
Tobias Kaminski

The European Master’s Program in Computational Logic
Master’s Thesis

Efficient Paraconsistent Reasoning
with Rules and Ontologies

for the Semantic Web

Dissertação para obtenção do Grau de
Mestre em Lógica Computacional

Orientadores: João Leite,
CENTRIA, Universidade Nova de Lisboa
Matthias Knorr,
CENTRIA, Universidade Nova de Lisboa

Júri:

Presidente: Josẽ Jũlio Alferes
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Abstract

Ontologies formalized by means of Description Logics (DLs) and rules in the form of
Logic Programs (LPs) are two prominent formalisms in the field of Knowledge Repre-
sentation and Reasoning. While DLs adhere to the Open World Assumption and are suited
for taxonomic reasoning, LPs implement reasoning under the Closed World Assumption,
so that default knowledge can be expressed. However, for many applications it is useful
to have a means that allows reasoning over an open domain and expressing rules with
exceptions at the same time. Hybrid MKNF knowledge bases make such a means avail-
able by formalizing DLs and LPs in a common logic, the Logic of Minimal Knowledge
and Negation as Failure (MKNF).

Since rules and ontologies are used in open environments such as the Semantic Web,
inconsistencies cannot always be avoided. This poses a problem due to the Principle of Ex-
plosion, which holds in classical logics. Paraconsistent Logics offer a solution to this issue
by assigning meaningful models even to contradictory sets of formulas. Consequently,
paraconsistent semantics for DLs and LPs have been investigated intensively. Our goal is
to apply the paraconsistent approach to the combination of DLs and LPs in hybrid MKNF
knowledge bases.

In this thesis, a new six-valued semantics for hybrid MKNF knowledge bases is intro-
duced, extending the three-valued approach by Knorr et al., which is based on the well-
founded semantics for logic programs. Additionally, a procedural way of computing
paraconsistent well-founded models for hybrid MKNF knowledge bases by means of an
alternating fixpoint construction is presented and it is proven that the algorithm is sound
and complete w.r.t. the model-theoretic characterization of the semantics. Moreover, it is
shown that the new semantics is faithful w.r.t. well-studied paraconsistent semantics for
DLs and LPs, respectively, and maintains the efficiency of the approach it extends.
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1
Introduction

For several decades, the development of expressive formalisms for knowledge represen-
tation, together with efficient reasoning services, has attracted researchers due to their
ability of formalizing knowledge in subtle ways and to infer new knowledge from large
amounts of data. In recent years, research on these topics has gained momentum partly
because of its great promises for applications in Semantic Web Technologies. One vision
of today’s research in Artificial Intelligence (AI) is that it will be possible for computers to
pose queries to and reason with data stored on the World Wide Web, so that the Web will
essentially represent one large knowledge base. For this purpose, it is necessary to assign
a formal semantics to data stored on the Web, which can be processed by computer pro-
grams. Such formalisms are commonly referred to by the notion of the emerging Semantic
Web, and they are standardized by the World Wide Web Consortium (W3C).

The discipline of Knowledge Representation and Reasoning (KRR) is an important field
of AI since it not only provides formalisms to represent data in a computer, but also
mechanisms to obtain information that is only implicitly entailed by the data. Description
Logics (DLs) and Logic Programs (LPs) are two major knowledge representation formalisms
that have been investigated intensively in the past. As they are suited for reasoning in the
Semantic Web, they have been respectively standardized by the W3C in the form of the
ontology languages jointly named Web Ontology Language (OWL) and the Rule Interchange
Format (RIF). DLs and LPs have different strengths and which of them is used as the
logic for an information system depends on the context, i.e. the nature of the knowledge
that has to be represented and the reasoning mechanisms that are required. On the one
hand, DLs are appropriate for defining concepts and hierarchies among them. On the
other hand, LPs are able to express rules with possible exceptions and preference orders
over sets of rules. Consequently, the abilities of DLs and LPs can be viewed as being

1



1. INTRODUCTION 1.1. Hybrid Knowledge Bases: Bringing Two Worlds Together

complementary such that combining the two formalisms is an obvious next step in the
advancement of KRR. Moreover, there are many real-world applications that require both
of the described kinds of reasoning at the same time. For example, this could be the
case for the customs’ information system at a port that has to classify goods and execute
according actions automatically (cf. Example 1.1)1. The endeavor of fully integrating DLs
and LPs is realized by the development of so-called hybrid knowledge bases, which define
an encompassing framework in which DLs as well as LPs can be formalized concurrently.

In the development of hybrid knowledge bases several challenges have to be faced,
where some of them carry over from the separate formalisms and some new challenges
emerge due to their integration. Firstly, it is desirable that a hybrid knowledge base is
faithful w.r.t. the separate formalisms it integrates, i.e. it should behave as expected by
a knowledge base designer who is acquainted with DLs and/or LPs. Simultaneously,
the integration of DLs and LPs in a hybrid knowledge base should be as tight as pos-
sible, so that the trade-off of choosing between the two formalisms vanishes. Secondly,
efficient algorithms are required for reasoning with hybrid knowledge bases since ontolo-
gies and rule bases may contain large amounts of data, which obviously also holds for
their combination. This issue is even more crucial when considering the gigantic amount
of data contained in the Web being viewed as one big knowledge base. Finally, a critical
problem consists in the emergence of inconsistencies in hybrid knowledge bases due to
the integration of different data sources, the occurrence of errors, or the participation of
several users with potentially different views on the domain. Thus, contradictions are
often unavoidable, especially when applications in an open environment such as the Se-
mantic Web are taken into account, which contain very large amounts of interconnected
data. Moreover, there can be complex interactions between the ontology component and
the rule component of a hybrid knowledge base that can easily lead to contradictions.
Under classical semantics, knowledge bases comprising contradictory information are
no longer meaningful for reasoning since everything can be derived from them. Conse-
quently, some strategy has to be implemented in a hybrid knowledge base to address the
challenges posed by inconsistent knowledge bases, an undertaking that has only been
addressed very rarely in the literature on hybrid knowledge bases so far. This thesis is
about building a formalism for hybrid knowledge bases that fares well in all of these
dimensions.

1.1 Hybrid Knowledge Bases: Bringing Two Worlds Together

As mentioned, DLs and LPs are two formalisms that approach the problem of repre-
senting and reasoning about knowledge from different directions, and exhibit different
properties. DLs constitute decidable fragments of first-order logic. The constructs that
can be used in a respective DL language are restricted, so that a certain computational

1For another concrete example of a real-world application that requires the expressive power of both DLs
and LPs, and considers a medical knowledge base containing data about patients, refer to [KAH11].
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1. INTRODUCTION 1.1. Hybrid Knowledge Bases: Bringing Two Worlds Together

complexity can be guaranteed for reasoning tasks such as satisfiability or subsumption. On
the other hand, LPs consist of implications providing a rule-like structure and their se-
mantics is usually defined over a finite domain. As a result, it is possible to work with
the ground version of a logic program that contains variables.

A fundamental difference2 between DLs and LPs lies in the fact that DLs employ the
Open World Assumption (OWA), whereas LPs work under the Closed World Assumption
(CWA) [KAH11]. While under the OWA everything that cannot be derived is considered
to be unknown, the CWA implies that everything which is not known to be true is false
by default. The adherence to each of these assumptions can be justified depending on the
context and the kind of information system at hand. On the one hand, the OWA is useful
when a knowledge base contains incomplete information such that missing information
does not imply its falsity. On the other hand, under the CWA a default negation operator,
usually denoted by not, can be introduced, which enables non-monotonic reasoning in LPs,
i.e. knowledge derivable from an LP might not be derivable anymore after extending the
program. The default negation operator is also called an introspective operator as it can in-
trospect the LP to derive some fact based on the absence of information. On the contrary,
there is normally no introspective operator in DLs and reasoning in them is monotonic3.
However, adopting the OWA allows DLs to define concepts by quantifying over items
in their domain which do not have to be explicitly known. Additionally, the classical
negation operator ¬ is an integral constituent of DLs since they are based on first-order
logic, so that it is usually possible to prove that some fact does not hold in them. Clas-
sical negation is a stronger form of negation than default negation since if some piece of
knowledge cannot be proven to be true, its classical complement still cannot be assumed.
Hybrid knowledge bases bring these two worlds together by enabling reasoning under
the OWA and the CWA at the same time in different parts of a knowledge base. They nor-
mally consist of a structural part in form of an ontology component and a rule-set component
sharing a common vocabulary that connects them.

The advantages of applying the OWA or the CWA respectively and the benefits of
being able to combine reasoning under both of them in a hybrid knowledge base are
demonstrated by means of the following example, which will be used as a running ex-
ample throughout this thesis. The example is inspired by a realistic example presented
by Slota et al. [SLS11], which in turn is inspired by a real-world use-case of hybrid knowl-
edge bases. Here, the convention from Knorr et al. [KAH11] to start all predicate names
occurring in the ontology component with upper-case letters, and those only appearing
in the program component with lower-case letters, is adopted.

Example 1.1 (Customs risk assessment). Consider the following hybrid knowledge base,
which contains an ontology component formalized in DL-syntax in the upper part and a

2A discussion of further differences in the expressive power of DLs and LPs can be found in [EIKP08].
3This is true at least in the case of standard DL semantics. Non-monotonic extensions of DLs have been

developed as well (e.g. in [DLNNS98; GGOP13]). However, they are not considered in this thesis since
we achieve the non-monotonic behavior of the formalism developed here by providing an encompassing
semantics for DLs and LPs.

3
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logic program in the lower part. This hybrid knowledge base could be part of an infor-
mation system used by a customs service to assess the risk exhibited by a certain good as
well as to derive according actions that have to be taken on the basis of the classification
of a good by the system. Note that this is in fact a hybrid knowledge base since the DL-
and the LP-part share a common vocabulary and hence, interactions can occur between
the two components.

ToxicChemical v ∃Contains.ToxicSubstance

∃Contains.ToxicSubstance v ProvenRisk

ProvenRisk t PotentialRisk v Risk

HasCertifiedForwarder v ¬IsMonitored

ToxicChemical(pesticide)

IsMonitored(x) ← good(x),Risk(x).

PotentialRisk(x) ← good(x),not isLabelled(x).

resolvedRisk(x) ← good(x), IsMonitored(x).

good(food) ←

good(pesticide) ←

isLabelled(pesticide) ←

Using this knowledge base, the good food can be derived to be a PotentialRisk by
means of the second rule in the program, and the good Pesticide can be classified as a
ProvenRisk due to the first and the second ontology axiom. A PotentialRisk and a Proven-

Risk are both a kind of Risk according to the third ontology axiom. The difference be-
tween a PotentialRisk and a ProvenRisk is that a good can be derived to be a PotentialRisk

by means of default reasoning, so that every good for which it is not known that it isLa-

belled is derived to be a PotentialRisk. Note that this can only be expressed because the
program is interpreted under the CWA.

On the other side, a good can be derived to be a ProvenRisk by means of the ontol-
ogy component if it Contains some ToxicSubstance. Note that, in contrast to the program
component, not every individual referred to in the ontology component has to be ex-
plicitly stated. According to the second ontology axiom, everything that Contains some
ToxicSubstance can be derived to be a ProvenRisk, even if the specific ToxicSubstance is
unknown in this case. This is a result of the fact that the OWA is adopted by the ontology
component.

Moreover, by means of the ontology component it is possible to prove that it does
not hold for some good that it IsMonitored since classical negation is used in the fourth
axiom. This can be important if the customs service has to be sure that it does not hold

4
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for some good that it IsMonitored. Additionally, a reasoning algorithm can even provide
an explanation for the falsity of IsMonitored in this case, namely that the good satisfies the
concept description of HasCertifiedForwarder.

Further, note that the ontology and program component are tightly coupled in this
example, so that it can first be derived by involving default negation that some good is a
PotentialRisk, afterwards it can be deduced from the third axiom that the good is a Risk,
and on the basis of this deduction an according rule can be applied which triggers that
the particular good IsMonitored. ♦

1.2 Inconsistencies in Hybrid Knowledge Bases

In the hybrid knowledge base introduced in Example 1.1, inconsistencies can easily arise.
For instance, assume that we add HasCertifiedForwarder(food) either as a fact to the pro-
gram component or as a concept assertion to the ontology component. In this case,
¬isMonitored(food) can be derived by the fourth ontology axiom. But so can isMoni-

tored(food) with the help of the first rule. As a result, the hybrid knowledge base does
not have a model under a classical semantics, where only the truth values true and false
are available, since assigning each of them to the atom isMonitored(food) does not satisfy
the knowledge base. This poses a problem as the knowledge base is trivialized in this
way, which means that everything is a logical consequence of it. This is due to the Princi-
ple of Explosion, which holds in classical logics and can be characterized in the following
way.

Definition 1.2 (The Principle of Explosion). Let ψ be a first-order formula and Φ a set of
first-order formulas. If it is the case that Φ |= ψ and Φ |= ¬ψ, then it holds that Φ |= ξ

for every first-order formula ξ, where the operator |= denotes the classical entailment
operator of first-order logic.

The described behavior of hybrid knowledge bases under classical semantics is highly
undesirable and renders the knowledge base useless if it contains contradictory informa-
tion. To phrase it bluntly, one does not want that the gift one sends to a friend is classified
as a toxic chemical by the customs’ information system because a certified forwarder has
forgotten to label some product. Furthermore, even an inconsistent knowledge base usu-
ally contains meaningful information that can be derived by logical rules not involving
any contradictory knowledge. For example, after adding the program fact HasCertified-

Forwarder(food) to the knowledge base in Example 1.1, Risk(Pesticide) is still derivable
from the consistent part of the knowledge base alone. However, under classical seman-
tics the whole knowledge base is spoiled by the inconsistency.

According to Damásio and Pereira [DP95], there are two main strategies for dealing
with the problem of the explosive behavior observed in inconsistent knowledge bases.
Which of the strategies is used partly depends on the viewpoint that is adopted regarding
contradictions.

5



1. INTRODUCTION 1.2. Inconsistencies in Hybrid Knowledge Bases

1. One can take the view that there are no true contradictions in the world and that
contradictory information in a knowledge base always constitutes some kind of
error, such that the knowledge base has to be “debugged”. This is the goal of ap-
proaches in the areas of Belief Revision and Ontology Repair, which have been devel-
oped to remove contradictions from a knowledge base.

2. Contradictions can also be regarded as natural phenomena in realistic data, so that
a logic should account for them. For this purpose, Paraconsistent Logics have been
developed, in which the Principle of Explosion does not hold (or only partly holds).

Many approaches to belief revision have been developed in order to avoid inconsis-
tencies when information is integrated or updated, often based on seminal work done
by Alchourrón et al. [AGM85], who published the famous AGM postulates for belief revi-
sion. However, even how to revise DLs and LPs separately is a debated research question
and revision algorithms with tractable computational complexity are difficult to obtain,
even in the case of propositional knowledge bases (cf. [EG92]). In spite of the great chal-
lenges faced by revision approaches, work on revising combined formalisms for rules
and ontologies has already been conducted (e.g. in [EFS13; SLS11]). On the other hand,
reasoning with paraconsistent logics can be reduced to reasoning with its classical coun-
terparts in many cases, where a tractable reasoning algorithm can often be obtained in
this way. Besides, contradictions first have to be detected also for applying belief re-
vision techniques, so that paraconsistent logics can be viewed as an intermediary step
towards belief revision, according to Damásio [Dam96]. In our work, we will follow the
secondly mentioned strategy for dealing with inconsistencies by providing a paraconsis-
tent semantics for a certain hybrid knowledge base formalism.

In addition to the capability of detecting and reasoning with inconsistent knowledge
bases provided by a paraconsistent semantics, it is often desirable that a paraconsistent
formalism also supplies information about which facts can only be derived by involving
contradictory information. For instance, suppose that, after adding the fact HasCerti-

fiedForwarder(food) to the hybrid knowledge base in Example 1.1, we want to query the
knowledge base for all goods that are a resolvedRisk. Under a paraconsistent semantics,
resolvedRisk(food) can be derived. However, this derivation depends on the contradictory
fact IsMonitored(food), i.e. since HasCertifiedForwarder(food) is true, ¬IsMonitored(food) can
be derived as well and hence, we cannot be completely sure that IsMonitored(food) really
holds. Therefore, we would still like to get the answer resolvedRisk(food) to our query,
but together with the information that we have to be careful in using this fact. This in-
formation can be attained by “propagating” contradictions in some way in the inference
steps executed to obtain the respective fact. In this way, it is possible to “encapsulate”
the contradictory fragment of the information entailed by a knowledge base while still
being able to use it for reasoning, so that no knowledge is lost by following this strat-
egy (in contrast to belief revision approaches). Damásio and Pereira term the described
technique Contradiction Support Detection [DP97].
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1.3 Contributions and Outline

The work presented in this thesis builds upon a formalism for hybrid knowledge bases
that has been developed by Knorr et al. [KAH08; KAH11], which exhibits a number of
desirable properties and has already been implemented in the NoHR-plug-in for the on-
tology editor Protégé [IKL13]. The authors define a three-valued well-founded semantics
for hybrid knowledge bases formalized in the Logic of Minimal Knowledge and Negation
as Failure (MKNF). Hybrid MKNF knowledge bases constitute a tight and flexible integration
of DLs and LPs, which means that both components interact in terms of derivable con-
sequences and that it is possible to define predicates in the ontology and the program
component simultaneously [MR10]. By basing their approach on the Well-Founded Se-
mantics for logic programs, Knorr et al. are able to define a procedural characterization
of their semantics, which uses an alternating fixpoint construction and provides an effi-
cient means to compute the semantics of hybrid MKNF knowledge bases. Furthermore,
their framework is faithful w.r.t. classical DL semantics and the original Well-Founded Se-
mantics [KAH11]. Additionally, the three-valued semantics is sound w.r.t the previously
developed two-valued semantics for hybrid MKNF knowledge bases, which is based on
the Stable Model Semantics [MR10].

Although inconsistencies could already be detected in the framework of Knorr et al.,
their semantics is only defined for consistent hybrid MKNF knowledge bases and de-
veloping a paraconsistent Well-Founded Semantics for these knowledge bases has been
an open problem so far. In this thesis, we present a paraconsistent version of the three-
valued semantics for hybrid MKNF knowledge bases of Knorr et al., which allows full
paraconsistent reasoning when an inconsistency occurs as a result of the interaction be-
tween the ontology and the program component, as well as when the ontology is incon-
sistent by itself. The contributions of this thesis are the following:

1. Our main contribution is the introduction of a new six-valued MKNF semantics,
which is robust w.r.t. inconsistencies, implements Contradiction Support Detection
regarding contradictions occurring in the program component, and differentiates
between facts which are false by default and those which are classically false.

2. In order to compute paraconsistent models of our semantics, we adapt the alternat-
ing fixpoint construction used by Knorr et al. [KAH11] and show that the resulting
algorithm is sound and complete w.r.t. the model-theoretic characterization of our
semantics.

3. For ontology components formalized in the syntax of the DL ALC, we prove that
our semantics coincides with the paraconsistent DL semantics ALC4 published by
Maier et al. [MMH13] in case the program component is empty.

4. We show that if the ontology component of a hybrid MKNF knowledge base is
restricted, our semantics corresponds to the semantics of WFSXp [Dam96] (in case

7
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classical negation is only used in front of unary program atoms). As a result, our
approach entails a new and concise model-theoretic characterization of WFSXp.

5. We prove that for consistent hybrid MKNF knowledge bases, our semantics is
sound w.r.t. the three-valued semantics of Knorr et al., and by transitivity also w.r.t.
the two-valued semantics of Motik and Rosati [MR10].

6. Finally, we show that the efficiency of the three-valued approach developed by
Knorr et al. carries over to our framework, so that reasoning with our semantics is
tractable in case reasoning in the DL used for formalizing the ontology component
is tractable.

