide fixpoint operators to compute paraconsistent MKNF models, each suitable to different kinds of rules. At last we present the data complexity of instance checking in different para-MKNF knowledge bases

    Efficient paraconsistent reasoning with rules and ontologies for the semantic web

    Get PDF
    Ontologies formalized by means of Description Logics (DLs) and rules in the form of Logic Programs (LPs) are two prominent formalisms in the field of Knowledge Representation and Reasoning. While DLs adhere to the OpenWorld Assumption and are suited for taxonomic reasoning, LPs implement reasoning under the Closed World Assumption, so that default knowledge can be expressed. However, for many applications it is useful to have a means that allows reasoning over an open domain and expressing rules with exceptions at the same time. Hybrid MKNF knowledge bases make such a means available by formalizing DLs and LPs in a common logic, the Logic of Minimal Knowledge and Negation as Failure (MKNF). Since rules and ontologies are used in open environments such as the Semantic Web, inconsistencies cannot always be avoided. This poses a problem due to the Principle of Explosion, which holds in classical logics. Paraconsistent Logics offer a solution to this issue by assigning meaningful models even to contradictory sets of formulas. Consequently, paraconsistent semantics for DLs and LPs have been investigated intensively. Our goal is to apply the paraconsistent approach to the combination of DLs and LPs in hybrid MKNF knowledge bases. In this thesis, a new six-valued semantics for hybrid MKNF knowledge bases is introduced, extending the three-valued approach by Knorr et al., which is based on the wellfounded semantics for logic programs. Additionally, a procedural way of computing paraconsistent well-founded models for hybrid MKNF knowledge bases by means of an alternating fixpoint construction is presented and it is proven that the algorithm is sound and complete w.r.t. the model-theoretic characterization of the semantics. Moreover, it is shown that the new semantics is faithful w.r.t. well-studied paraconsistent semantics for DLs and LPs, respectively, and maintains the efficiency of the approach it extends

    Combining open and closed world reasoning for the semantic web

    Get PDF
    Dissertação para obtenção do Grau de Doutor em InformáticaOne important problem in the ongoing standardization of knowledge representation languages for the Semantic Web is combining open world ontology languages, such as the OWL-based ones, and closed world rule-based languages. The main difficulty of such a combination is that both formalisms are quite orthogonal w.r.t. expressiveness and how decidability is achieved. Combining non-monotonic rules and ontologies is thus a challenging task that requires careful balancing between expressiveness of the knowledge representation language and the computational complexity of reasoning. In this thesis, we will argue in favor of a combination of ontologies and nonmonotonic rules that tightly integrates the two formalisms involved, that has a computational complexity that is as low as possible, and that allows us to query for information instead of calculating the whole model. As our starting point we choose the mature approach of hybrid MKNF knowledge bases, which is based on an adaptation of the Stable Model Semantics to knowledge bases consisting of ontology axioms and rules. We extend the two-valued framework of MKNF logics to a three-valued logics, and we propose a well-founded semantics for non-disjunctive hybrid MKNF knowledge bases. This new semantics promises to provide better efficiency of reasoning,and it is faithful w.r.t. the original two-valued MKNF semantics and compatible with both the OWL-based semantics and the traditional Well- Founded Semantics for logic programs. We provide an algorithm based on operators to compute the unique model, and we extend SLG resolution with tabling to a general framework that allows us to query a combination of non-monotonic rules and any given ontology language. Finally, we investigate concrete instances of that procedure w.r.t. three tractable ontology languages, namely the three description logics underlying the OWL 2 pro les.Fundação para a Ciência e Tecnologia - grant contract SFRH/BD/28745/200

    Local Closed-World Reasoning with Description Logics under the Well-Founded Semantics

    Get PDF
    An important question for the upcoming Semantic Web is how to best combine open world ontology languages, such as the OWL-based ones, with closed world rule-based languages. One of the most mature proposals for this combination is known as hybrid MKNF knowledge bases (Motik and Rosati, 2010 [52]), and it is based on an adaptation of the Stable Model Semantics to knowledge bases consisting of ontology axioms and rules. In this paper we propose a well-founded semantics for nondisjunctive hybrid MKNF knowledge bases that promises to provide better efficiency of reasoning, and that is compatible with both the OWL-based semantics and the traditional Well-Founded Semantics for logic programs. Moreover, our proposal allows for the detection of inconsistencies, possibly occurring in tightly integrated ontology axioms and rules, with only little additional effort. We also identify tractable fragments of the resulting language