The remainder of this thesis is structured as follows. The next chapter provides the
background on paraconsistent logics for different knowledge representation formalisms
and previous approaches to hybrid knowledge bases. In Chapter 3, the model-theory
of our six-valued logic is developed and the faithfulness results regarding ALC4 and the
three-valued semantics of Knorr et al. are established. Chapter 4 describes the adaptation
of the alternating fixpoint construction used by Knorr et al. to our approach and provides
the proofs showing the correspondence to the model-theoretic characterization of our
logic. Furthermore, the faithfulness result w.r.t. WFSXp is presented and the complexity
of our approach is discussed in the end of this chapter. Finally, we conclude in Chapter 5
by reviewing two related approaches and discussing some ideas for future extensions of
our framework.
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2
Background

As this thesis integrates many different sub-fields of KRR, we start by providing a broad
overview over the different formalisms developed in these sub-fields and their connec-
tions to our work. In this way, we place our work in the context of paraconsistent logics,
their application to DLs and LPs, and previous approaches on hybrid knowledge bases.
Moreover, some basic notions and definitions will be introduced in this chapter, which
later chapters will draw on.

2.1 Paraconsistent Logics

As mentioned in the introduction, paraconsistent logics are those logics which still allow
the derivation of meaningful knowledge from contradictory sets of formulas. According
to Lang [Lan06], a logic is paraconsistent if there are sets of formulas of the logic that entail
some formula and its classical negation and still have a model in the logic, and it is fully
paraconsistent if the previous holds for all sets of formulas of the logic. Consequently, the
Principle of Explosion is either partly or fully rejected in a paraconsistent logic. Generally,
paraconsistent logics restrict the amount of consequences that can be derived from a set
of formulas, so that they can be viewed to implement a “more conservative” form of
reasoning, as noted by Carnielli and Marcos [CM01].

Paraconsistent logics that are used as the foundation for information systems, such as
databases, and for knowledge representation formalisms in general, often employ some
many-valued logic to obtain the paraconsistent behavior [GS00], such that in addition
to the classical truth values true and false, at least one further truth value is introduced.
Though, besides many-valued logics, a large number of other approaches to paracon-
sistent reasoning have been developed in the fields of philosophical and mathematical

9
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logic, such as Jaśkowski’s Discussive Logic [CD95; Jaś69], da Costa’s C-Logics [Cos74] and
Baten’s Inconsistency-Adaptive Logics [Bat07]. For a comprehensive overview over these
and other paraconsistent approaches, the reader is referred to the surveys by da Costa et
al. [DCKB07] and Middelburg [Mid11].

In order to see how introducing an additional truth value can resolve the problem
exemplified in section 1.2, recall that the facts isMonitored(food) and ¬isMonitored(food)

can both be derived from the hybrid knowledge base in Example 1.1 after adding the
fact HasCertifiedForwarder(food). Consequently, it is not possible to model the knowledge
base under a two-valued semantics as assigning the truth value true to the proposition
isMonitored(food) would not satisfy ¬isMonitored(food) and assigning the truth value false
would not satisfy isMonitored(food) itself. Now, by having a third truth value available
which is a designated truth value1 of the logic and at the same time is its own comple-
ment, this third truth value can be assigned to the proposition isMonitored(food), which
results in the knowledge base having a model2. As a result, not every proposition is en-
tailed by the knowledge base under such a many-valued semantics anymore, but only
those propositions that are satisfied by all models of the knowledge base that now inter-
pret contradictory facts with the new truth value. This is to say, e.g. resolvedRisk(food) is
still entailed by the inconsistent hybrid knowledge base, but ToxicChemical(food) cannot
be derived anymore by means of the Principle of Explosion, just as it is the case for the
consistent version of the hybrid knowledge base in Example 1.1. Basically, it is possible
to isolate the inconsistency in this manner.

2.1.1 Belnap’s Four-Valued Logic

As Maier et al. state [MMH13], the two-valued nature of classical logics ensures that the
following two principles are satisfied in them:

• The Law of the Excluded Middle (LEM): every proposition must be either true or false.
This principle is also called tertium non datur, which is Latin for “no third is given”.

• The Law of Non-Contradiction (LNC): no proposition may be true and false at the same
time. This leads to contradictory propositions not having a model and thus, implies
the Principle of Explosion introduced in section 1.2, of which the principle ex falso
sequitur quodlibet is the Latin equivalent.

By introducing further truth values into the semantics of a logic, a logic that does not
comply with either one or both of these laws can be obtained. For instance, as Maier et
al. remark [MMH13], the strong three-valued logicK3 [Fit91b] devised by Kleene follows
the LNC but not the LEM. On the other hand, Priest’s three-valued Logic of Paradox [Pri79]
obeys the LEM, but not the LNC.

1A designated truth value of a logic is a truth value such that if a formula is evaluated to this truth value
in an interpretation, the interpretation is said to model the formula [Got14].

2Obviously, this also depends on the interpretation functions of the other operators w.r.t. the new truth
value, which will be discussed in more detail later.
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A logic which rejects both of the aforementioned principles is Belnap’s four-valued
logic [BJ77a]. The use of many-valued logics as a “practical tool for inference” [BJ77a]
in computer science can be traced back to his article entitled “How a computer should
think” and published in 1977 [BJ77b]. Accordingly, most of the work on paraconsistent
semantics for logic programs and ontologies discussed in this thesis take Belnap’s four-
valued logic as a starting point for their approach. Belnap motivates the four truth values
of his logic by pointing out that a computer can be in one of four epistemic states w.r.t.
a proposition, depending on the information it has been told. It could either have been
told that the proposition is true, that it is false, none of the previous, or both. While clas-
sically only the first two of these epistemic states are regarded, the latter two cases occur
very often in real-world applications since a computer can be provided with contradic-
tory and/or incomplete information. Belnap’s insight was to take this issue seriously by
implementing all of the four possible epistemic states in what he calls a “sophisticated
question-answering system”. Belnap denotes the four truth values of his logic by the
symbols T, F, None and Both. We refer to them by the names true, false, undefined and
inconsistent, and use the symbols t, f, u and b, respectively.

Belnap makes the observation that the four truth values of his logic naturally can be
ordered into two different complete lattices3, which he terms the approximation lattice A4

and the logical lattice L4, respectively. According to Belnap, the partial order induced by
the approximation lattice can be read as “approximates the information in”, in the sense
that truth values that are greater in the order exhibit more information about the truth of
a proposition [AA00]. Furthermore, he defines logical disjunction of two truth values as
their least upper bound and conjunction as their greatest lower bound in the lattice L4

[BJ77a].

Later, Belnap’s four-valued logic has been generalized to so-called bilattices by Gins-
berg [Gin88], which are algebraic structures simultaneously containing two partial orders
[AA96]. In this way, the two lattices A4 and L4 introduced by Belnap can be combined
into a single bilattice (which is often denoted by FOUR in the literature) with two partial
orders, the truth order ≤t and the knowledge order ≤k. On the basis of Ginsberg’s work,
Arieli and Avron give the following definition of a bilattice [AA00].

Definition 2.1 (Bilattice [AA00]). A bilattice is a structure B = (B,≤t,≤k,¬) such that B
is a non-empty set containing at least two elements; (B,≤t) and (B,≤k) are complement
lattices; and ¬ is a unary operator on B that has the following properties:

(1) If a ≤t b, then ¬a ≥t ¬b,

(2) if a ≤k b, then ¬a ≤k ¬b, and

(3) ¬¬a = a.

3A complete lattice consists of a set S and a partial order ≤, such that for every set S′ ⊆ S there is a least
upper bound and a greatest lower bound in S [BJ77a].
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According to Fitting [Fit91a], Belnap’s logic constitutes the simplest logic that can be
represented by means of a bilattice. Here, the truth order≤t in the bilattice FOUR corre-
sponds to the order in Belnap’s lattice L4 indicating the “degree of truth”, and the knowl-
edge ≤k order corresponds to the partial order in the lattice A4 signifying a “measure of
knowledge about truth” [AA00]. The bilattice FOUR together with the two orders is
shown in Figure 2.1.

t

kf

u b

t

Figure 2.1: Bilattice FOUR of Belnap’s four-valued logic [BJ77a], together with the truth-
and knowledge order introduced by Ginsberg [Gin88].

Building on the work by Ginsberg, Fitting has applied the notion of bilattices to logic
programming [Fit90; Fit91a], and his results have inspired several paraconsistent ap-
proaches in the field (e.g. [ADP02; Dam96; SI95]). For this, he narrows the definition of
bilattices to interlaced bilattices, where an interlaced bilattice has to satisfy the additional
condition that the join and meet operation of one partial order have to be monotone w.r.t.
the join and meet operation of the other partial order [Fit91a]. Fitting denotes the join
and meet operation w.r.t. the knowledge order ≤k by ⊗ and ⊕, and calls them consensus
and gullability operator respectively since “x ⊗ y is the most information that x and y

agree on” and x⊕ y “accepts anything” that is stated by x or y [Fit90]. In addition to the
negation operator ¬ of a bilattice, Fitting introduced a conflation operator which behaves
like negation, “but with the roles of ≤k and ≤t switched around” [Fit91a]. Just like nega-
tion reverses truth and leaves the degree of knowledge unchanged, conflation reverses
the degree of knowledge but does not change truth, according to Fitting. Alcântara et
al. show that the default negation operator not, which is used in logic programs and will
be discussed in more detail in section 2.3, can be defined in terms of a negation operator
¬ and a conflation operator −, namely by equating notA with −¬A, given some atom
A. Intuitively, this definition expresses that the default negation of a proposition has
the meaning that there is no evidence (or it is not believed) that the proposition is true
[ADP02].
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2.2 Paraconsistent Description Logics

As discussed in the introduction in Chapter 1, even if we work under the assumption
that the world itself is always consistent, inconsistencies can easily arise in knowledge
bases containing facts about the world, due to a large number of pieces of information
and interactions between them. This is even more true when considering DL knowledge
bases formalized in OWL and intended for the use in the Semantic Web. In this case,
knowledge bases are not only typically very large themselves, but also often contain data
from a large number of sources that is constantly changing. For instance, this is the case
when different data sources are integrated or when many users with possibly different
views on the respective domain collaborate in editing a knowledge base. Contradictions
cannot always be resolved in this scenario, therefore some way of inconsistency detection
and reasoning from contradictory knowledge is essential for Semantic Web Technologies.

Naturally, approaches tackling the pressing issue posed by inconsistent ontologies
have attracted a lot of attention recently. They often handle inconsistent knowledge bases
by resorting to some sort of paraconsistent logic. In this line of research, e.g. Lang pro-
poses paraconsistent semantics for the DLsALC and SHIQ on the basis of a four-valued
version of first-order logic that is translatable into classical first-order logic, and defines
a semantics for the implication operator such that the Deduction Theorem holds and for-
mulas can be reduced to Negation Normal Form [Lan06]. Moreover, Zhang et al. have
developed paraconsistent semantics and tableau algorithms for several DLs on the basis
of quasi-classical logic4 [ZL08; ZQML09; ZXL09], which fulfill several important infer-
ence principles like Modus Ponens and Disjunctive Syllogism, and correspond to the stan-
dard semantics in the case of consistent formulas [ZQML09]. The same authors have also
published a three-valued approach [ZLW10] that approximates classical reasoning more
closely than many four-valued approaches, and extends the DL ALC with the semantics
of Priest’s Logic of Paradox [Pri79]. In the Logic of Paradox, a formula is allowed to be true
and false at the same time, but cannot be neither true nor false, so that the LEM is enforced.

To the best of our knowledge, the most recent publication in the area of paraconsis-
tent DL semantics has been made by Maier et al. in 2013 [MMH13], which is largely based
on earlier work by the authors (cf. [MH09; MHL07; Mai10]). In this publication, a para-
consistent semantics for the expressive DL SROIQ and all less expressive DLs which
are subsumed by SROIQ, such as SHIQ and ALC, is presented. Like many other ap-
proaches that define a paraconsistent DL semantics, the semantics of Maier et al. is based
on Belnap’s logic FOUR, and the authors fittingly label the respective four-valued frag-
ments SROIQ4, SHIQ4 and ALC4. They show that SROIQ4 is sound w.r.t. the clas-
sical two-valued semantics and that a SROIQ4-knowledge base can be embedded into
SROIQ such that consequences are preserved. Furthermore, Maier et al. demonstrate

4“[Quasi-classical logic] is a form of paraconsistent logic with a more expressive semantics than Belnap’s
four-valued logic, and unlike other paraconsistent logics, allows the connectives to appear to behave as
classical connectives” [Hun02].
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that models can be forced to be three-valued, excluding either the truth value paracon-
sistent or the truth value undefined from the possible evaluations of a formula, by adding
additional axioms to the knowledge base. In the latter case, a ”more classical“ behavior of
the logic can be achieved according to the authors. This strategy to obtain a deductively
stronger logic is also pursued by Zhang et al. in using the Logic of Paradox as the basis for
their three-valued framework [ZLW10].

In all of the previously mentioned approaches, the authors direct their attention to
maintaining inference rules and classical equivalences that hold in the standard version
of the respective formalism, in order to approximate standard reasoning in a paracon-
sistent setting. The amount of inference rules and classical equivalences that can be pre-
served in a paraconsistent logic depends a lot on the semantics of the implication opera-
tor. Correspondingly, Maier et al. discuss three distinct kinds of implication within their
four-valued framework, which enable different inference rules to be applied [MMH13].
These implication operators are internal implication (⊃), which is true whenever the con-
sequent is true or inconsistent and has the truth value of the consequent otherwise, strong
implication (→), which is defined in terms of ⊃, and equivalence (↔). While Modus Ponens,
the Deduction Theorem, Identity, and Supraclassicality can be used when internal implica-
tion is employed, the strong implication operator additionally enables the application of
Modus Tollens, Transposition and Strong Equivalence, but not the Deduction Theorem (for the
definition of the particular inference rules refer to [MMH13]). The authors also show
that whenever an implication operator in the four-valued framework satisfies Modus Po-
nens and the Deduction Theorem, then it cannot satisfy several of the other inference rules,
such as Modus Tollens, at the same time. Although ontology semantics with a stronger
inference relation can be obtained by using other forms of implication, if only internal
implication is used in the paraconsistent version of certain tractable DLs such as EL++,
then formulas can be mapped to a sets of formulas interpreted under classical semantics,
such that consequences are preserved, as well as tractability [MMH13]. This is a desirable
property for applications of paraconsistent DL semantics since standard reasoners can be
used in this case.

Next, we introduce description logics formally, by defining their syntax and their
classical as well as four-valued semantics as published by Maier et al. We restrict the
presentation of the DL semantics here to the case of ALC/ALC4 for the sake of a more
concise presentation and to avoid special cases where the ontology has no model due to
a combination of nominals and cardinality restrictions. For example, assertions such as
≥ (n+1)r.{a1, ..., an}(b) do not have a model under the semantics of SROIQ4 [MMH13].
Accordingly, Maier et al. state that SROIQ4 could be viewed as being only “partially
paraconsistent”. Furthermore, we prove the correspondence of the semantics we assign
to the ontology component in the hybrid approach developed in this thesis w.r.t. ontolo-
gies expressed in the syntax of ALC.
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2.2.1 Syntax and Semantics of ALC and ALC4

The syntax of ALC and ALC4 is identical and it is based on three disjoint sets of names.

• The set NI contains all individual names denoting atomic entities in the domain.

• The set NC contains all concept names denoting classes of individuals that share a
common property.

• The set NR contains all role names denoting binary relations between individuals.

Hereafter, we will assume that the three sets of names, also called the signature of
a description logic, are given when speaking about the syntax of an ontology. Complex
concept descriptions can be constructed inductively, starting from atomic concepts. First, all
atomic concepts in NC , the bottom concept ⊥ and the top concept > are concept descriptions.
If C, C1 and C2 are concept descriptions, then the negation ¬C, the intersection C1uC2 and
the union C1 t C2 are concept descriptions as well. Moreover, if r is a role name in NR,
then the existential restriction ∃r.C and the value restriction ∀r.C are concept descriptions,
too.

Now, an ontology O, formalized in the syntax of the DL ALC/ALC4, consists of two
components, called a TBox and an ABox. A TBox is a set containing a finite number
of general concept inclusions (GCIs) of the form C1 v C2, where C1 and C2 are concept
descriptions. An ABox is a finite set of concept assertions of the formC(a) and role assertions
of the form r(a1, a2), where C is a concept description, r is a role name, and a1 and a2

are individual names taken from the set NI . GCIs, concept assertions and role assertions
together are also often called ontology axioms (or just axioms).

In order to define the semantics of ALC-formulas, we consider a non-empty universe
of individuals ∆I and the interpretation function ·I , which is defined in the second column
of Table 2.1. The interpretation tuple I = 〈∆I , ·I〉 satisfies a GCI, a concept assertion or a
role assertion if the respective conditions in the box at the bottom of Table 2.1 are fulfilled.
An interpretation I is a model of a TBox or an ABox if and only if it satisfies all axioms of
the respective component. Finally, an interpretation I is a model of an ontology O if and
only if it models the TBox and the ABox of O. In the DL literature, a concept description
C is said to be satisfiable w.r.t an ontology O if and only if there is a model of O such
that CI is not equivalent to the empty set in the corresponding interpretation. Moreover,
an axiom is said to be a logical consequence of an ontology O if and only if it is satisfied
in every model of O. A comprehensive treatment of the theory and practice of DLs has
been published by Baader et al. [BCMNP03].

For interpreting ALC-formulas under a four-valued semantics, a four-valued inter-
pretation I can be represented by a tuple 〈∆I , ·I〉 as before, where ∆I is still a non-empty
universe of individuals, but the interpretation function ·I has to be replaced by a paracon-
sistent interpretation function ·I . The interpretation function ofALC4 is defined in the third
column of Table 2.1 and the resulting interpretations are called 4-interpretations by Maier
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Syntax ALC Semantics ALC4 Semantics [MMH13]

a ∈ NI aI ∈ ∆I aI ∈ ∆I

A ∈ NC AI ⊆ ∆I 〈P,N〉, where P,N ⊆ ∆I

r ∈ NR rI ⊆ ∆I ×∆I 〈P,N〉, where P,N ⊆ ∆I ×∆I

> ∆I 〈∆I , ∅〉
⊥ ∅ 〈∅,∆I〉

C1 u C2 CI
1 ∩ CI

2 〈P1 ∩ P2, N1 ∪N2〉, where CIi = 〈Pi, Ni〉
C1 t C2 CI

1 ∪ CI
2 〈P1 ∪ P2, N1 ∩N2〉, where CIi = 〈Pi, Ni〉

¬C ∆I \ CI 〈N,P 〉, where CI = 〈P,N〉
∃r.C {x ∈ ∆I | ∃y.[(x, y) ∈ rI ∧ y ∈ CI ]} 〈{x | ∃y.[(x, y) ∈ p+(rI) ∧ y ∈ p+(CI)]},

{x | ∀y.[(x, y) ∈ p+(rI)→ y ∈ p−(CI)]}〉
∀r.C {x ∈ ∆I | ∀y.[(x, y) ∈ rI → y ∈ CI ]} 〈{x | ∀y.[(x, y) ∈ p+(rI)→ y ∈ p+(CI)]},

{x | ∃y.[(x, y) ∈ p+(rI) ∧ y ∈ p−(CI)]}〉

C(a) aI ∈ CI aI ∈ p+(CI)

r(a1, a2) (aI1, a
I
2) ∈ rI (aI1 , a

I
2 ) ∈ p+(rI)

C1 v C2 CI
1 ⊆ CI

2 p+(CI1 ) ⊆ p+(CI2 )

Table 2.1: Syntax and semantics of ALC and ALC4.

et al. According to the authors [MMH13], a positive and a negative extension has to be as-
signed to every concept description in order to extend the classical two-valued semantics
of ALC to a four-valued logic. As a result, the ALC4-semantics interprets a concept de-
scription C by a tuple such that CI = 〈P,N〉, where I is a 4-interpretation, and P and N
are subsets of the corresponding universe ∆I . Maier et al. also define two functions that
map every concept description to its positive and negative extension, respectively, in the
following manner: p+(CI) = P and p−(CI) = N . In this way, it is possible to map each
concept assertion C(a) to one of Belnap’s four truth values:

• C(a) is paraconsistent in I iff aI ∈ p+(CI) and aI ∈ p−(CI),

• C(a) is true in I iff aI ∈ p+(CI) and aI 6∈ p−(CI),

• C(a) is false in I iff aI 6∈ p+(CI) and aI ∈ p−(CI), and

• C(a) is undefined in I iff aI 6∈ p+(CI) and aI 6∈ p−(CI).

Likewise, role assertions can be evaluated to four different truth values by getting
assigned a positive extension P and a negative extension N , where P and N are subsets
of the cross product ∆I×∆I in this case. The functions p+ and p− can be defined for roles
in the same way as they have been defined for concept descriptions. We make use of this
mapping when proving the faithfulness of our semantics w.r.t. ALC4 in Chapter 3. On
the basis of the paraconsistent interpretation function defined in Table 2.1, we can now
define the satisfaction and entailment condition of the four-valued ontology semantics,
in line with the definitions provided by Maier et al. [MMH13].
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Definition 2.2 (Four-valued DL semantics [MMH13]). A 4-interpretation I is a 4-model of
anALC4 ontologyO, written I |=4 O, if and only if I satisfies all axioms in the TBox and
the ABox of O according to Table 2.1. An ontology O 4-entails an axiom A w.r.t. ALC45,
written O |=ALC4 A, if and only if every 4-model of O is a 4-model of A.

While Maier et al. define three different kinds of GCIs, we just present the semantics
of the internal inclusion operator of Maier et al. in Table 2.1 since only this operator will be
used in the approach we present in Chapter 3. The authors equate their internal inclusion
operator@with the standard DL inclusion operatorv, so that a common syntax forALC
and ALC4 ontologies can be maintained [MMH13].

2.2.2 Removal of Truth Value Gaps and Gluts

As mentioned above, Maier et al. also discuss constraints on the truth values that can
be added to their framework, which results in what they call the removal of truth value
gaps and gluts, respectively. In this way, the formalism essentially becomes either three-
valued, or two-valued if both are removed, so that classical reasoning can be simulated
in ALC4 [MMH13]. Practically, this can be done by adding further axioms to an ALC4-
ontology O, which enforce the LEM or the LNC, respectively. The technique is adopted
from Arieli [Ari04]. For selectively enforcing the LEM to hold under the four-valued
ontolgy semantics, the following set of axioms has to be added to an ALC4-ontology
[MMH13]:

LEM(O) =def {> v (A t ¬A) | A ∈ NC}

This formulation is a simplified version of the one stated by Maier et al. since we only
consider ALC4-ontologies here. In the case of SROIQ4-ontologies, also self restrictions
and nominals have to be taken into account. In order to enforce the LNC, another set of
axioms has to be added to O, namely:

LNC(O) =def {(A u ¬A) v ⊥ | A ∈ NC}

Here, enforcing the LEM is especially interesting because in this way a paraconsistent
logic can be maintained, while at the same time the semantics of the resulting formalism
is closer to the classical semantics of DLs. This is illustrated by the following example.

Example 2.3. According to Zhang et al., the following equivalence holds under the clas-
sical semantics of DLs, given two concepts C1 and C2 and a two-valued interpretation
I :

I |= C1 v C2 if and only if I |= ¬C1 t C2(a) for all a ∈ NI .

This equivalence is often used to reduce reasoning over a TBox and an ABox to reason-
ing over only an ABox [ZLW10]. However, under the four-valued ontology semantics

5Maier et al. define entailment w.r.t. the more expressive DL SROIQ4. We adapt their notation to the
case of ALC4.
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presented by Maier et al., this equivalence does not hold in general. For example, this is
the case if for some 4-interpretation I and some individual a it holds that aI 6∈ p+(CI1 ),
aI 6∈ p−(CI1 ), aI 6∈ p+(CI2 ) and aI 6∈ p−(CI2 ), and for all other individuals a′ it holds that
a′I 6∈ p+(CI1 ) and a′I ∈ p−(CI1 ), i.e. C1(a) and C2(a) are undefined in I, and C1(a′) is false
in I for all individuals a′. Then I |= C1 v C2 clearly holds due to the four-valued seman-
tics of GCIs. At the same time, it is not the case that I |= ¬C1 tC2(a) holds for all a ∈ NI

since the negation of the concept assertion C1(a), which is evaluated to undefined in I, is
also undefined, and C2(a) is evaluated to undefined in I as defined.

Now, if the 4-interpretation I additionally had to model the axiom > v (C1 t ¬C1),
then C1(a) could not be undefined in I anymore. In this way, the mentioned equivalence
can still be used in a paraconsistent logic which obeys the LEM. ♦

Besides the equivalence discussed in Example 2.3, Zhang et al. show that several other
logical equivalences hold in a three-valued logic which cannot be obtained by using a
four-valued logic.

2.3 Semantics for Logic Programs with Classical Negation

Logic programming is a widely used knowledge representation formalism, which is based
on declarative rules and uses the default negation operator not in interaction with the
CWA to express non-monotonic information [BG94]. Thus, a default-negated proposition
notA is true if and only if A is not known to be true. This differs fundamentally from the
meaning of the classical negation operator ¬. LPs can be divided into different classes
according to the expressiveness of their respective syntax. The most simple form of a
non-monotonic LP is a so-called normal logic program, which does not allow disjunctions
or default negation in the heads of rules. In addition to default negation, it is often useful
to introduce classical negation in the syntax of logic programs in order to be able to ex-
press that some piece of knowledge is false because its classical negation can be derived,
and not just because its positive version is not derivable6. Furthermore, paraconsistent
semantics for LPs are only of interest when classical negation is also considered because
no inconsistencies7 can emerge when only default negation is used in a program. If a
normal logic program additionally contains classically (or strongly) negated atoms, it is
called an extended logic program. For the purpose of this thesis, we will restrict ourselves
to extended logic programs and do not consider program rules containing disjunctions.

6A famous example that shows the usefulness of adding classical negation to LPs is attributed to John
McCarthy [GL91]. Assume the policy that “The school bus may cross the railway tracks if no train is ap-
proaching.” is formalized by the following rule using default negation: Cross← notTrain. Now, it might
be the case that knowledge about an approaching train is not available for some reason, so that the previous
rule is not safe. In this situation, one would want to express that the rails can be crossed by the bus if there is
evidence for the fact that no train is approaching. This can only be expressed by means of classical negation
in the following way: Cross← ¬Train.

7The term ’inconsistency’ is understood in the classical sense here. There are LPs that do not have any
models under certain semantics and do not contain classical negation. Such programs are said to be incoher-
ent [SI95].
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Next, we give the definition of the syntax of an extended logic program, which fol-
lows the presentation by Damásio [Dam96]. Though it is customary to make use of vari-
ables in the syntax of logic programs, usually just the ground version of a logic program
is considered, i.e. the version where every rule that contains variables is replaced by all
its ground instances such that variables are replaced by terms from the Herbrand universe
of the program [GL88]. This is possible w.l.o.g. since the CWA is employed. The ground
atoms in the resulting program form the Herbrand base of the program [BG94].

Definition 2.4 (Extended logic program). An extended logic program Π consists of a set of
rules of the form

H ← A1, . . . , An,notBn+1, . . . ,notBm,

where H and each element in the sets {Ai} and {Bj} is either a ground atom A or a
classically negated ground atom ¬A. An atom A is called the explicit complement of the
classically negated atom ¬A, and vice versa. The atoms and their explicit complements
occurring in a program are called the objective literals (or program atoms) of Π and form
its extended Herbrand base denoted by HeΠ. The atom H is called the head of the respective
rule and the atoms in {Ai} and {notBj} together form its body. The program Π is called
an extended positive logic program if and only if n = m holds for all rules in Π.

Due to the declarative nature of logic programming, a large number of approaches
that assign a semantics to LPs with classical negation can be found in the literature (refer
to the paper by Apt and Bol [AB94] for a survey). Most of them are based on one of
two, which arguably represent the two most popular ways of assigning a meaning to LPs
because they exhibit a range of desirable properties, namely

• the Stable Model Semantics (SMS) of Gelfond and Lifschitz [GL88], and

• the Well-Founded Semantics (WFS) of Van Gelder et al. [GRS91a].

In general, it is straightforward to assign a model to a positive extended logic program
Π by computing the fixpoint of the immediate consequence operator, usually denoted by TΠ,
that collects all objective literals in the heads of those rules of which the objective literals
in the body could already be derived [GRS91a]. The resulting model is a minimal Herbrand
model and called the least Herbrand model of Π [GL88]. In order to obtain models of logic
programs containing default negation, Gelfond and Lifschitz devise a transformation that
yields a positive version of a logic program given a subset of the program atoms [GL88].
It is often called GL-transformation in the literature due to its inventors. Our definition
matches their original definition, but is adapted to our notation.

Definition 2.5 (GL-transformation [GL88]). Let Π be an extended logic program. For any
set M of atoms from Π, let ΠM be the program obtained from Π by deleting

(i) each rule that has a negative literal notBi in its body with Bi ∈M , and

(ii) all negative literals in the bodies of the remaining rules.
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Gelfond and Lifschitz define a stable model of a program Π to be a subset M of the
atoms occurring in Π such that M is the least model of the positive program ΠM [GL88].
The computation of the least model of the GL-transformation of a program Π w.r.t. a
set of program atoms M is often expressed by means of the so-called Gamma-operator Γ,
and abbreviated by ΓΠ(M) [Dam96]. A set of program atoms M is a stable model of a
program Π if and only if M = ΓΠ(M) [GL88]. According to Dantsin et al., a normal logic
program can have zero, one, or multiple stable models and checking whether a model
exists is NP-complete, while reasoning with the SMS is CONP-complete8 [DEGV01]. The
intractability of the SMS intuitively results from the fact that a subset of the Herbrand
base first has to be fixed before it is possible to check if the respective subset constitutes
a stable model. In spite of the high complexity of logic programming under the SMS, the
formalism is semantically stronger than many other semantics for LPs in that it allows to
derive more true and false consequences [GRS91a; KAH11].

On the other hand, the WFS for LPs assigns a unique model to every normal logic
program, the so-called well-founded model, and reasoning under the WFS is P-complete
[DEGV01]. The price for the tractable complexity of reasoning algorithms for the WFS is
that it constitutes a weaker semantics. Hereby, the WFS can be viewed as a generalization
of the SMS to three-valued models, where a program atom can be interpreted with the
additional truth value undefined. At the same time, the WFS is sound w.r.t. the SMS, which
means that if an atom of a program is true or false in the well-founded model, then it is
also true or false in every stable model of the program, respectively [GRS91b; KAH11].
Besides the lower complexity, the WFS has several other advantages over the SMS. For
instance, the semantics is cumulative and relevant [Dix95], which means that it can be
used for top-down query-answering where only the relevant part of the program has to
be considered and tabling techniques can be used in this process [AKS13; KAH11]. These
methods, which further increase the efficiency of the approach, have been implemented
for the WFS in the proof procedure SLG [CW96], and in the procedure SLX [ADP94]
for LPs with classical negation. Consequently, the WFS is well-suited as an underlying
program semantics for hybrid knowledge bases since the latter should be able to reason
efficiently with large amounts of data [KAH11].

So far, a program atom A and its explicit complement ¬A are regarded to be inde-
pendent syntactic entities and hence, algorithms for computing the stable models or the
well-founded model of an extended logic program work like for programs that do not
contain classical negation. Usually, a noncontradiction-condition is imposed on models of
programs containing classical negation, so that A and ¬A may not be part of a model si-
multaneously [PA92]. Alternatively, the Principle of Explosion is sometimes introduced
explicitly into the semantics, by defining that if a pair of complementary literals is part
of a minimal model of an extended positive logic program computed by the immediate
consequence operator, then all other program atoms are part of the minimal model as

8Note that the complexity results obviously hold for extended logic programs as well since we merely
treat classical negation as a syntactic construct so far.
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well [GL91]. Furthermore, classical negation influences the truth evaluation induced by
a model of a program under the respective semantics. For instance, Gelfond and Lifschitz
assign the truth value true to an atom A if A is contained in a respective stable model9,
the truth value false if ¬A is in a stable model, and the truth value unknown if neither A
nor ¬A is part of some stable model [GL91]. Damásio and Pereira coin the term “weak
negation view” for the stance taken by approaches that treat atoms and their explicit
complements basically as being independent (at least w.r.t. their procedural semantics)
[DP98]. In contrast to this perspective, Pereira and Alferes postulate that classical and
default negation should be related by means of the so-called Coherence Principle, which
states that classical negation should imply default negation [PA92] and will be discussed
in detail later. According to Damásio and Pereira, the semantics WFSXp developed by
the authors, and its extensions, are the only approaches that take the Coherence Princi-
ple into account [DP98]. Naturally, contradictions cannot always be avoided regarding
the model-theoretic characterizations of semantics that give meaning to extended logic
programs, e.g. if A and ¬A are both part of some stable model. Consequently, paracon-
sistent semantics for extended logic programs are required to give a non-trivial meaning
to inconsistent logic programs.

2.3.1 Paraconsistent Semantics for Logic Programs

A number of paraconsistent semantics for extended positive logic programs have been
developed, as well as some for extended logic programs extending either the SMS or
the WFS. Many of these approaches are overviewed in a survey by Damásio and Pereira
[DP98]. Likely the most encompassing approach to paraconsistent LPs can be found in a
paper by Alcântara et al. [ADP02]. The authors have created a paraconsistent framework
for LPs where, based on Fitting’s work discussed in section 2.1.1, an arbitrary bilattice
of truth values can be used as underlying algebraic structure [ADP02]. Furthermore, the
authors implement the Coherence Principle in their formalism and, as a result, are able
to show that a class of stable models, which they call coherent answer sets, is characterized
by their approach as well.

A paraconsistent semantics for logic programs that extends the SMS has been devel-
oped by Sakama and Inoue [SI95]. Their semantics is defined for extended disjunctive logic
programs and based on Belnap’s four truth values. In order to compute all paraconsistent
stable models of a program, the authors introduce a new fixpoint semantics, which works
with a translation of a program into a semantically equivalent positive version of the pro-
gram, called its epistemic transformation. Furthermore, the authors extend their approach
to six truth values (cf. Figure 2.2), adding the truth values suspiciously true and suspiciously
false, and extend their fixpoint semantics to a version that works with adorned objective
literals in order to propagate the information that an atom has been derived from con-
tradictory facts. In this way, Contradiction Support Detection is enabled to some degree.

9Gelfond and Lifschitz denote stable models by the term answer sets after introducing classical negation
into their programs [GL91]. However, in the literature both terms are used interchangeably.
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Moreover, the authors define semi-stable models on the basis of a nine-valued logic, il-
lustrated in Figure 2.2, which can be assigned to programs in which an objective literal
is implied by its default negation. Such programs do not have a stable model under the
original SMS and are said to be incoherent, which can be viewed as a form of inconsistency
according to Sakama and Inoue.
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Figure 2.2: The lattice VI underlying the six-valued suspicious SMS of Sakama and Inoue
[SI95]; the nine-valued bilattice IX on which the Semi-Stable Models of Sakama and In-
oue are based [SI95]; and the bilattice VII of Sakama’s seven-valued paraconsistent WFS
[Sak92].

In case of the WFS, a paraconsistent extension has also been published by Sakama
[Sak92]. It is based on a seven-valued bilattice, firstly introduced by Ginsberg [Gin88]
and depicted in Figure 2.2, which makes it possible to represent default assumptions.
The procedural definition of the extended well-founded model of an extended logic pro-
gram Π mirrors the construction of the standard (i.e. non-extended) well-founded model,
and Damásio and Pereira show that it can be obtained by computing the standard well-
founded model of a simple transformation of Π [DP98]. Sakama considers suspicious
reasoning in the context of paraconsistent WFS as well. For this, he extends the direct con-
sequence operator used in the bottom-up computation of extended well-founded models
such that every objective literal L is annotated by a set collecting those sets of objec-
tive literals from which L can be derived in the computation. In this way, derivations
that involve contradictory facts can be distinguished. Damásio and Pereira state that this
technique has the drawback that the annotation sets can become exponentially large w.r.t.
the size of the program [DP98].

The Coherence Principle is not taken into account by the two previously described
approaches and an incomplete form of suspicious reasoning is implemented as will be
demonstrated in section 2.3.3. The paraconsistent extension of the WFS presented in the
next section offers a solution for both of these shortcomings.

2.3.2 WFSXp and the Coherence Principle

We now discuss the Paraconsistent Well-Founded Semantics with Explicit Negation (WFSXp)
of Alferes et al. [ADP95; Alf93; Dam96] in more detail since the approach we develop is
based on it. For this reason, here we introduce several notions that we will draw on in
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Chapter 4 and Chapter 5. In doing so, we follow the presentation of the paper by Alferes
et al. [ADP95]. The well-founded model of a program Π, denoted by WFM(Π), can be
represented by means of the union of two subsets of the extended Herbrand base HeΠ,
which we denote by T ∪ notF 10. Under the standard WFS the sets T and F are disjoint
and a program atomA is defined to be true w.r.t.WFM(Π) if and only ifA is inWFM(Π),
false if and only if notA is in WFM(Π), and undefined if and only if neither A nor notA is
in WFM(Π). The disjointness condition is dropped in WFSXp to enable paraconsistent
interpretations of program atoms and the paraconsistent well-founded model of an extended
logic program Π is denoted by WFMp(Π). An important property of WFSXp is that
it satisfies the Coherence Principle, which states that classical negation implies default
negation and can be formalized in the following way.

Definition 2.6 (Coherence Principle). The paraconsistent well-founded modelWFMp(Π)

of an extended logic program Π satisfies the Coherence Principle iffA ∈WFMp(Π) implies
that not¬A ∈WFMp(Π) and¬A ∈WFMp(Π) implies that notA ∈WFMp(Π), for every
atom A and its explicit complement ¬A inHeΠ.

The number of possible truth values that can be assigned to program atoms inHeΠ by
a paraconsistent well-founded model is increased to nine in the case of WFSXp [DP95].
The truth values can be ordered in a bilattice that has the same structure as the nine-
valued bilattice of Sakama and Inoue shown in Figure 2.2. Nine truth values are implied
by the fact that given an atom A and its explicit complement ¬A appearing in a program
Π, there are nine different ways in which they can occur in WFMp(Π), i.e. all subsets of
{A,¬A,notA,not¬A} that satisfy the Coherence Principle can be in WFMp(Π). Using
a logic defined over the resulting bilattice NINE , Damásio and Pereira give a model-
theoretic characterization of WFSXp [DP95] by showing that every paraconsistent well-
founded model is also a model in their nine-valued logic. However, to show the other
direction, i.e. that nine-valued models correspond to paraconsistent well-founded mod-
els, the authors have to restrict the latter to so-called supported models and have to assume
that the respective program does not contain infinite positive recursions [DP95]. Besides
this model-based characterization, there are a number of other definitions of WFSXp,
e.g. by a non-deterministic division of programs, by a compact bottom-up operator or by an
alternating fixpoint construction (cf. Damásio’s PhD thesis [Dam96]). We present the latter
definition here, which goes back on a construction introduced in [Gel89].

In order to implement the Coherence Principle in the alternating fixpoint construction
of paraconsistent well-founded models, a program transformation has to be introduced,
which has the effect that those objective literals of which the explicit complement is in-
cluded in M cannot be derived by the operation ΓΠ(M) presented in section 2.3. The
following definition of this transformation is similar to Definition 3.2 in [ADP95].

10The prefixed set notF is the set of all elements in F prefixed by not .
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Definition 2.7 (Semi-normal version of a program [ADP95]). The semi-normal version of
a program Π is the program Πs obtained by adding to the (possibly empty) body of each
rule with head H the default-negated explicit complement11 of H .

The operator used in the alternating fixpoint construction of the paraconsistent well-
founded model of a program Π represents a doubled version of the Γ-operator, so that the
operator computes the result of ΓΠΓΠs given a subset of HeΠ. Thus, the first application
of the Γ-operator is done w.r.t. the semi-normal version of the respective program to
ensure the Coherence Principle, while the operator applied to the resulting set of objective
literals uses the original version of the program. When it is clear w.r.t. which program
the operator ΓΠΓΠs is applied (or it is not important), we will just write ΓΓs. While the
Γ-operator itself is not monotonic, its doubled version ΓΓs is monotonic for arbitrary
sets of objective literals and Alferes et al. show that a fixpoint always exists [ADP95].
The authors provide the following constructive definition for the paraconsistent well-
founded model of a program, which we have adapted to our notation.

Definition 2.8 (Paraconsistent well-founed model [ADP95]). Let Π be an extended logic
program whose least fixpoint of the operator ΓΓs is T . Then, the paraconsistent well-
founded model of Π is WMFp(Π) = T ∪ not(HeΠs

\ ΓsT ).