    A Language for Inconsistency-Tolerant Ontology Mapping

    Get PDF
    Ontology alignment plays a key role in enabling interoperability among various data sources present in the web. The nature of the world is such, that the same concepts differ in meaning, often so slightly, which makes it difficult to relate these concepts. It is the omni-present heterogeneity that is at the core of the web. The research work presented in this dissertation, is driven by the goal of providing a robust ontology alignment language for the semantic web, as we show that description logics based alignment languages are not suitable for aligning ontologies. The adoption of the semantic web technologies has been consistently on the rise over the past decade, and it continues to show promise. The core component of the semantic web is the set of knowledge representation languages -- mainly the W3C (World Wide Web Consortium) standards Web Ontology Language (OWL), Resource Description Framework (RDF), and Rule Interchange Format (RIF). While these languages have been designed in order to be suitable for the openness and extensibility of the web, they lack certain features which we try to address in this dissertation. One such missing component is the lack of non-monotonic features, in the knowledge representation languages, that enable us to perform common sense reasoning. For example, OWL supports the open world assumption (OWA), which means that knowledge about everything is assumed to be possibly incomplete at any point of time. However, experience has shown that there are situations that require us to assume that certain parts of the knowledge base are complete. Employing the Closed World Assumption (CWA) helps us achieve this. Circumscription is a very well-known approach towards CWA, which provides closed world semantics by employing the idea of minimal models with respect to certain predicates which are closed. We provide the formal semantics of the notion of Grounded Circumscription, which is an extension of circumscription with desirable properties like decidability. We also provide a tableaux calculus to reason over knowledge bases under the notion of grounded circumscription. Another form of common sense logic, is default logic. Default logic provides a way to specify rules that, by default, hold in most cases but not necessarily in all cases. The classic example of such a rule is: If something is a bird then it flies. The power of defaults comes from the ability of the logic to handle exceptions to the default rules. For example, a bird will be assumed to fly by default unless it is an exception, i.e. it belongs to a class of birds that do not fly, like penguins. Interestingly, this property of defaults can be utilized to create mappings between concepts of different ontologies (knowledge bases). We provide a new semantics for the integration of defaults in description logics and show that it improves upon previously known results in literature. In this study, we give various examples to show the utility and advantages of using a default logic based ontology alignment language. We provide the semantics and decidability results of a default based mapping language for tractable fragments of description logics (or OWL). Furthermore, we provide a proof of concept system and qualitative analysis of the results obtained from the system when compared to that of traditional mapping repair techniques

    Handling Inconsistency in Knowledge Bases

    Get PDF
    Real-world automated reasoning systems, based on classical logic, face logically inconsistent information, and they must cope with it. It is onerous to develop such systems because classical logic is explosive. Recently, progress has been made towards semantics that deal with logical inconsistency. However, such semantics was never analyzed in the aspect of inconsistency tolerant relational model. In our research work, we use an inconsistency and incompleteness tolerant relational model called Paraconsistent Relational Model. The paraconsistent relational model is an extension of the ordinary relational model that can store, not only positive information but also negative information. Therefore, a piece of information in the paraconsistent relational model has four truth values: true, false, both, and unknown. However, the paraconsistent relational model cannot represent disjunctive information (disjunctive tuples). We then introduce an extended paraconsistent relational model called disjunctive paraconsistent relational model. By using both the models, we handle inconsistency - similar to the notion of quasi-classic logic or four-valued logic -- in deductive databases (logic programs with no functional symbols). In addition to handling inconsistencies in extended databases, we also apply inconsistent tolerant reasoning technique in semantic web knowledge bases. Specifically, we handle inconsistency assosciated with closed predicates in semantic web. We use again the paraconsistent approach to handle inconsistency. We further extend the same idea to description logic programs (combination of semantic web and logic programs) and introduce dl-relation to represent inconsistency associated with description logic programs
    corecore