Intuitively, the set T contains those program atoms which are known to be “true”,
while the program atoms in HeΠs

\ ΓsT are not known to be “true or undefined”. In the
original definition of the well-founded model it is ensured that an objective literal cannot
be known to be “true” and not known to be “true or undefined” at the same time by
imposing the condition that T must be a subset of ΓsT . Note that the notions “true” and
“undefined” do not refer to the truth values true and undefined of a truth valuation since
an objective literal might actually be “true” and not “true or undefined” simultaneously
in a paraconsistent well-founded model, which then corresponds to an evaluation to the
truth value inconsistent in the logic NINE . The least fixpoint of the operator ΓΓs can
be derived by means of the following transfinite sequence {Iα}, which is directly adopted
from Damásio [Dam96]:

I0 = ∅

Iα+1 = ΓΓs

Iδ =
⋃
{Iα | α < δ} for the limit ordinal δ

According to Damásio, there is a smallest number λ such that Iλ is the least fixpoint of
ΓΓs [Dam96]. This result also shows that a paraconsistent well-founded model always
exists and that it is unique. The author further notes that all objective literals that are ob-
tained after any application of the operator ΓΓs in the sequence are “true” in the resulting

11Thus, if H is of the form A, not¬A is added to the body of the respective rule, and if H is of the form
¬A, notA is added.
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paraconsistent well-founded model, and the objective literals that are not in the set ob-
tained after an application of the operator Γs are those which are “false” in the model.
Thus, two different sequences are implicitly present in the sequence {Iα}, one increasing
sequence maximizing the set of “true” objective literals, and one decreasing sequence
minimizing the set of “true or undefined” objective literals, according to Damásio. The
alternation between an increasing and a decreasing sequence gives the alternating fix-
point construction its name. The following example illustrates the computation of the
least fixpoint of the operator ΓΓs and the implementation of the Coherence Principle by
using the semi-stable version of a program in the operator Γs.

Example 2.9 (Coherent alternating fixpoint construction). Consider the following ground
program Π.

risk(food) ← not isLabelled(food).

isMon(food) ← risk(food).

¬isMon(food) ← certForw(food).

certForw(food) ←

Here, isMon and certForw are abbreviations for isMonitored and hasCertifiedForwarder, re-
spectively. The program expresses that a certain food is a risk if it cannot be proven that
it isLabelled. Moreover, isMon(food) is true if food is a risk, and isMon(food) is false if cert-

Forw(food) holds. As certForw(food) is contained as a fact in the program and food can be
proven to be a risk, it can also be proven that isMon(food) is true and false, simultaneously.
The semi-normal version of Π, denoted by Πs, is represented by the following ground
program, according to Definition 2.7:

risk(food) ← not isLabelled(food),not¬risk(food).

isMon(food) ← risk(food),not¬isMon(food).

¬isMon(food) ← certForw(food),not isMon(food).

certForw(food) ← not¬certForw(food).

According to Definition 2.8, the paraconsistent well-founded model of Π can be obtained
by computing the least fixpoint of the operator ΓΓs. For this, we start with the empty set
and apply the operator ΓΓs repeatedly until a fixpoint is reached. The sequence presented
above for the program Π is:

I0 = ∅

Γs(I0) = {risk(food), certForw(food), isMon(food),¬isMon(food)}

I1 = ΓΓs(I0) = {risk(food), certForw(food), isMon(food),¬isMon(food)}

Γs(I1) = {risk(food), certForw(food)}

I2 = ΓΓs(I1) = {risk(food), certForw(food), isMon(food),¬isMon(food)} = I1
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All rules of the positive version of Πs are contained in the GL-transformation ΠsI0 since
I0 is empty. The same is true for ΠΓs(I0) because the original version of the program is
used and isLabelled(food) is not in Γs(I0). Hence, Γs(I0) and ΓΓs(I0) are equal. However,
the second and the third rule are deleted from Πs in the GL-transformation ΠsI1 as both
isMon(food) and ¬isMon(food) could be derived in the previous iteration to be in the set T .
Consequently, the Coherence Principle intervenes and removes both from the set of “true
or undefined” objective literals. Since I2 equals I1, a fixpoint is reached after the second
application of the operator ΓΓs. By Definition 2.8, the paraconsistent well-founded model
of Π is

WFMp(Π) = {risk(food), certForw(food), isMon(food),¬isMon(food),

not¬risk(food),not¬certForw(food),not isMon(food),not¬isMon(food),

not isLabelled(food)}).

Note that the program atoms isMon(food) and ¬isMon(food) are both in the set T and
the set HeΠs

\ ΓsT simultaneously, which makes them inconsistent under the nine-valued
semantics employed by Damásio and Pereira. On the other side, the program atoms
risk(food) and certForw(food) are true, while the program atom isLabelled(food) is inter-
preted to be default false. Further, note that the set WFMp(Π) satisfies Definition 2.6. ♦

Enforcing the Coherence Principle has the convenient side-effect that Contradiction
Support Detection is already built into the alternating fixpoint construction. This prop-
erty is the topic of the next section.

2.3.3 Contradiction Support Detection

As has already been hinted in the introduction, it is useful and might even be crucial for
some applications that a paraconsistent semantics not only provides information about
which facts are inconsistent, but also about those which can only be derived by involving
inconsistent knowledge. In this way, one knows when to be “suspicious” about a piece
of information because an error might have occurred. Hence, approaches applying so-
called suspicious reasoning are closer to the idea of belief revision as inconsistencies are
rather regarded as errors, and detecting “suspicious” information can be viewed as a
form of debugging. Suspicious reasoning can be achieved by implementing some way of
propagating inconsistencies into a logic, which results in what Damásio and Pereira call
Contradiction Support Detection [DP97]. The authors give a general formal definition of de-
pendence on contradiction in Definition 8, which is independent of the specific semantics
used. We adapt it to our notation here.

Definition 2.10 (Dependence on contradiction [DP97]). Let Π be an extended logic pro-
gram and C = {c,¬c | c,¬c ∈ Π}, the set of the contradictory facts in Π. We say that any
objective literal L depends on a contradiction w.r.t. a semantics SEM if and only if there is
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a set S ⊆ C such that

SEM(Π) ∩ {L} 6= SEM(Π− S) ∩ {L}.

This means, an objective literal depends on a contradiction if and only if its truth
value changes after removing only contradictory facts. Note that the definition is limited
to contradictory facts, so that contradictory atoms which are derivable, but not contained
as facts in the program, are not considered. Damásio and Pereira additionally state that
the notion of dependence on contradiction can be made stronger by referring to the para-
consistent well-founded model of a program. In this case, an objective literal L is defined
to depend on contradiction iff L and notL are both contained in the model [DP97].

Damásio and Pereira mention that in most work conducted on paraconsistent LP se-
mantics the need for being able to detect support on contradictions has been “overlooked
or not properly captured” [DP97]. Two approaches to paraconsistent LP semantics that
integrate suspicious reasoning into their framework are those based respectively on the
SMS [SI95] and the WFS [Sak92] which have been discussed in section 2.3.1. However,
Damásio and Pereira remark that both approaches suppose that the truth of a default-
negated program atom can never depend on a contradiction, which is not the case ac-
cording to the authors and hence, makes their approach to Contradiction Support De-
tection incomplete [DP97]. They illustrate this issue by means of the following example.

Example 2.11 (Support on contradiction through default negation [DP97]). Consider the
following extended logic program.

a ← notb.

b ← notc,not¬c.

c ←

¬c ←

In this program, the program atom a clearly depends on a contradiction because it is
not derivable anymore after removing one of the contradictory facts c and ¬c from the
program. It is desirable that a paraconsistent semantics detects this dependence on con-
tradiction. This is not the case for the paraconsistent SMS of Sakama and Inoue [SI95] and
the paraconsistent WFS of Sakama [Sak92] because they do not propagate inconsistencies
over default negation. ♦

In WFSXp, Contradiction Support Detection is already built-in due to the enforce-
ment of the Coherence Principle. For example, suppose that we add the program-rule

resolvedRisk(food) ← isMon(food).

to the contradictory program in Example 2.9. Then, the program atom resolvedRisk(food)
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is not part of the set Γs(I1) since isMon(food) is not derivable, i.e. it is also not in the set
of “true or undefined” objective literals. However, simultaneously it is derivable by the
operator ΓΓs to be in the set of “true” objective literals since isMon(food) is contained in
it, too. Consequently, the paraconsistent model of the program is

WFMp(Π) = {risk(food), certForw(food), isMon(food),¬isMon(food),

resolvedRisk(food),not¬risk(food),not¬certForw(food),not isMon(food),

notresolvedRisk(food),not¬resolvedRisk(food),not¬isMon(food),

not isLabelled(food)})

in this case and resolvedRisk(food) is evaluated to true with contradictory belief in the cor-
responding nine-valued model [DP95].

Though WFSXp is capable of handling situations as described in Example 2.11, it
fails to detect dependence on contradiction when the program atom that should be inter-
preted to be true with contradictory belief occurs also in a rule with undefined body [DP97].
Damásio and Pereira provide the following example.

Example 2.12 (Failure to detect support on contradiction [DP97]). Consider the following
extended logic program Π.

a ← notb.

a ← c.

b ← notb.

c ←

¬c ←

In this program, the truth of a depends on the contradictory program atom c. However,
nota is not contained inWFMp(Π) because b is undefined due to the third rule and hence,
the fact a is contained in the GL-transformation used by the operator Γs because of the
first rule. ♦

In contrast to WFSXp, this example is handled correctly by the approach of Sakama
and Inoue [SI95] and the approach by Sakama [Sak92]. Damásio and Pereira show that
a stronger form of Contradiction Support Detection can be obtained by using a transfor-
mation of the program in each step of the alternating fixpoint construction. For models
computed by the resulting algorithm, Contradiction Support Detection is complete for
arbitrary extended logic programs. In addition, Damásio and Pereira also demonstrate
how the propagation of contradictions can be blocked in certain cases where the prop-
agation is not desirable [DP97]. In our six-valued semantics, we implement the weaker
form of Contradiction Support Detection and discuss an extension in the section about
future work.
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2.4 Hybrid Knowledge Bases

Besides hybrid approaches that couple rule and ontology formalisms within a single sys-
tem, according to Knorr et al. [KAH11], a number of approaches exist that either enrich
a DL with constructs for rules (e.g. the Semantic Web Rules Language (SWRL) [HP04]),
or that investigate fragments of first-order logic which are suitable for expressing rules
(e.g. Description Logic Programs (DLP) [GHVD03] and Horn-SHIQ [HMS05]). The lat-
ter two approaches have in common that they are based on first-order logic and thus,
non-monotonic reasoning is not enabled by them. However, they have the advantage
that standard DL-reasoners often can be applied straightforwardly to these frameworks
[KAH11]. An overview over several approaches that combine rules and ontologies can
be found in the papers by Hitzler and Parsia [HP09] and by Eiter et al. [EIKP08].

Figure 2.3: Illustration of the loose coupling, thight semantic integration and full integra-
tion approach to hybrid knowledge bases (adopted from Eiter et al. [EIKP08]).

As we have discussed in the introduction, a real integration of reasoning with DLs un-
der the OWA and with LPs under the CWA is of high interest for many applications since
it results in a formalism that is more expressive than each of the two formalisms alone.
However, as Eiter et al. note, the combination of these two decidable fragments of first-
order logic is highly non-trivial since a naive combination of a simple DL with a positive
normal logic program is already undecidable [EIKP08]. Hence, a new semantic frame-
work has to be developed by hybrid approaches that encompasses the expressiveness of
DLs and LPs equally effective. Recently, a multitude of approaches has been developed
in the area of hybrid knowledge bases that tackle the challenge of coupling DLs and LPs
within a single framework, such as description logic programs (or dl-programs) [EILST08],
DL+log [Ros06], Open Answer Set Programs [HNV05] and Hybrid MKNF knowledge bases
[MR10].

According to Eiter et al., approaches to hybrid knowledge bases can be grouped into
three categories: loose coupling, tight semantic integration, and full integration approaches
[EIKP08]. In the loose coupling approach, the DL- and the LP-component are interpreted
under separate semantics dedicated to the respective formalism and an interface mech-
anism is implemented that allows exchange of information between the components in
either one or both directions. In case of the tight semantic integration approach, the
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knowledge base is interpreted by an integrated model that is composed of two parts shar-
ing the same domain together with a definition of agreement between them, according to
Eiter et al. Finally, the components of hybrid knowledge bases of the full integration ap-
proach share a common vocabulary and are interpreted within a single semantic frame-
work [EIKP08]. The three degrees of tightness of hybrid knowledge base formalisms are
illustrated in Figure 2.3, which is presented in a nearly identical form in [EIKP08]. The
figure depicts the Resource Description Framework Schema (RDFS) as the basis of hybrid
knowledge bases, providing a unified grammar for describing diverse Semantic Web for-
malisms. It shows further that only the full integration approach provides a unifying logic
for rules and ontologies, which is also part of the conceived architecture of the Semantic
Web, as illustrated in Figure 2.4.

Figure 2.4: The Semantic Web Stack (like shown in [Wik14]).

Dl-programs, developed and investigated by Eiter et al., represent a loose coupling
approach that allows for non-monotonic reasoning under either the SMS [EILST08] or
the WFS [EILS11], where a DL component can be queried from within the program com-
ponent. Program-atoms that pose a query to the ontology are termed dl-atoms by Eiter
et al. Here, the DL component is viewed as an external oracle, so that it is interpeted by
the usual DL-semantics and available reasoners can be used to answer queries from the
LP- to the DL-component. On the other hand, in the version based on the SMS, an ASP
solver can be used to compute the semantics of the program. In addition, dl-atoms can
modify the ABox of the respective ontology by adding positive or negative assertions
resulting from the program, so that the interaction between the components works in
both directions [EIKP08]. The authors show that every positive dl-program has a least
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Herbrand model, where the Herbrand base in this case consists of all program atoms instan-
tiated with constants from the program component and all known individuals from the
DL-component [EILST08]. Moreover, the dlvhex system [EIST06] provides an implemen-
tation of the approach, which, according to Eiter et al., has been used already for a series
of applications, such as ontology merging, bio-ontologies, web querying [EIKP08].

The hybrid knowledge base formalism DL+log of Rosati [Ros06], which integrates
DLs with disjunctive Datalog, can be classified as a tight semantic integration approach
[EIKP08]. Like dl-programs, the semantics of DL+log knowledge bases is grounded in
the SMS. Rule predicates and classical predicates are still distinguished in DL+log, but the
two components interact in terms of their semantics. For computing the semantics of a
DL+log knowledge base, the program component is reduced w.r.t. a given interpretation
of the first-order predicates occurring in them in a first step, and afterwards the SMS
is used for obtaining the stable models of the resulting program not containing classical
predicates anymore [EIKP08]. In order to ensure decidability of the approach, the authors
define a weak safety condition for program rules, which is less restrictive than the DL-safety
condition usually imposed on hybrid MKNF knowledge bases (and thus, less restrictive
than the condition we will present for our approach).

Hybrid MKNF knowledge bases, which we will study in depth in the remainder of this
thesis, are a representative of the last category constituting a full integration approach.
They have been introduced first by Motik and Rosati [MR06] and have already been
extended in several ways in subsequent works (e.g. in [HHL14; HLH11; IKL13; KAH11;
MR10; SLS11]).

2.4.1 Hybrid MKNF Knowledge Bases

Hybrid MKNF knowledge bases are formalized in the logic of Minimal Knowledge and
Negation as Failure (MKNF), which represent a formalism for non-monotonic reasoning
and have been introduced by Lifschitz in 1991 [Lif91]. As Lifschitz shows, the logic of
MKNF is closely related to other non-monotonic formalisms such as Reiter’s Default Logic
[Rei80] and Circumscription [McC86]. It is an extension of first-order logic with equality that
additionally provides two modal operators (also called epistemic operators by Lifschitz),
a modal K- and a modal not-operator. These modal operators are able to introspect the
knowledge base and according to Eiter et al. [EIKP08], a formula Kφ has the intuitive
meaning that φ is necessarily known to hold, while notφ means that φ is not known to
hold. Both operators are interpreted in a Kripke structure where every world is accessible
from any other world (corresponding to the modal logic S5) [MR10]. We begin now by
defining the syntax of general MKNF formulas here and present a restricted version for
hybrid MKNF knowledge bases afterwards, before introducing a two- and a three-valued
MKNF semantics in the next section. In what follows, we mainly rely on the definitions
provided by Motik and Rosati [MR07; MR10], and by Knorr et al. [KAH08; KAH11].

The syntax of MKNF formulas is defined over a first-order signature Σ = (Σc,Σf ,Σp),
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where the set Σc contains all constant symbols, the set Σf contains the function symbols
of the logic and the set Σp contains the predicate symbols including ≈, the binary equal-
ity predicate. The symbols >, ⊥12 and a first-order atom P (t1, . . . , tn), given a predicate
symbol P and first-order terms ti, are atomic MKNF formulas. Let ϕ, ϕ1 and ϕ2 be MKNF
formulas. Then ¬ϕ, ∃x : ϕ, ϕ1 ∧ ϕ2, K ϕ and not ϕ are MKNF formulas, too. As in
first-order logic, the formulas ¬(¬ϕ1 ∧ ¬ϕ2), ¬ϕ1 ∨ ϕ2 and ¬(∃x : ¬ϕ) are abbreviated by
ϕ1 ∨ ϕ2, ϕ1 ⊃ ϕ2, and ∀x : ϕ, respectively [KAH11]. In the following, ϕ[t1/x1, . . . , tn/xn]

stands for the formula that results from substituting the free variables xi in ϕ by the terms
ti [KAH11]. A formula of the form Kϕ is called a modal K-atom and notϕ is called a modal
not-atom. Modal K-atoms and not-atoms are modal atoms, according to Motik and Rosati
[MR10].

Hybrid MKNF knowledge bases are formalized by MKNF formulas that are constrained
to a specific form. According to Knorr et al., they consist of a program component P rep-
resented by a finite set of rules containing modal K- and not-atoms, and an ontology com-
ponent O formalized in some DL [KAH11]. Therefore, hybrid MKNF knowledge bases
are implicitly parameterized by the respective DL language that is used to formalize the
ontology component [MR10]. Motik and Rosati state that every DL that fulfills the follow-
ing requirements can be utilized to express the ontology component of a hybrid MKNF
knowledge base [MR07]:

1. Every ontology O expressed in the DL can be translated into a formula π(O) of
function-free first-order logic with equality,

2. the DL supports ABox-assertions of the form P (a1, . . . , an) where P is a predicate
and all ai are constants of the DL, and

3. satisfiability checking and instance checking are decidable in the DL.

The subsequent definition of MKNF rules and hybrid MKNF knowledge bases is
adapted from [KAH08]. Since we do not consider LPs where disjunctions are allowed
in the head of a rule in our approach, we only provide the definition for non-disjunctive
MKNF rules here. However, as Knorr et al. note, this can be partly compensated by the
fact that the disjunction operator can be used in the ontology component (in case this is
allowed by the respective DL used to formalize the ontology) [KAH11].

Definition 2.13 (Hybrid MKNF knowledge base [KAH08]). Let O be a DL-ontology. A
function-free first-order atom P (t1, . . . , tn) over Σ such that P is≈ or occurs inO is called
a DL-atom; all other atoms are called non-DL-atoms. An MKNF rule r has the following
form where H , Ai, and Bi are function-free first-order atoms:

12Usually, the formulas> and⊥ are equated with the formulas a∨¬a and a∧¬a, respectively. This is the
case for the two- and three-valued MKNF semantics introduced in section 2.4.2, so that they are not explicitly
treated in the model-theoretic definition of the respective semantics. For our purpose, we introduce > and
⊥ as atomic MKNF formulas and explicitly assign a meaning to them in our six-valued semantics. This is
necessary since e.g. the formula a ∧ ¬a can be modeled by a paraconsistent interpretation that assigns the
truth value inconsistent to the atom a.
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KH ← KA1, . . . ,KAn,notB1, . . . ,notBm.

KH is called the rule head, and the sets {KAi} and {notBj} are called the positive body
and the negative body, respectively. A rule r is positive ifm = 0, and r is a fact if n = m = 0.
A program P is a finite set of MKNF rules. A hybrid MKNF knowledge base (or hybrid MKNF
KB) K is a pair (O,P).

To make LPs containing variables decidable, usually a safeness condition is imposed,
which demands that all variables in a rule must occur in the positive body of the rule
[Llo87]. However, the mentioned condition is not sufficient in the case of hybrid MKNF
knowledge bases for the purpose of ensuring domain independence, according to Motik and
Rosati [MR07]. As a result, a stronger safety condition has to be imposed that restricts
the use of rules to those individuals that are explicitly introduced in the knowledge base.
This condition has been introduced by Motik et al. [MSS05] and is expressed formally by
means of the following definition from [MR07].

Definition 2.14 (DL-safety [MR07]). An MKNF rule r is DL-safe if every variable in r

occurs in at least one non-DL-atom KB occurring in the body of r. A hybrid MKNF
knowledge base K is DL-safe if all its rules are DL-safe.

The hybrid knowledge base we have introduced in Example 1.1 is DL-safe since the
only variable x appearing in each program-rule also occurs in the non-DL-atom good(x)

in all of the rules. According to Motik and Rosati, DL-safety can always be achieved by
introducing a new predicate in the body of all rules which are not DL-safe that binds
the variables occurring in the rule to all individuals that appear in the knowledge base
[MR10]. Hence, we presuppose DL-safety when talking about hybrid MKNF knowledge
bases in the remainder of this thesis.

Note that the syntax for hybrid MKNF knowledge bases that we have just introduced
differs from the syntax of MKNF formulas. For this reason, it is necessary to define a
translation of hybrid MKNF knowledge bases into their equivalent version expressed in
first-order logic with equality and the two modal operators K and not. Given an ontology
O expressed in some DL that satisfies the previously stated requirements, we denote
the corresponding first-order translation (as defined e.g. in [BCMNP03]) by π(O). The
translation for hybrid MKNF knowledge bases is presented in the following definition,
which represents an adaptation of the definitions provided in [KAH11; MR07].

Definition 2.15 (Translation of a hybrid MKNF knowledge base). Let K = (O,P) be a
hybrid MKNF knowledge base. We extend π to MKNF rules r, P , and K as follows,
where ~x is the vector of the free variables of r.

π(r) = ∀~x : (KA1 ∧ . . . ∧KAn ∧ notB1 ∧ . . . ∧ notBm ⊃ KH); if r is not a fact.

π(r) = > ⊃ KH ; if r is a fact.
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π(P) =
∧
r∈P

π(r) π(K) = π(O) ∧ π(P)

Note that r cannot contain any variables if it is a fact due to the DL-safety condition
that we impose on hybrid MKNF knowledge bases. In the previous approaches that use a
similar translation of hybrid MKNF knowledge bases into MKNF formulas (e.g. [KAH11;
MR10]), the ontology component is also prefixed by the modal operator K, such that
π(K) = Kπ(O) ∧ π(P). However, we leave the operator out in our definition. In terms
of the semantics assigned to hybrid MKNF knowledge bases by Motik and Rosati, and
Knorr et al., both definitions are equivalent as a consequence of Proposition 2 in [KAH11].
Like Knorr et al. [KAH11], we will refer to the translation of a knowledge base π(K) just
by K whenever there is no ambiguity.

Due to DL-safety, it is always possible to ground a hybrid MKNF knowledge base,
such that its two- and three-valued models (which we will introduce in section 2.4.2) co-
incide with the models of its ground version. The grounding of a hybrid MKNF knowl-
edge base is defined as follows, according to Knorr et al.

Definition 2.16 (Ground hybrid MKNF knowledge base [KAH11]). Let K = (O,P) be
a hybrid MKNF knowledge base. The ground instantiation of K is the knowledge base
KG = (O,PG) where PG is obtained from P by replacing each rule r of P with a set of
rules substituting each variable in r with constants from K in all possible ways.

2.4.2 Two- and Three-Valued Hybrid MKNF Semantics

So far, two major approaches that assign a semantics to hybrid MKNF knowledge bases
have been developed in the literature. The first approach has been published by Motik
and Rosati when they introduced hybrid MKNF knowledge in [MR07], and it has been
further elaborated in [MR10]. Their semantics employs two truth values and it is closely
related to the SMS. Moreover, it has already been extended in order to allow for para-
consistent reasoning by Huang et al. [HLH11]. The second approach works with three
truth values, is founded in the WFS for LPs and has been introduced by Knorr et al. in
[KAH08]. A more extensive treatment of the three-valued semantics for hybrid MKNF
knowledge bases has been published in [KAH11]. Corresponding to their respective base
formalism, the latter approach is superior in terms of computational efficiency, while the
former approach provides a stronger semantics (cf. the discussion w.r.t. the SMS and the
WFS in Section 2.3).

Both, the two-valued and the three-valued MKNF semantics take first-order interpre-
tations as basic constituents for assigning a meaning to hybrid MKNF knowledge bases.
They are defined in the usual way as follows. A first-order interpretation I over a signa-
ture Σ = (Σc,Σf ,Σp) and a universe ∆ assigns

• an element of the universe aI ∈ ∆ to every constant symbol a in Σc,

• a function f I : ∆n → ∆ to every n-ary function symbol f in Σf , and
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• a relation P I ⊆ ∆n to every n-ary predicate symbol P in Σp [MR10].

A variable-free term t = f(s1, . . . , sn) is interpreted recursively s.t. tI = f I(sI1, . . . , s
I
n).

Additionally, Motik and Rosati point out that two different issues arise regarding the hy-
brid MKNF semantics when arbitrary universes are considered as in the original defini-
tion of the logic of MKNF by Lifschitz [Lif91] (for a discussion of these problems and con-
crete examples refer to [KAH11; MR10]). To avoid these problems, they impose the Stan-
dard Name Assumption on first-order interpretations applied in their framework. Here, we
recite the definition of the Standard Name Assumption as presented in Definition 3.1 in
[MR10] by Motik and Rosati.

Definition 2.17 (Standard Name Assumption [MR10]). A first-order interpretation I over
a signature Σ employs the Standard Name Assumption if

(1) the universe ∆ of I contains all constants of Σ and a countably infinite number of
additional constants called parameters,

(2) tI = t for each ground term t constructed using the function symbols from Σ and
the constants from ∆, and

(3) the predicate ≈ is interpreted in I as a congruence relation – that is, ≈ is reflexive,
symmetric, transitive, and allows for the replacement of equals by equals [Fit96].

In Proposition 3.2 of [MR10], the authors prove that satisfiability of a first-order for-
mula w.r.t. a general first-order model and satisfiability w.r.t. a model that adheres to the
Standard Name Assumption are equivalent. As a result, we assume in this thesis that the
Standard Name Assumption is employed when talking about first-order interpretations.
Moreover, in the following we suppose that a signature Σ and a universe ∆ are implicitly
given in this case as well.

Additionally, requiring DL-safety alone is not enough to ensure decidability of hy-
brid MKNF knowledge bases. Following the approaches in [KAH11; MR10], we con-
strain ourselves to function-free first-order logic, not allowing function symbols in hybrid
MKNF knowledge bases, since only then decidability is guaranteed.

In order to provide a possible world structure for interpreting the modal K- and the
modal not-operator respectively, Motik and Rosati define so-called MKNF structures,
which are used to evaluate closed MKNF formulas in the two-valued semantics [MR10].
They are defined in the following manner.

Definition 2.18 (MKNF structure [MR10]). An MKNF structure is a triple (I,M,N), where
I is a first-order interpretation, and M and N are non-empty sets of first-order interpre-
tations.

The authors define satisfaction of a closed MKNF formula by an MKNF structure
recursively w.r.t. the structure of the formula in the following way [MR07].
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Definition 2.19 (Satisfaction w.r.t. an MKNF structure [MR07]). Let (I,M,N) be an MKNF
structure and ϕ, ϕ1 and ϕ2 MKNF formulas. Then:

(I,M,N) |= P (t1, . . . , tn) iff (tI1, . . . , t
I
n) ∈ P I

(I,M,N) |= ¬ϕ iff (I,M,N) 6|= ϕ

(I,M,N) |= ϕ1 ∧ ϕ2 iff (I,M,N) |= ϕ1 and (I,M,N) |= ϕ2

(I,M,N) |= ∃x : ϕ iff (I,M,N) |= ϕ[α/x] for some α ∈ ∆

(I,M,N) |= Kϕ iff (J,M,N) |= ϕ for all J ∈M
(I,M,N) |= notϕ iff (J,M,N) 6|= ϕ for some J ∈ N

Note that closed MKNF formulas that do not contain any modal operator are solely
interpreted w.r.t. the first component of an MKNF structure. The set M contains all pos-
sible worlds, represented by first-order interpretations, that are used for the evaluation
of modal K-formulas, and N contains the possible worlds w.r.t. which the modal not-
operator is evaluated. The interpretation of the other (first-order) operators is straight-
forward. It is necessary to interpret each kind of modal operator w.r.t. a different set of
first-order interpretations in order to achieve the non-monotonic behavior of the formal-
ism. This becomes obvious when considering the following definition of MKNF models,
which is based on the definitions provided by Motik and Rosati in [MR07] and [MR10].

Definition 2.20 (MKNF model [MR07; MR10]). An MKNF interpretationM is a non-empty
set of first-order interpretations. Any MKNF interpretation M is an MKNF model for a
given closed MKNF formula ϕ if and only if

(1) (I,M,M) |= ϕ for all I ∈M and

(2) (I ′,M ′,M) 6|= ϕ for each M ⊂M ′ and some I ′ ∈M ′.

According to Definition 2.20, the evaluation of modal not-atoms is first fixed w.r.t.
some MKNF interpretation such that the MKNF structure (I,M,M) satisfies the formula
for all I in M , and then it is checked whether the set M can be increased to a set M ′

such that (I ′,M ′,M) still satisfies the formula for all I ′ in M ′. If M is already maximal
in the described sense, M is an MKNF model for the formula. In this way, the previous
definition imposes a minimality condition on MKNF models because the larger the set
M is, the smaller is the set of formulas which are satisfied by (I,M,M) for all I in M .
Note that this is very similar to the definition of stable models presented in section 2.3
where the evaluation of default negated program atoms is fixed w.r.t. an interpretation
and afterwards it is checked whether the interpretation is a minimal model of the result-
ing positive program. As in the case of the SMS, in general, there can be zero, one or
several MKNF models for an MKNF formula.

The three-valued MKNF semantics published by Knorr et al. extend the semantics of
Motik and Rosati by introducing the additional truth value undefined, which is assigned
whenever there is no evidence for a modal K-atom being either true or false, according to
Knorr et al. [KAH11]. In order to accommodate for the new truth value in the evaluation
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of MKNF formulas, Knorr et al. extend the definition of MKNF structures to so-called
three-valued MKNF structures. We recall their definition from [KAH11] here.

Definition 2.21 (Three-valued MKNF structure [KAH11]). A three-valued MKNF structure
(I,M,N ) consists of a first-order interpretation I and two pairsM = 〈M,M1〉 and N =

〈N,N1〉 of sets of first-order interpretations where M1 ⊆ M and N1 ⊆ N . An MKNF
structure is called total ifM = 〈M,M〉 and N = 〈N,N〉.

In contrast to MKNF structures, three-valued MKNF structures contain two pairs of
sets of first-order interpretations instead of just two sets of first-order interpretations as
possible world structures for the two modal operators. While those first-order atoms
which are true in first-order interpretations in the first component of each pair represent
those atoms which are known to be true in the knowledge base, those which are true in
all interpretations in the second component are known to be true or undefined. The subset
conditions between the sets M and M1, as well as between N and N1, are imposed since
no first-order atom should be allowed to be known to be true and known to be neither
true nor undefined at the same time as paraconsistency is not considered in the approach
by Knorr et al. This role of the setsM andN is reflected in the following definition of the
truth-evaluation of a closed MKNF formula in a three-valued MKNF structure, which is
also identical to the definition in [KAH11].

Definition 2.22 (Evaluation in a three-valued MKNF structure [KAH11]). Let (I,M,N )

be a three-valued MKNF structure and {t,u, f} the set of truth values with the order
f < u < t, where the operator max (resp. min) chooses the greatest (resp. least) element
with respect to this order. We define:

• (I,M,N )(P (t1, . . . , tn)) =

{
t iff (tI1, . . . , t

I
n) ∈ P I

f iff (tI1, . . . , t
I
n) 6∈ P I

• (I,M,N )(¬ϕ) =


t iff (I,M,N )(ϕ) = f

u iff (I,M,N )(ϕ) = u

f iff (I,M,N )(ϕ) = t

• (I,M,N )(ϕ1 ∧ ϕ2) = min{(I,M,N )(ϕ1), (I,M,N )(ϕ2)}

• (I,M,N )(ϕ1 ⊃ ϕ2) = t iff (I,M,N )(ϕ2) ≥ (I,M,N )(ϕ1) and f otherwise

• (I,M,N )(∃x : ϕ) = max{(I,M,N )(ϕ[α/x]) | α ∈ ∆}

• (I,M,N )(Kϕ) =


t iff (J, 〈M,M1〉,N )(ϕ) = t for all J ∈M
f iff (J, 〈M,M1〉,N )(ϕ) = f for some J ∈M1

u otherwise
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• (I,M,N )(notϕ) =


t iff (J,M, 〈N,N1〉)(ϕ) = f for some J ∈ N1

f iff (J,M, 〈N,N1〉)(ϕ) = t for all J ∈ N
u otherwise

Knorr et al. define their semantics such that MKNF formulas not containing any
modal operators still obtain a two-valued interpretation. In this way, the authors are able
to show the faithfulness of their approach w.r.t. classical ontology semantics whenever a
hybrid MKNF knowledge base is given in which the program component is empty. Like
in the two-valued approach by Motik and Rosati, the two modal operators K and not
are defined symmetrically such that ¬K is equivalent to not whenever both operators are
interpreted w.r.t. the same set of possible worlds [KAH11]. Due to the new truth value
u designating undefined, knowledge is minimized in the three-valued semantics w.r.t. to
the order f < u < t, i.e. a modal K-formula is false if it is false in one possible world, it
is undefined if it is not false in any world but undefined in at least one world, and it is true
if it is true in all worlds. On the basis of the previously presented evaluation function,
Knorr et al. define three-valued MKNF models similar to the definition of MKNF models
used by Motik and Rosati. However, knowledge minimization now is performed w.r.t. to
the extended order just mentioned. In the following, we will refer to the order used for
minimizing two- three- and six-valued MKNF models by the term knowledge minimization
order (or minimization order). This notion will play an important role in the discussion of
our own approach in the next chapter. The following definition is based on the corre-
sponding definitions provided by the authors in [KAH08] and [KAH11].

Definition 2.23 (Three-valued MKNF model [KAH08; KAH11]). An MKNF interpretation
pair (M,N) consists of two MKNF interpretations M , N with ∅ ⊂ N ⊆ M . Any MKNF
interpretation pair (M,N) is a three-valued MKNF model for a given closed MKNF formula
ϕ if and only if

(1) (I, 〈M,N〉, 〈M,N〉)(ϕ) = t for all I ∈M and

(2) (I ′, 〈M ′, N ′〉, 〈M,N〉)(ϕ) 6= t for some I ′ ∈M ′ and each interpretation pair (M ′, N ′)

with M ⊆M ′ and N ⊆ N ′ where at least one of the inclusions is proper.

Although there are possibly several three-valued MKNF models of an MKNF for-
mula like in the semantics of Motik and Rosati, at least one three-valued MKNF model
always exists and moreover, it is always possible to single out one specific model, the well-
founded MKNF model, in which as much knowledge as possible is left undefined. We will
discuss this skeptical form of reasoning in more detail when presenting the counterpart
of a well-founded model in our approach. Knorr et al. also show that every total three-
valued MKNF model corresponds exactly to one two-valued MKNF model [KAH11]. To
conclude this section, we illustrate the difference between the two-valued and the three-
valued MKNF semantics as well as their connection in the following example, which is
inspired by [KAH11].
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Example 2.24 (Two- and Three-valued MKNF semantics). Consider the following ground
hybrid MKNF knowledge base KG containing only two MKNF rules.

Krisk(food) ← notsafe(food).

Ksafe(food) ← notrisk(food).

The knowledge base expresses that a certain food is either a risk or it is safe, but not both.
We abbreviate food by f, risk by r, and safe by s.

Regarding the two-valued MKNF semantics, the MKNF interpretation M = {{r(f)}}
fulfills the first condition of Definition 2.20. Yet, this MKNF interpretation is not maximal
since the MKNF interpretationM ′ = {{r(f)}, {r(f), s(f)}}, which is a superset ofM , violates
condition (2) of that definition (where modal not-atoms are still interpreted w.r.t. M ).
However, M ′ satisfies both conditions of Definition 2.20 and hence, it is a two-valued
MKNF model of KG. The modal K-atom Kr(f) is true in M ′, while Ks(f) is false. The only
other MKNF model of KG is the two-valued MKNF interpretation {{s(f)}, {r(f), s(f)}}, in
which Ks(f) is true, and Kr(f) is false.

W.r.t. the three-valued MKNF semantics, there are two total three-valued MKNF mod-
els of KG that correspond to the two-valued MKNF models, respectively. They are rep-
resented by the MKNF interpretation pairs ({{r(f)}, {r(f), s(f)}}, {{r(f)}, {r(f), s(f)}}) and
({{s(f)}, {r(f), s(f)}}, {{s(f)}, {r(f), s(f)}}), and evaluate the K-atoms K r(f) and Ks(f) to the
same truth values as the two-valued MKNF models. However, KG provides no ev-
idence for either K r(f) or K s(f) being true. Now, if both modal K-atoms are evalu-
ated to undefined by an MKNF interpretation pair, then, after fixing the evaluation of
the modal not-atoms in condition (2) of Definition 2.23, each rule is satisfied in case
the head of the rule is evaluated to true or undefined according to Definition 2.22. In-
terpreting both with undefined results in a minimal interpretation w.r.t. the order f <

u < t, such that the MKNF interpretation pair interpreting both K-atoms with unde-
fined, results in a third three-valued MKNF model of KG. It is represented by the pair
({∅, {r(f)}, {s(f)}, {r(f), s(f)}}, {{r(f), s(f)}}). Note that for example the MKNF interpreta-
tion pair ({{r(f)}, {s(f)}, {r(f), s(f)}}, {{r(f), s(f)}}) is not a three-valued MKNF model ofKG.
Though it would result in the same truth evaluation, also assigning the truth value unde-
fined to Kr(f) and Ks(f), the first component of the interpretation pair is not maximal. The
third three-valued MKNF model assumes the least number of K-atoms to be either true or
false, and it is in fact the unique well-founded MKNF model ofKG under the three-valued
MKNF semantics. ♦
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3
Model-Theoretic Characterization

After having discussed the diverse research areas which our approach is connected to,
and having introduced several notions which are central for the work developed in this
thesis, we are ready to present our main contributions. In this chapter, we first present the
details of the model-based definition of the paraconsistent well-founded hybrid MKNF
semantics, before turning to the procedural definition in Chapter 4. Moreover, we pro-
vide the first two faithfulness results respectively w.r.t. the three-valued MKNF semantics
of Knorr et al. [KAH11], and the paraconsistent ontology semantics of ALC4 as defined
by Maier et al. [MMH13]. We will also illustrate the functional principles and the moti-
vations behind the definitions that are presented by a number of intuitive examples.

The paraconsistent semantics developed in this chapter is based on six truth values,
where the three-valued MKNF semantics, which is the basis of our approach, is extended
by three additional truth values. Alternatively, the six truth values also constitute an
extension of the four truth values of Belnap’s famous logic FOUR [BJ77a]. We begin by
justifying why six truth values are needed as the foundation for our semantics.

3.1 The Need for Six Truth Values

The first question that has to be asked when developing a many-valued semantics is how
many truth values are exactly needed. On the one hand, it has to be possible to capture
all information that is required about the “state” of a formula. On the other hand, the
introduction of unintuitive or meaningless truth values should be avoided to keep the
logic as simple as possible, following the principle of Ockham’s razor. For instance, if a
user queries a knowledge base for some piece of knowledge and gets the answer that it
has the truth value fcb (which is part of the nine-valued bilattice shown in Figure 2.2 and
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stands for false with contradictory belief ), it is not easy for the user to understand what this
implies.

Since our logic should be able to deal with contradictory information, at least one
new truth value inconsistent, designated by b, has to be introduced in addition to the
truth values already present in the approach that we extend [KAH11], namely true, false
and undefined. Otherwise, it would not be possible to assign a model to contradictory
formulas such that the Principle of Explosion would be implied and inconsistent hybrid
MKNF knowledge bases would not be meaningful anymore. In this case, we obtain Bel-
nap’s four truth values [BJ77a].

When only taking formulas not containing modal atoms into account, i.e. the first-
order formula expressing the ontology component, Knorr et al. only apply the truth val-
ues true and false in order to maintain the classical DL-semantics [KAH11]. In this case,
we also want to introduce just as many truth values as needed to obtain the desired be-
havior. Because the ontology component should be allowed to be inconsistent alone in
our framework, i.e. without any interaction with the program component, at least the
third truth value b also has to be introduced for interpreting MKNF formulas not con-
taining any modal operators. However, as Maier et al. demonstrate [MMH13], the truth
value u is not required to provide a paraconsistent semantics for the ontology compo-
nent, and by omitting it even a stronger semantics can be attained.

Now, Knorr et al. identify two different kinds of inconsistencies in their semantics,
besides the case where some piece of information is considered true and false simultane-
ously it can also be the case that it is undefined and false at the same time [KAH11], due
to the intervention of the Coherence Principle. The latter situation might occur when
the body of some MKNF rule is interpreted to be undefined, but the head of the rule is
derivable to be false from the ontology component. Because of the Coherence Principle,
the modal K-atom in the head of the rule should be false in this case. However, this in-
terpretation does not satisfy the rule in the approach by Knorr et al. as a result of the
definition of the implication operator used in their semantics [KAH11], which maps a
rule with undefined body and false head to false (cf. Definition 2.22). This kind of incon-
sistency could be dealt with by simply mapping an implication to a designated truth
value in the mentioned case. However, for technical reasons, this is not possible in the
context of MKNF where knowledge is minimized because undefinedness would always
be minimized to falsity. This issue will be discussed in more detail when we present the
interpretation function of the implication operator that we apply in our semantics. As a
result, we solve the problem of dealing with the second kind of inconsistency by intro-
ducing the further truth value classically false, denoted by cf , which is assigned in these
cases. Although the introduction of the truth value cf is mainly technically motivated, it
has the desirable side-effect that we are able to distinguish between K-atoms which are
derivable to be classically false by means of the ontology component, and those which are
false because their positive version is not derivable. Accordingly, our truth value classi-
cally false expresses a stronger notion of falsity than the truth value false adopted from the
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three-valued MKNF semantics.

Besides the information that some fact could be derived to be classically false from the
ontology, we also want to provide a user with the information whether some derived
fact relies on a contradiction. On the one hand, this is important for a user in order to
decide if she can rely on some derived knowledge. On the other hand, propagation of
inconsistencies is built into WFSXp and in order to obtain a formalism that corresponds
to WFSXp in terms of the program semantics, we need to mirror this behavior in some
form in the model-theoretic characterization of our semantics. One option would be to
simply propagate inconsistencies such that every piece of information that can only be in-
ferred by involving inconsistent knowledge is assigned the truth value inconsistent itself.
Yet, like in the case of rules with undefined body and false head, knowledge minimization
makes this strategy unfeasible because either all true knowledge would be minimized
to the truth value inconsistent or alternatively, the head of rules with inconsistent bod-
ies would be minimized to the truth value true such that propagation of inconsistencies
fails. This issue will also be elaborated on in Section 3.3. In addition, it is often necessary
to differentiate between information that can only be derived by involving inconsistent
knowledge and information that is contradictory itself. In order to distinguish between
these two kinds of “states” at least one more truth value has to be introduced, which
we call suspiciously true and is denoted by st1. This gives us already the six truth values
which form the basis of our paraconsistent well-founded MKNF semantics. As has been
discussed, they provide exactly the right granularity for representing the information we
want to express in our logic.

Next, we illustrate the usefulness of the six truth values with an example, where
we consider which information about the entities in a hybrid MKNF knowledge base
a user would like to be provided with by a semantics. After formally introducing the
model-theoretic characterization of our semantics, we will come back to this example and
demonstrate that the semantics behaves as desired w.r.t. the use-case considered here.

Example 3.1 (The usefulness of having six truth values). Consider the following hybrid
MKNF knowledge base.

HasCertifiedForwarder v ¬IsMonitored

K IsMonitored(x) ← Kgood(x),Krisk(x).

Krisk(x) ← Kgood(x),not isLabelled(x).

K isLabelled(x) ← Kgood(x),notrisk(x).

KresolvedRisk(x) ← Kgood(x),K IsMonitored(x).

KHasCertifiedForwarder(food) ←
1The idea behind the truth value st is related to the motivation given by Sakama and Inoue for introduc-

ing the truth value st into their six-valued semantics [SI95]. However, we do not introduce its complement
sf here such that st rather represents a special case of b in our semantics.
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KHasCertifiedForwarder(pesticide) ←

Krisk(pesticide) ←

Kgood(food) ←

Kgood(pesticide) ←

The second and the third MKNF rule in this knowledge base together formalize that
a good either isLabelled or is a risk by means of a recursion through default negation.
Further, every good that is a risk IsMonitored, due to the first rule. The fourth rule states
that every good that IsMonitored is a resolvedRisk. Moreover, if something is in the class
HasCertifiedForwarder, it can be proven by means of the only ontology axiom that it is not
the case that it IsMonitored.

Considering a user who wants to query the knowledge base about the truth value
of certain K-atoms, the truth value true should be returned for all program facts since no
program fact is contradictory in this knowledge base. Regarding the second and the third
rule in the program component, it is either the case that the modal K-atom Krisk(food) is
true and K isLabelled(food) is false, or vice versa. Consequently, the truth value undefined
should be assigned to both modal K-atoms to provide the user with the information that
it cannot be decided if they are true or false – at least until further information is available.
Consequently, without taking the ontology into account, the K-atom K IsMonitored(food)

should also be undefined. However, due to the ontology axiom, ¬IsMonitored(food) can be
derived from the ontology component and the user would like to be informed that the fact
can be proven not to hold by receiving the answer classically false w.r.t. KIsMonitored(food).
In the case of the good pesticide, K risk(pesticide) is contained as a fact in the program
component, so that K IsMonitored(pesticide) can be derived from the knowledge base.
Yet, ¬IsMonitored(pesticide) can also be derived by means of the ontology component,
such that the user should be informed that K IsMonitored(pesticide) is inconsistent. Fi-
nally, KresolvedRisk(pesticide) can also be derived, but only by involving the inconsistent
K-atom K IsMonitored(pesticide). Consequently, a user would like to be informed that
K resolvedRisk(pesticide) is suspiciously true, so that she knows that she has to be careful
in using this information. ♦

3.2 The Lattice SIX

We represent the six truth values b (inconsistent), st (suspiciously true), t (true), f (false),
cf (classically false) and u (undefined), motivated in the previous section, by means of a
lattice, that we call the lattice SIX and that is shown in Figure 3.1. Among the six truth
values, the values b and t are the designated truth values of our logic. It is explained
below why st is not defined to be a designated truth value. The lattice SIX defines two
partial orders over the truth values, i.e. the orders f < cf < u < t and f < st < b < t.
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These orders are used in our semantics to define the interpretation functions of the first-
order operators. The lattice SIX can be viewed as an extension of the bilatticeFOUR (cf.

f

u b

t

cf st

Figure 3.1: The six truth values ordered in the lattice SIX .

Figure 2.1), where just two additional values are introduced below the truth values u and
b, respectively. Note that due to the extension, the resulting algebraic structure does not
constitute a bilattice anymore, like it is also the case for the six-valued lattice VI used by
Sakama and Inoue [SI95] depicted in Figure 2.2. As a result, the notions of a truth- and a
knowledge-order are not directly applicable to the lattice SIX . However, the additional
truth values st and cf can also be understood as special cases of the truth values b and
f , respectively, so that the meaning provided by the values b and f is refined by split-
ting each into two separate values. They are still closely related since the truth value st

behaves like b in our semantics by being its own complement w.r.t. classical and default
negation, and cf behaves as if it was f apart from the case where it is used to evaluate the
head of an MKNF rule with undefined body. The increase of the expressive power of our
semantics is achieved by slightly adapting the way the two new truth values are treated
w.r.t. the implication operator, and by not appointing the value st as a designated truth
value, in contrast to b.

3.3 Interpretation of the Implication Operator

Next, we discuss the implication operator used in our semantics. As described in Sec-
tion 2.2, in case only the internal implication operator is used, the paraconsistent version
of several tractable DLs can be translated into DLs under classical semantics where con-
sequences and tractability can be preserved simultaneously, so that it is possible to use
available standard reasoners. Since this property is crucial for potential implementations
of our approach, we employ an implication operator (presented in Table 3.1) in our se-
mantics which is defined like internal implication in [MMH13] for the truth values b, t,
f and u, apart from the assignment u ⊃ f2, which is no longer mapped to a designated

2Since we restrict our semantics to three truth values in the case of the ontology component, omitting the
truth value undefined, the mentioned divergence from the definition of Maier et al. does not interfere with
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truth value.

⊃ b st t f cf u

b b t t f f f
st b t t f f f
t b f t f f f
f t t t t t t

cf t t t t t t
u t f t f t t

Table 3.1: Semantics of the implication operator.

In order to justify the truth evaluation of the assignment u ⊃ f , as well as other partic-
ular truth value assignments in the interpretation function of the implication operator, we
have to take the minimization of models into account, which is a central component of the
logic of MKNF. Knowledge minimization in the logic of MKNF enables non-monotonic
default reasoning under the CWA by minimizing everything that cannot be derived to
false. Therefore, the truth value f has to be the least element of the minimization order
used for knowledge minimization in the semantics. As a result, the K-atom in the head
of an MKNF rule with undefined body would always be minimized to f if the truth as-
signment u ⊃ f was mapped to a designated truth value. However, this is not always
intended as the following example shows.

Example 3.2. Consider the following ground hybrid MKNF knowledge base KG only
consisting of a program component.

KP (a) ← KQ(a)

KQ(a) ← notQ(a)

In this knowledge base, KQ(a) should be assigned the truth value undefined like usual in
the WFS due to the recursion through default negation. However, KP (a) should also be
undefined as the only MKNF rule in which it occurs in the head has an undefined body. ♦

Consequently, only the truth value cf can be allowed for the consequent of an impli-
cation with undefined implicant, and cf cannot be smaller in the minimization order of
our semantics, so that KP (a) in the previous example is also not minimized to cf .

Furthermore, the minimization of models poses a problem for the propagation of
inconsistencies as well. In the minimization order, there cannot be a designated truth
value that is smaller than the truth value t because all facts, and the heads of rules whose
body is evaluated to a designated truth value, would be minimized to this value, though
they should normally be mapped to true. However, in the case of the truth value st, the
same strategy we pursue in the case of cf , i.e. defining st to be greater in the minimization
order and forbidding minimization to the truth value t in case a rule has an inconsistent
body, does also not work as the following example shows.

the coincidence of our ontology semantics and the semantics defined in [MMH13].
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Example 3.3. Consider the following ground hybrid MKNF knowledge base KG.

> v ¬P

KQ(a) ← KP (a)

KR(a) ← KQ(a)

KP (a) ←

In this example, the modal K-atom K P (a) is clearly contradictory since the only fact
in the program implies that KP (a) holds. At the same time, the classical negation of
P is derivable from the ontology component. Consequently, the K-atom KQ(a) should
be suspiciously true in an interpretation satisfying KG. Moreover, KR(a) should also be
mapped to st as it can only be derived by consulting inconsistent information. However,
if the truth value t is smaller than st in the minimization order, KQ(a) and K R(a)

are evaluated to be true in every model of KG (if this is allowed by the definition of
the implication operator). One strategy to solve this problem would be to forbid the
assignment of the truth value t for the K-atom in the head of a rule with inconsistent or
suspiciously true body. Yet, assume we add KQ(a) as a second fact to KG. Then, KQ(a)

can be inferred without relying on inconsistent knowledge. The same holds for adding the
fact KR(a) to the knowledge base. Consequently, the assignments b ⊃ t and b ⊃ st have
to be mapped to a designated truth value. Another strategy would be not to define t to
be larger in the minimization order than st. In this case, the correct truth value would be
assigned to KQ(a) and KR(a) in the original version ofKG (without the additional facts).
Yet, there would still be a problem since all true knowledge would also be minimized to
suspiciously true. ♦

Our solution to the problem described in Example 3.3 consists in defining st to be
smaller in the minimization order than b and t, but at the same time we do not define st

to be a designated truth value and map implications with the truth assignment t ⊃ st to
a non-designated truth value (cf. Table 3.1). However, implications where the implicant
is evaluated to b or st and the consequent is mapped to st in an interpretation are still
satisfied by this interpretation. In this way, K-atoms which are only implied by rules
with inconsistent or suspiciously true bodies are minimized to suspiciously true. Though,
when the K-atom simultaneously occurs as a fact, in the head of a rule with true body, or
can be derived from the ontology, it is still forced to be true (or inconsistent if its classical
negation is also derivable) in an interpretation satisfying the knowledge base.

As we have discussed in Section 2.3.3, Contradiction Support Detection fails in the
case of WFSXp whenever a program atom that can only be derived from contradictory
knowledge is also implied by a rule with undefined body. Because we aim to develop
a semantics that corresponds to WFSXp w.r.t. the semantics assigned to the program
component alone, we also have to inhibit the propagation of inconsistencies in case a
modal K-atom appears in the head of a rule whose body is interpreted to be undefined
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in a model. On the basis of the previous considerations, this can easily be done by also
mapping u ⊃ st to a non-designated truth value. As in the case of t ⊃ st, this inhibits
the minimization to suspiciously true since the truth value st is not allowed for the head
in this case (when considering interpretations satisfying these rules). In this way, the
desired behavior of the program semantics can be achieved by utilizing the interaction of
knowledge minimization and the definition of the implication operator.

3.4 Paraconsistent Truth Evaluation

Next, we have to adapt the definitions of first-order interpretation and MKNF structure from
[KAH11] in order to enable paraconsistent reasoning by extending the semantics with the
three new truth values b, st and cf . Moreover, we have to ensure that knowledge mini-
mization in the model-definition of our semantics is executed w.r.t. a minimization order
that satisfies the constraints discussed before. First, we define the notion of a paraconsis-
tent (first-order) interpretation, which extends the two-valued first-order interpretations
utilized by Knorr et al. to three-valued interpretations, adding the truth value b. They do
not allow for the truth value undefined being assigned to a first-order formula and thus,
follow the idea that we want to fix inconsistencies in the ontology component where
some piece of information is true and false at the same time, but never where it is neither
of them. This corresponds to enforcing the LEM in the paraconsistent DL semantics of
Maier et al. [MMH13] and it is considered to be more classical and less paraconsistent in
that a stronger entailment relation can be obtained in this way.

Definition 3.4 (Paraconsistent interpretation). Given two first-order interpretations I and
I1, the pair I = 〈I, I1〉, such that I1 ⊆ I , is called a paraconsistent interpretation (or p-
interpretation).

The idea of the subset relation on interpretation pairs is that, whenever an atom is
interpreted to true in the first-order interpretation I1, then it is also true in the interpreta-
tion I . Intuitively, I indicates what is true and false, while the additional interpretation I1

only designates for each (true) element in I whether it is actually inconsistent (or not). We
can intersect such p-interpretations simply component-wise to obtain on which pieces of
information they coincide. Given a set M of paraconsistent interpretations Ii = 〈Ii, I ′i〉,
we define

⋂
M = 〈

⋂
Ii,

⋂
I ′i〉. It is straightforward to see that the result

⋂
M is indeed

again a p-interpretation.
The notion of a three-valued MKNF structure as presented in Definition 2.21 can be

adjusted as follows, now using sets of p-interpretations instead of sets of first-order in-
terpretations.

Definition 3.5 (Paraconsistent MKNF structure). A paraconsistent MKNF structure (or p-
structure) (I,M,N ) consists of a p-interpretation I and two pairs M = 〈M,M1〉 and
N = 〈N,N1〉 of sets of p-interpretations. A p-structure is called total ifM = 〈M,M〉 and
N = 〈N,N〉.

48



3. MODEL-THEORETIC CHARACTERIZATION 3.4. Paraconsistent Truth Evaluation

Note that the conditions M1 ⊆ M and N1 ⊆ N imposed in Definition 2.21 are not
applied anymore in the case of p-structures. Like in the three-valued hybrid MKNF se-
mantics, we define the truth values assigned to modal K- and not-formulas in terms of
the interpretations contained in the sets M1 and M , and N1 and N respectively. For ex-
ample, recall that in the semantics defined by Knorr et al. a modal K-formula is true if
and only if it is true in all first-order interpretations in M , undefined if and only if it is true
in all interpretations in M1 and false in some interpretation in M , and it is false if and only
if it is false in some interpretation in M1 (cf. Definition 2.22). Due to the subset condition
in Definition 2.21, the definition does not leave space for a fourth truth value. Moreover,
maximizing the sets M and M1 in Definition 2.20 leads to a minimization in the order
f < u < t. Since we have to define six different truth values and there are certain restric-
tions w.r.t. the minimization orders that can be imposed on them, it is necessary to drop
the subset conditions here.

We can now define the evaluation of MKNF formulas in p-structures. The operators
∧ and ∨ are defined respectively to be the join and meet operation in the lattice SIX , i.e.
w.r.t. to the partial orders f < cf < u < t and f < st < b < t. For the semantics of the
implication operator, we rely on the definition provided in Table 3.1.

Definition 3.6 (Six-valued interpretation of MKNF formulas). Let (I,M,N ) be a p-struc-
ture and ϕ, ϕ1, and ϕ2 MKNF formulas. We define:

(〈I, I1〉,M,N )(P (t1, . . . , tn)) =


b iff (tI1, . . . , t

I
n) ∈ P I , (tI11 , . . . , tI1n ) ∈ P I1

t iff (tI1, . . . , t
I
n) ∈ P I , (tI11 , . . . , tI1n ) 6∈ P I1

f iff (tI1, . . . , t
I
n) 6∈ P I , (tI11 , . . . , tI1n ) 6∈ P I1

(I,M,N )(>) = t (I,M,N )(⊥) = f

(I,M,N )(¬ϕ) =



b iff (I,M,N )(ϕ) = b

st iff (I,M,N )(ϕ) = st

t iff (I,M,N )(ϕ) ∈ {f , cf}
f iff (I,M,N )(ϕ) = t

u iff (I,M,N )(ϕ) = u

(I,M,N )(ϕ1 ∧ ϕ2) = (I,M,N )(ϕ1) ∧ (I,M,N )(ϕ2)

(I,M,N )(ϕ1 ⊃ ϕ2) = (I,M,N )(ϕ1) ⊃ (I,M,N )(ϕ2)

(I,M,N )(∃x : ϕ) =
∨
α∈∆

(I,M,N )(ϕ[α/x])
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(I,M,N )(Kϕ) =



b iff (
⋂
J∈M J , 〈M,M1〉,N )(ϕ) = b

st iff (
⋂
J∈M J , 〈M,M1〉,N )(ϕ) = t and

(
⋂
J∈M1

J , 〈M,M1〉,N )(ϕ) = f

t iff (
⋂
J∈M J , 〈M,M1〉,N )(ϕ) = t and

(
⋂
J∈M1

J , 〈M,M1〉,N )(ϕ) 6= f

f iff (
⋂
J∈M J , 〈M,M1〉,N )(ϕ) = f

s.t. ∃J ∈M with (J , 〈M,M1〉,N )(ϕ) = t and
(
⋂
J∈M1

J , 〈M,M1〉,N )(ϕ) = f

cf iff (
⋂
J∈M J , 〈M,M1〉,N )(ϕ) = f

s.t. 6 ∃J ∈M with (J , 〈M,M1〉,N )(ϕ) = t

u iff (
⋂
J∈M J , 〈M,M1〉,N )(ϕ) = f

s.t. ∃J ∈M with (J , 〈M,M1〉,N )(ϕ) = t and
(
⋂
J∈M1

J , 〈M,M1〉,N )(ϕ) 6= f

(I,M,N )(notϕ) =



b iff (
⋂
J∈N J ,M, 〈N,N1〉)(ϕ) = b

st iff (
⋂
J∈N J ,M, 〈N,N1〉)(ϕ) = t and

(
⋂
J∈N1

J ,M, 〈N,N1〉)(ϕ) = f

t iff (
⋂
J∈N J ,M, 〈N,N1〉)(ϕ) = f

[ s.t. ∃J ∈ N with (J ,M, 〈N,N1〉)(ϕ) = t and
(
⋂
J∈N1

J ,M, 〈N,N1〉)(ϕ) = f)] or
[ s.t. 6 ∃J ∈ N with (J ,M, 〈N,N1〉)(ϕ) = t]

f iff (
⋂
J∈N J ,M, 〈N,N1〉)(ϕ) = t and

(
⋂
J∈N1

J ,M, 〈N,N1〉)(ϕ) 6= f

u iff (
⋂
J∈N J ,M, 〈N,N1〉)(ϕ) = f

s.t. ∃J ∈ N with (J ,M, 〈N,N1〉)(ϕ) = t and
(
⋂
J∈N1

J ,M, 〈N,N1〉)(ϕ) 6= f

As already hinted, the truth values st and cf behave like b and f , respectively, under
classical and default negation according to the previous definition. Furthermore, the
modal K- and not-operator are defined symmetrically like in the previous approaches
by Motik and Rosati, and Knorr et al., such that notϕ is equivalent to ¬Kϕ, given an
MKNF formula ϕ and provided thatM = N . In the minimization order induced by the
definition of the K-operator, the truth values t, u and f have the order f < u < t identical
to the three-valued semantics by Knorr et al. [KAH11], and f is the least element among
all truth values. Moreover, we have that st < t and st < b, as well as f < cf and f < u.
However, the truth values t and b, as well as cf and u are incomparable in the resulting
minimization order, effectively making it a partial order over the truth values. For this
reason an additional condition has to be introduced when we define paraconsistent MKNF
models in the next section.
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3.5 Paraconsistent Models for Hybrid MKNF Knowledge Bases

Next, we adapt interpretation pairs and paraconsistent satisfaction, on which our defi-
nition of paraconsistent MKNF models is based. The following definition is similar to
Definition 8 in [KAH11].

Definition 3.7 (Paraconsistent interpretation pair). A paraconsistent interpretation pair (or
p-interpretation pair) (M,N) consists of two non-empty sets M , N of p-interpretations.
A p-interpretation pair paraconsistently satisfies (or p-satisfies) a closed MKNF formula ϕ,
written (M,N) |=p ϕ, if and only if

(I, 〈M,N〉, 〈M,N〉)(ϕ) ∈ {b, t}

for each I ∈ M ∪ N . If M = N , then the p-interpretation pair (M,N) is called total. If
there exists a p-interpretation pair p-satisfying ϕ, then ϕ is p-satisfiable.

As discussed in the previous section, a closed MKNF formula is not p-satisfied by a
p-interpretation pair if it is mapped to the truth value st by the p-interpretation pair in
order to avoid minimization to this truth value in certain cases. Like in the two- and three-
valued MKNF semantics, the modal K- and not-operator are evaluated w.r.t. the same
pair of sets in the case of p-satisfaction. In order to be p-satisfied by a p-interpretation
pair (M,N), we require that a formula has to be inconsistent or true in every p-structure
(I, 〈M,N〉, 〈M,N〉), where the p-interpretation I may vary over both sets M and N , in
contrast to the definition by Knorr et al. where only interpretations in the former set are
checked. This is necessary to ensure that formulas entailed by the knowledge base cannot
be interpreted to be false by any p-interpretation in N . In the approach by Knorr et al.,
this is ensured by imposing the subset conditions in the definition of three-valued MKNF
structures.

According to [MR06], an MKNF formula is called subjective if all first-order atoms
only appear within the scope of a modal K- or not-operator within the formula. The
evaluation of a subjective MKNF formula in a p-structure does not depend on the first
component of the p-structure, the p-interpretation I. Consequently, we can assume that I
is arbitrary in this case, and we will do so in the remainder of this thesis without referring
to each I ∈M ∪N and by replacing I by the symbol ∗ in the respective p-structure.

Alternatively, if an MKNF formula does not contain any modal atoms (i.e. it is equiv-
alent to a first-order formula), the evaluation of the formula in some p-structure does not
depend on the second and third component of the p-structure, the sets of p-interpretations
M and N . Therefore, we can neglect M and N in this case and define p-satisfaction
of a first-order formula and paraconsistent entailment between two first-order formulas
merely in terms of the first component of a p-structure (I,M,N ). This is done in the
following definition of the first-order equivalent of p-satisfaction.
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Definition 3.8 (Paraconsistent satisfaction and entailment). Let ϕ and ψ be closed first-
order formulas. A p-interpretation I = 〈I, I1〉 paraconsistently satisfies (or p-satisfies) ϕ,
written I |=p ϕ, if and only if

(〈I, I1〉,M,N )(ϕ) ∈ {b, t}

for arbitrary M and N . If (I,M,N )(ψ) ∈ {b, t} for all p-interpretations I such that
(I,M,N )(ϕ) ∈ {b, t}, then ϕ paraconsistently entails (or p-entails) ψ, written ϕ |=p ψ.

Because of the additional condition that has to be introduced in our definition of
paraconsistent MKNF models in Definition 3.10 (due to the incomparability of certain
truth value in the minimization order), our notion of models is not applicable to arbitrary
MKNF formulas, but only to those which exhibit the constrained syntax of hybrid MKNF
knowledge bases introduced in Definition 2.13. Since we are first and foremost interested
in developing a paraconsistent semantics for hybrid knowledge bases, this does no con-
stitute a major drawback. As a result, we will only consider hybrid MKNF knowledge
bases in the rest of this thesis, not considering arbitrary MKNF formulas.

Next, we adopt the following definition from Knorr et al., which eases the formulation
of subsequent definitions and propositions. The first part of this definition is adopted
from Definition 13 in [KAH11], the second part is identical to the second part of Definition
14 in the same publication.

Definition 3.9 (Objective knowledge of a set of K-atoms [KAH11]). Let KG = (O,PG) be
a ground hybrid MKNF knowledge base. The set of K-atoms ofKG, written KA(KG), is the
smallest set that contains (i) all ground K-atoms occurring in PG, and (ii) a modal atom
K ξ for each ground modal atom not ξ occurring in PG. For a subset S of KA(KG), the
objective knowledge of S w.r.t. KG is the set of first-order formulas OBO,S = {π(O)} ∪ {ξ |
Kξ ∈ S}.

Now, we are ready to adapt the definition of three-valued MKNF models, first intro-
duced in [KAH08], to our approach by defining paraconsistent MKNF models next.

Definition 3.10 (Paraconsistent MKNF model). Let (M,N) be a p-interpretation pair and
K = (O,P) a hybrid MKNF knowledge base. Any p-interpretation pair (M,N) is a
paraconsistent MKNF model (or p-model) of K if and only if

(1) (M,N) |=p K,

(2) for every p-interpretation pair (M ′, N ′) with M ⊆ M ′ and N ⊆ N ′ where at least
one of the inclusions is proper, there is I ′ ∈M ′ ∪N ′ s.t. (I ′, 〈M ′, N ′〉, 〈M,N〉)(K) 6∈
{b, t}, and

(3) for every Kξ ∈ KA(KG) it holds that (∗, 〈M,N〉, 〈M,N〉)(Kξ) ∈ {b, cf} if and only
if OBO,{K ξ′|(∗,〈M,N〉,〈M,N〉)(K ξ′)∈{b,st,t}} |=p ¬ξ.
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The conditions (1) and (2) of the previous definition resemble the conditions pre-
sented in Definition 2.23. In particular, condition (2) ensures that knowledge in p-models
is minimized w.r.t. the partial minimization order discussed before.

As mentioned already, due to our definition of the modal K-operator the truth values
b and t, as well as cf and u are still incomparable in the resulting partial minimization
order. The purpose of condition (3) in the previous definition is to remove certain unde-
sired p-models of some hybrid MKNF knowledge bases, which are possible due to the
incomparability of these truth values w.r.t. the knowledge minimization performed in
condition (2). In the first case, e.g. a ground hybrid knowledge base KG just consisting of
one program fact KH would also have a p-model where this fact is evaluated to incon-
sistent if condition (3) was not added to the definition of p-models. The same is true for
the head of MKNF rules where the body is evaluated to true. Due to condition (3), the
mentioned p-model is not allowed for KG anymore because ¬H is not p-entailed by the
ontology together with all first-order atoms for which there is a K-atom that is evaluated
to one of the truth values b, st and t in that p-model.

Furthermore, if we would not add condition (3), then e.g. for the rules

KP (a) ← notP (a).

KQ(a) ← KP (a).

two models would be admitted: in both K P (a) would be mapped to u, but KQ(a)

could be either classically false or undefined. Then only the minimization to the well-
founded paraconsistent model (which will be introduced later) would eliminate the p-
model where the truth value cf is assigned to KQ(a). This problem is also avoided
by introducing the third condition in Definition 3.10, i.e. the condition ensures also that
unjustified assignments to cf are avoided, and does not interfere with rules such as

KQ(a) ← notP (a).

KP (a) ← notQ(a).

having three p-models as intended.

Next, we lift the property that models of a hybrid MKNF knowledge base coincide
with the models of its ground instantiation from the two- and three-valued hybrid MKNF
semantics to our six-valued approach. The proof reflects the proof provided by Motik and
Rosati [MR06] for showing the corresponding property in case of the two-valued hybrid
MKNF semantics.

Proposition 3.11 (Semantical equivalence of ground instances). Let K be a DL-safe hybrid
MKNF knowledge base, KG the ground instantiation of K and (M,N) a p-interpretation pair.
Then (M,N) is a p-model of K if and only if it is a p-model of KG.

Proof. Regarding the first direction, from left to right, assume that (M,N) is a p-model of
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a hybrid MKNF knowledge base K. For each ground non-DL-atom A containing a con-
stant not occurring in K it holds that (∗, 〈M,N〉, 〈M,N〉)(KA) = f . To see that the pre-
vious holds, suppose that (∗, 〈M,N〉, 〈M,N〉)(KA) 6= f and consider a p-interpretation
pair (M ′, N ′) obtained from (M,N) by adding, for every ground non-DL-atom A con-
taining a constant that does not occur in K, a p-interpretation to M and N respectively
that evaluates B to f and otherwise, is identical to a p-interpretation already contained
in M , resp. N . Obviously, it holds that M ⊆ M ′ and N ⊆ N ′ where at least one of the
inclusions is proper. Consider now each rule r ∈ P and its ground instance rG. If rG
contains only constants that occur in K, we obtain that (M ′, N ′) |=p rG because the truth
values of ground non-DL-atoms containing only constants appearing in K coincide in M
and M ′, respectively N and N ′. Alternatively, rG contains a constant that does not occur
inK and, due to DL-safety of rG, its body contains an atom KA containing a constant that
does not occur in K. But then (∗, 〈M ′, N ′〉, 〈M ′, N ′〉)(KA) = f by definition of (M ′, N ′)

and therefore, (M ′, N ′) |=p rG as the body of rG is false in this case. Thus, M ′ |=p K,
which contradicts the assumption that (M,N) is a p-model of K according to condition
(2) of Definition 3.10. Consequently, (∗, 〈M,N〉, 〈M,N〉)(KA) = f in case A contains a
constant that does not appear in K, from which it follows immediately that (M,N) is a
p-model of KG.

For the other direction, from right to left, suppose that (M,N) is a p-model of KG.
Clearly, we have that (M,N) |=p O. Thus, we have to prove that (M,N) |=p K, i.e.
that (M,N) |=p r for each r ∈ P . Consider a ground instance rG of r. If rG con-
tains only constants that occur in K, then (M,N) |=p rG holds. Otherwise, since r is
DL-safe, each constant that does not appear in K occurs in some ground non-DL-atom
KA in the body of rG. Assume that (∗, 〈M,N〉, 〈M,N〉)(KA) 6= f and consider again a
p-interpretation pair (M ′, N ′) obtained from (M,N) by adding, for every ground non-
DL-atom A containing a constant that does not occur in K, a p-interpretation to M and
N respectively that evaluates B to f and otherwise is identical to a p-interpretation al-
ready contained in M , resp. N . Since KG does not contain a constant that does not oc-
cur in K, we know that (M ′, N ′) |=p KG, which contradicts the assumption that (M,N)

is a p-model of KG. Hence, (∗, 〈M,N〉, 〈M,N〉)(KA) = f , so that (M,N) |=p rG and
hence, (M,N) |=p K. Additionally, suppose that a p-interpretation pair (M ′′, N ′′) ex-
ists such that M ⊆ M ′′ and N ⊆ N ′′ where at least one of the inclusions is proper, and
(I ′′, 〈M ′′, N ′′〉, 〈M,N〉)(K) ∈ {b, t} for every I ′′ ∈ M ′′ ∪ N ′′. Clearly, it is the case that
(I ′′, 〈M ′′, N ′′〉, 〈M,N〉)(KG) ∈ {b, t} for every I ′′ ∈ M ′′ ∪ N ′′, which contradicts the as-
sumption that (M,N) is a p-model of KG. Hence, (M,N) is a p-model of K.

As the previous proposition shows that the semantics of hybrid MKNF knowledge
bases and their ground instantiations coincide, we will only consider ground hybrid
MKNF knowledge bases in the following.

We can now turn back to our running example and demonstrate in detail that the
paraconsistent MKNF semantics just defined yields the expected results. The following
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example represents a fragment of the ground version of the hybrid MKNF knowledge
base presented in Example 3.1. We omit the predicate good here since DL-safety is not an
issue in a ground knowledge base.

Example 3.12 (P-models of a ground hybrid MKNF knowledge base). Consider the fol-
lowing ground hybrid MKNF knowledge base KG = (O,PG) containing one ontology
axiom, four MKNF rules and one fact.

HasCertifiedForwarder v ¬IsMonitored

K IsMonitored(food) ← Krisk(food).

Krisk(food) ← not isLabelled(food).

K isLabelled(food) ← notrisk(food).

KresolvedRisk(food) ← K IsMonitored(food).

KHasCertifiedForwarder(food) ←

At first, we take only the program component PG into account. A p-interpretation pair
(M,N) which is a p-model of (∅,PG) has to p-satisfyPG according to condition (1) of Def-
inition 3.10, and hence has to p-satisfy each rule, according to the definition of the con-
junction operator by means of the join in the lattice SIX . So, the only fact in the program,
KHasCertifiedForwarder(food), has to be mapped to a designated truth value by (M,N).
However, the designated truth value b is not allowed for KHasCertifiedForwarder(food) in
a p-model due to condition (3) of the definition of p-models since the classically negated
atom ¬HasCertifiedForwarder(food) is not derivable (even when taking O into account).
Hence, it has to be assigned the truth value t by (M,N).

In order to p-satisfy the second and the third rule, the modal K-atoms Krisk(food) and
K isLabelled(food) could both be evaluated with t in (M,N). In this case, the modal not-
atoms notrisk(food) and notisLabelled(food) would be evaluated to f , according to the def-
inition of the modal not-operator, such that both implications would be p-satisfied. How-
ever, after fixing the evaluation of the modal not-atoms, this interpretation would not be
minimal w.r.t. the minimization order since Krisk(food) and K isLabelled(food) could both
be minimized to false in this case. Now, there are three different options for assigning a
truth value to the K-atoms K risk(food) and K isLabelled(food) in (M,N) which fulfill all
conditions (1)-(3) of Definition 3.10:

1. The truth value t can be assigned to K risk(food), and K isLabelled(food) can be
mapped to false in (M,N). In this case, not risk(food) is evaluated to false and
K isLabelled(food) is evaluated to true. This p-satisfies both rules according to the
definition of the implication operator in Table 3.1 as the second rule has a true
body and a true head, while the body and the head of the third rule are both
evaluated to the truth value f then. Furthermore, after fixing the evaluation of
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the modal not-atoms in these rules, the assignment is minimal. On the one hand
K isLabelled(food) takes already the least value of the minimization order. On the
other hand Krisk(food) appears in the head of a rule with a true body such that it is
not allowed to take one of the truth values st, f , cf and u. Moreover, K risk(food)

cannot take the truth value b in (M,N) as condition (3) of Definition 3.10 prohibits
this.

2. The K-atom K risk(food) can be mapped to f , and K isLabelled(food) can be evalu-
ated to the truth value true in (M,N). Then, not risk(food) is evaluated to false and
K isLabelled(food) is evaluated to true. This assignment p-satisfies the second and
the third rule and results in a p-model of (∅,PG) for analogous reasons as for the
first option.

3. Both modal K-atoms can be evaluated to undefined in (M,N). The second and the
third rule are p-satisfied by (M,N) in this case since the corresponding not-atoms
are mapped to undefined as well, resulting in both rules having an undefined body
and head. After fixing the interpretation of the modal not-atoms, the truth value
undefined is also the smallest value in the minimization order that can be assigned
to K risk(food) and K isLabelled(food) since the value f is not allowed for the heads
of rules with undefined body according to the definition of the implication opera-
tor in Table 3.1. However, without condition (3) of Definition 3.10, they could be
evaluated to the truth value classically false in a p-model because u and cf are in-
comparable in the minimization order. Condition (3) prohibits this.

Furthermore, when only taking the program component into account, the truth value
of the K-atom K IsMonitored(food) in the respective p-model is also determined by each
of the three options for assigning a truth value to the K-atom not risk(food) just men-
tioned. If not risk(food) is false, K IsMonitored(food) also has to take the truth value false
as it is the least element in the minimization order and since this is allowed by the def-
inition of the implication operator. In case not risk(food) is undefined, the value false is
no longer allowed for K IsMonitored(food) because of the definition of ⊃, and the small-
est values which are allowed are undefined and classically false. However, the truth value
classically false cannot be assigned due to condition (3) of the definition of p-models and
hence, K IsMonitored(food) has to be mapped to the truth value u in this case. Finally,
if not risk(food) is true, the minimal value that can be taken by K IsMonitored(food) and
which fulfills the definition of ⊃ as well as condition (3) is t. By the same line of reason-
ing, the truth value of K resolvedRisk(food) w.r.t. to each of the three options is identical
to the value assigned to K IsMonitored(food) in the respective p-model.

Now, taking also the ontology component into account, for the only axiom to be p-
satisfied by a p-model (M,N) of KG, the consequent of the implication must be mapped
to one of the truth values inconsistent and true by every p-interpretation in the setsM and
N due to the definition of ⊃ and because the implicant is also inconsistent or true in all
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of these p-interpretations. Consequently, IsMonitored(food) must be evaluated to one of
inconsistent and false in every p-interpretation in M ∪N , according to the definition of the
negation operator. As a result, KIsMonitored(food) is mapped to either b or cf by (M,N).

Regarding the first option of assigning truth values to the K-atoms K risk(food) and
K isLabelled(food), this means that K IsMonitored(food) has to be interpreted with the
truth value b as it appears in the head of a rule with true body. Note that this is now
allowed according to condition (3) since the ontology component allows us to derive
¬IsMonitored(food). Consequently, K resolvedRisk(food) now is in the head of a rule with
inconsistent body and due to the definition of the implication operator can be minimized
to st. This shows that Contradiction Support Detection works as expected in p-models.

Regarding the second option, K IsMonitored(food) can take the smaller value cf be-
cause the corresponding rule body is mapped to the truth value f . In this way, the user
can detect that the classical negation of K IsMonitored(food) is entailed by the ontology.
The K-atom K resolvedRisk(food) is still assigned the truth value false by (M,N) in this
case.

Finally, in the case of the third option, the K-atom K IsMonitored(food) in the head
of the first rule, which has an undefined body in this case, is evaluated to cf when the
ontology component is taken into account as condition (3) ensures that among the two
incomparable (w.r.t. minimization order) truth values u and cf the latter is chosen. This
demonstrates the intervention of the Coherence Principle which “overwrites” the regular
propagation of the truth value undefined in the program component.

In conclusion, we obtain three different p-models for KG corresponding to the three
options for assigning truth values to the K-atoms K risk(food) and K isLabelled(food)

described above. In the first one, the K-atom K risk(food) is true, K isLabelled(food) is
false, K IsMonitored(food) is inconsistent and K resolvedRisk(food) is suspiciously true. In
the second p-model, K risk(food) and K resolvedRisk(food) are false, K isLabelled(food) is
true, and K IsMonitored(food) is classically false. In the third p-model, K risk(food) and
K isLabelled(food) are undefined, K IsMonitored(food) is classically false and the K-atom
KresolvedRisk(food) is false. The program fact KHasCertifiedForwarder(food) is evaluated
to true in all of the three p-models as already stated. Here, the third model is special in
the sense that it is most “skeptical” about the true and false knowledge that is derivable
from KG, and in fact it represents the unique well-founded p-model of KG, a notion which
will be defined later. ♦

3.6 Propagation of Inconsistencies in the Ontology Component

After having defined under which conditions a p-interpretation pair models a ground
hybrid MKNF knowledge base, some particularities of the semantics regarding the prop-
agation of inconsistencies can now be discussed. We will demonstrate by means of two
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examples why it is necessary that inconsistent interpretations of modal K-atoms are de-
fined solely in terms of the first component M of a p-interpretation pair (M,N) in Defi-
nition 3.6.

While it is predetermined that inconsistencies arising within the ontology are not
propagated (in order to establish the correspondence to ALC4), and dependencies on
contradictions have to be detectable from the semantics of the program (for the coinci-
dence withWFSXp), the border cases are not so clear. For instance, we could only assign
the truth value st to modal K-atoms that can be derived from the program component,
so that all knowledge which is p-entailed by the ontology is either true or inconsistent.
On the other hand, we can also propagate inconsistencies via the ontology, so that if a
K-atom can only be derived from the ontology with the help of an inconsistent K-atom
that occurs in the program component, it is also suspiciously true. Here, we opt for the
latter approach in order to move the propagation of inconsistencies as far into the ontol-
ogy as possible. In this way, we are able to detect dependencies on contradictions in as
many cases as possible without sacrificing faithfulness w.r.t. ALC4. As the truth value
st distinguishes those pieces of knowledge which depend on a contradiction from those
which are contradictory themselves, there is no downside to this strategy and in gen-
eral, the semantics provides more information in this way. After introducing a relation
between the objective knowledge of a knowledge base w.r.t. certain sets of K-atoms and
the p-models of the knowledge base in Proposition 3.37, we will be able to characterize
the propagation of inconsistencies within the ontology component formally in Corollary
3.38. For now, we just demonstrate how the described behavior can be achieved by our
particular definition of the semantics of modal K-formulas, by means of the following
two examples.

The first example shows that if a K-atom has to be inconsistent because its classical
negation can be derived from the ontology, but its positive version can only be derived
from the program component, dependencies on this contradiction are propagated via the
ontology.

Example 3.13. Consider the following ground hybrid MKNF knowledge base KG.

> v ¬P

P v R

KP (a) ←

KR(a) ← KR(a)

Due to the first ontology axiom, P (a) cannot be evaluated to true by any p-interpretation
in the sets M and N of a p-interpretation pair (M,N) that p-satisfies KG. Because of the
fact in the program component, P (a) can also not be false in any p-interpretation in M , so
that it has to be b under all p-interpretations inM . Therefore, KP (a) has to be mapped to
b by every p-model (M,N) ofKG, and due to minimization by condition (2) of Definition
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3.10, there is a p-interpretation in N which maps P (a) to false.
Now, R(a) has to be assigned one of the truth values b and t by all p-interpretation

pairs in M due to the second axiom. At the same time, it can also be mapped to false by
some p-interpretation pair in N because of some p-interpretation in N that maps P (a)

to false. Due to minimization, KR(a) is mapped to st by every p-model of KG. Conse-
quently, it can be detected that KR(a) depends on a contradictory K-atom in the program
component. ♦

However, when a contradictory first-order atom can be derived from the ontology
without depending on contradictory knowledge from the program component, this in-
consistency cannot be propagated within the ontology because otherwise faithfulness
w.r.t. ALC4 would be lost. We show that this is the case for our semantics by means of
the following example.

Example 3.14. Consider the following ground hybrid MKNF knowledge base KG.

> v ¬P

> v P

P v R

KR(a) ← KR(a)

In contrast to the previous example, P (a) cannot be evaluated to either true or false by any
p-interpretation in the sets M and N of any p-interpretation pair (M,N) that p-satisfies
KG. Consequently, R(a) can be mapped to one of the truth values b and t by all p-
interpretations in M and N because of the second axiom. Due to minimization, it will
be mapped to t by some p-interpretation in M . As expected, KR(a) is evaluated to true
by every p-model of KG and therefore, the inconsistency is not propagated within the
ontology. ♦

In Definition 3.8, we have already defined the paraconsistent entailment relation for
first-order formulas. After having discussed the previous two examples, we can now
also justify the following definition of paraconsistent entailment of an MKNF formula by
a hybrid MKNF knowledge base on the basis of p-models.

Definition 3.15 (Paraconsistent MKNF entailment). If KG is a ground hybrid MKNF
knowledge base andψ a closed MKNF formula, and it holds that (I, 〈M,N〉, 〈M,N〉)(ψ) ∈
{b, st, t} for each I ∈M∪N holds for all p-models (M,N) ofKG, thenKG p-MKNF-entails
ψ, written KG |=MKNF

p ψ.

Although st is not a designated truth value w.r.t. the condition for p-satisfaction in
Definition 3.7, a closed MKNF formula ψ that is not evaluated to any of the truth values
f , cf and u by any of the p-models of a ground hybrid MKNF knowledge baseKG should
still be p-entailed by KG. Otherwise, in Example 3.13, KR(a) would not be p-MKNF-
entailed by the knowledge base. However, after adding the concept assertion P (a) to the
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ABox of the ontology component, R(a) would be p-MKNF-entailed by KG. Due to the
way we define p-MKNF-entailment for closed MKNF formulas in Definition 3.15, R(a)

is p-MKNF-entailed by KG in both cases.

3.7 Faithfulness w.r.t. the Three-Valued MKNF Semantics

Next, we establish the first faithfulness result, i.e. we show the correspondence between
the three-valued and the paraconsistent MKNF semantics in the case of consistent hybrid
MKNF knowledge bases. For this purpose, we define the construction of a paraconsistent
counterpart from a given three-valued MKNF interpretatin pair (as defined in [KAH11]).

Definition 3.16 (P-counterpart and p-extension). Let (M,N) be a three-valued MKNF
interpretation pair. Then, the p-interpretation pair (M ′, N ′) = ({〈I, I1〉 | I ∈ M and I1 ⊆
I}, {〈I, I1〉 | I ∈ N and I1 ⊆ I}) is the paraconsistent counterpart (or p-counterpart) of
(M,N). Given a first-order interpretation I , the set {〈I, I1〉 | I1 ⊆ I} is the paraconsistent
extension (or p-extension) of I .

Our goal is to show that under certain conditions the p-counterpart of an MKNF in-
terpretation pair is a p-model of a given hybrid MKNF knowledge base if and only if the
corresponding three-valued MKNF interpretation pair is a three-valued MKNF model of
that knowledge base. In the subsequent lemma we first show the relation of the interpre-
tations of modal atoms in a three-valued MKNF interpretation pair and its p-counterpart.

Lemma 3.17. Let (M,N) be an MKNF interpretation pair, I an arbitrary interpretation inM or
N , (M ′, N ′) = ({〈I, I1〉 | I ∈M and I1 ⊆ I}, {〈I, I1〉 | I ∈ N and I1 ⊆ I}) the p-counterpart
of (M,N), KA a modal K-atom and notB a modal not-atom. Then

• it is not possible that one of (∗, 〈M ′, N ′〉, 〈M ′, N ′〉)(KA) ∈ {b, st} and
(∗, 〈M ′, N ′〉, 〈M ′, N ′〉)(notB) ∈ {b, st} holds,

• (I, 〈M,N〉, 〈M,N〉)(KA) = t iff (∗, 〈M ′, N ′〉, 〈M ′, N ′〉)(KA) = t,

• (I, 〈M,N〉, 〈M,N〉)(KA) = f iff (∗, 〈M ′, N ′〉, 〈M ′, N ′〉)(KA) ∈ {f , cf},

• (I, 〈M,N〉, 〈M,N〉)(KA) = u iff (∗, 〈M ′, N ′〉, 〈M ′, N ′〉)(KA) = u,

• (I, 〈M,N〉, 〈M,N〉)(notB) = t iff (∗, 〈M ′, N ′〉, 〈M ′, N ′〉)(notB) = t,

• (I, 〈M,N〉, 〈M,N〉)(notB) = f iff (∗, 〈M ′, N ′〉, 〈M ′, N ′〉)(notB) = f and

• (I, 〈M,N〉, 〈M,N〉)(notB) = u iff (∗, 〈M ′, N ′〉, 〈M ′, N ′〉)(notB) = u.

Proof. First, note that it is neither possible that (
⋂
J∈M ′ J , 〈M ′, N ′〉, 〈M ′, N ′〉)(A) = b nor

that (
⋂
J∈N ′ J , 〈M ′, N ′〉, 〈M ′, N ′〉)(A) = b holds due to the construction of M ′ and N ′.

Consequently, also (∗, 〈M ′, N ′〉, 〈M ′, N ′〉)(KA) = b and (∗, 〈M ′, N ′〉, 〈M ′, N ′〉)(notB) =

b are not possible, according to Definition 3.6. Additionally, recall that in the case of the
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three-valued semantics it holds thatN ⊆M . Thus, we know thatN ′ ⊆M ′ also holds and
we derive that (∗, 〈M ′, N ′〉, 〈M ′, N ′〉)(KA) = st and (∗, 〈M ′, N ′〉, 〈M ′, N ′〉)(notB) = st

are not possible either. This proves the first item of this lemma.
Regarding the second item, we have that (J, 〈M,N〉, 〈M,N〉)(K A) = t holds iff

(J, 〈M,N〉, 〈M,N〉)(A) = t for each J ∈ M iff (
⋂
J∈M ′ J , 〈M ′, N ′〉, 〈M ′, N ′〉)(A) = t

and (
⋂
J∈N ′ J , 〈M ′, N ′〉, 〈M ′, N ′〉)(A) = t iff (∗, 〈M ′, N ′〉, 〈M ′, N ′〉)(KA) = t, accord-

ing to Definition 3.6 and since (
⋂
J∈N ′ J , 〈M ′, N ′〉, 〈M ′, N ′〉)(A) = b is not possible. In

the third case, we derive that (J, 〈M,N〉, 〈M,N〉)(KA) = f iff (J, 〈M,N〉, 〈M,N〉)(A) =

f for some J ∈ N holds iff it is the case that (
⋂
J∈M ′ J , 〈M ′, N ′〉, 〈M ′, N ′〉)(A) = f

and (
⋂
J∈N ′ J , 〈M ′, N ′〉, 〈M ′, N ′〉)(A) = f iff (∗, 〈M ′, N ′〉, 〈M ′, N ′〉)(KA) ∈ {f , cf}, ac-

cording to Definition 3.6, and since (
⋂
J∈N ′ J , 〈M ′, N ′〉, 〈M ′, N ′〉)(A) = b is not possi-

ble and N ′ ⊆ M ′. Finally, considering the fourth item of this lemma, we derive that
(J, 〈M,N〉, 〈M,N〉)(KA) = u holds iff (J, 〈M,N〉, 〈M,N〉)(A) = f for some J ∈ M and
(J, 〈M,N〉, 〈M,N〉)(A) = t for each J ∈ N iff (

⋂
J∈M ′ J , 〈M ′, N ′〉, 〈M ′, N ′〉)(A) = f and

(
⋂
J∈N ′ J , 〈M ′, N ′〉, 〈M ′, N ′〉)(A) = t iff (∗, 〈M ′, N ′〉, 〈M ′, N ′〉)(KA) = u, by Definition

3.6 and since (
⋂
J∈N ′ J , 〈M ′, N ′〉, 〈M ′, N ′〉)(A) = b is not possible. The cases for the

modal not-atoms can be proven similarly.

It is obvious from the previous lemma that modal atoms are not interpreted paracon-
sistently in the p-counterpart (M ′, N ′) of some MKNF interpretation pair (M,N) since
the truth values b and st do not appear in the interpretations of the modal K- and
not-atoms. The following lemma demonstrates that for every first-order formula and
every first-order interpretation I , there is a particular p-interpretation contained in the
p-extension of I that evaluates ϕ to the same truth value as in I . Since first-order inter-
pretations are two-valued, it cannot be the case that any first-order formula is evaluated
to b by all p-interpretations in the p-extension of I .

Lemma 3.18. Let ϕ be a closed MKNF formula not containing any modal operators and I an
arbitrary first-order interpretation. Then (I,M,N )(ϕ) = t iff (〈I, ∅〉,M,N )(ϕ) = t, and
(I,M,N )(ϕ) = f iff (〈I, ∅〉,M,N )(ϕ) = f .

Proof. We prove both claims simultaneously by a structural induction on the structure
of ϕ. For the base case, assume that ϕ is a first-order atom of the form P (t1, . . . , tn).
First, we derive that (I,M,N )(P (t1, . . . , tn)) = t iff (tI1, . . . , t

I
n) ∈ P I iff it holds that

(〈I, ∅〉,M,N )(P (t1, . . . , tn)) = t. Additionally, we derive that (I,M,N )(P (t1, . . . , tn)) =

f iff (tI1, . . . , t
I
n) 6∈ P I iff it holds that (〈I, ∅〉,M,N )(P (t1, . . . , tn)) = f .

Now, we show the induction step for the classical negation operator ¬. So, assume
that the claim holds for some first-order formula ϕ′ and let ϕ = ¬ϕ′. In this case, we ob-
tain that (I,M,N )(¬ϕ′) = t iff (I,M,N )(ϕ′) = f iff (〈I, ∅〉,M,N )(ϕ′) = f (by the induc-
tion hypothesis) iff (〈I, ∅〉,M,N )(¬ϕ′) = t. Moreover, we obtain that (I,M,N )(¬ϕ′) = f

iff (I,M,N )(ϕ′) = t iff (〈I, ∅〉,M,N )(ϕ′) = t (by the induction hypothesis) iff it is the
case that (〈I, ∅〉,M,N )(¬ϕ′) = f . The induction steps for the other classical operators
proceed similarly.
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The following lemma extends the result of Lemma 3.18 by showing that if there is a
p-interpretation in the p-extension of some first-order interpretation I which evaluates
a first-order formula ϕ to t, then there cannot be a p-interpretation in that p-extension
which evaluates ϕ to f (and the other way around). Accordingly, Lemma 3.18 and Lemma
3.19 together reveal the two-valued nature of p-extensions.

Lemma 3.19. Let ϕ be a closed MKNF formula not containing any modal operators and I an
arbitrary first-order interpretation. Then (〈I, ∅〉,M,N )(ϕ) = t iff (〈I, I1〉,M,N )(ϕ) ∈ {b, t}
for every I1 ⊆ I , and (〈I, ∅〉,M,N )(ϕ) = f iff (〈I, I1〉,M,N )(ϕ) ∈ {b, f} for every I1 ⊆ I .

Proof. We prove both claims simultaneously by a structural induction on the structure of
ϕ. For the base case, assume that ϕ is a first-order atom of the form P (t1, . . . , tn). First,
we derive that (〈I, ∅〉,M,N )(P (t1, . . . , tn)) = t iff it is the case that (tI1, . . . , t

I
n) ∈ P I

iff (〈I, I1〉,M,N )(P (t1, . . . , tn)) ∈ {b, t} for every I1 ⊆ I . Additionally, we derive that
(〈I, ∅〉,M,N )(P (t1, . . . , tn)) = f iff (tI1, . . . , t

I
n) 6∈ P I iff (〈I, I1〉,M,N )(P (t1, . . . , tn)) = f

for every I1 ⊆ I iff it holds that (〈I, I1〉,M,N )(P (t1, . . . , tn)) ∈ {b, f} for every I1 ⊆ I .
(Note that the latter bi-conditional is vacuously true since (〈I, I1〉,M,N )(P (t1, . . . , tn)) =

b is actually not possible for any I1 ⊆ I in case (〈I, I1〉,M,N )(P (t1, . . . , tn)) 6= t for any
I1 ⊆ I .)

Next, we show the induction step for the classical negation operator ¬. So, assume
that the claim holds for some first-order formula ϕ′ and let ϕ = ¬ϕ′. In this case, we
obtain that (〈I, ∅〉,M,N )(¬ϕ′) = t iff (〈I, ∅〉,M,N )(ϕ′) = f iff (〈I, I1〉,M,N )(ϕ′) ∈
{b, f} for every I1 ⊆ I (by the induction hypothesis) iff (〈I, I1〉,M,N )(¬ϕ′) ∈ {b, t} for
every I1 ⊆ I . Moreover, we obtain that (〈I, ∅〉,M,N )(¬ϕ′) = f iff (〈I, ∅〉,M,N )(ϕ′) = t

iff (〈I, I1〉,M,N )(ϕ′) ∈ {b, t} for every I1 ⊆ I (by the induction hypothesis) iff it is the
case that (〈I, I1〉,M,N )(¬ϕ′) ∈ {b, f} for every I1 ⊆ I .

Now, we perform the induction step for the conjunction operator ∧. So, assume that
the claim holds for two arbitrary first-order formulas ϕ1 and ϕ2, and let ϕ = ϕ1 ∧ ϕ2. We
derive that (〈I, ∅〉,M,N )(ϕ1∧ϕ2) = t iff (〈I, ∅〉,M,N )(ϕ1) = t and (〈I, ∅〉,M,N )(ϕ2) =

t iff (〈I, I1〉,M,N )(ϕ1) ∈ {b, t} for every I1 ⊆ I and (〈I, I1〉,M,N )(ϕ2) ∈ {b, t} for
every I1 ⊆ I (by the induction hypothesis) iff (〈I, I1〉,M,N )(ϕ1 ∧ ϕ2) ∈ {b, t} for
every I1 ⊆ I . For the second claim, we derive that (〈I, ∅〉,M,N )(ϕ1 ∧ ϕ2) = f iff
(〈I, ∅〉,M,N )(ϕ1) = f or (〈I, ∅〉,M,N )(ϕ2) = f iff (〈I, I1〉,M,N )(ϕ1) ∈ {b, f} for ev-
ery I1 ⊆ I or (〈I, I1〉,M,N )(ϕ2) ∈ {b, f} for every I1 ⊆ I (by the induction hypothesis)
iff (〈I, I1〉,M,N )(ϕ1 ∧ ϕ2) ∈ {b, f} for every I1 ⊆ I . The induction steps for the other
classical operators can be proven similarly.

By utilizing the previously proven lemmas, we can now show that under certain con-
ditions an MKNF interpretation pair satisfies a hybrid MKNF knowledge base if and
only if its p-counterpart p-satisfies the knowledge base. This fact is a direct consequence
of the following proposition, which in turn is crucial for the proof of the first faithfulness
theorem.
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Proposition 3.20 (Correspondence w.r.t. satisfaction). Let KG = (O,PG) be a consistent
ground hybrid MKNF knowledge base, (M,N) an MKNF interpretation pair, (M ′, N ′) its p-
counterpart where there is no rule in PG for which the body is undefined and the head is classically
false in (∗, 〈M ′, N ′〉, 〈M ′, N ′〉), and I ′ = 〈I, I1〉 a p-interpretation such that I ∈ M ∪ N and
I1 ⊆ I . Then it holds that (I, 〈M,N〉, 〈M,N〉)(KG) = t iff (I ′, 〈M ′, N ′〉, 〈M ′, N ′〉)(KG) ∈
{b, t} for every I ′.

Proof. We know by Definition 2.15 that KG = π(O)∧ π(PG). Consequently, we can prove
this proposition by proving that (I, 〈M,N〉, 〈M,N〉)(π(O)) = t holds if and only if it is
the case that (I ′, 〈M ′, N ′〉, 〈M ′, N ′〉)(π(O)) ∈ {b, t} for every I ′ as well as it is the case
that (I, 〈M,N〉, 〈M,N〉)(π(PG)) = t if and only if (I ′, 〈M ′, N ′〉, 〈M ′, N ′〉)(π(PG)) ∈ {b, t}
holds for every I ′. Since the ontology component is represented by a first-order formula
not containing any modal operators, the claim w.r.t. π(O) follows directly from Lemma
3.18 and Lemma 3.19.

So, we only need to prove that the claim also holds for the program component PG,
i.e. that it is the case that (I, 〈M,N〉, 〈M,N〉)(π(PG)) = t if and only if it holds that
(∗, 〈M ′, N ′〉, 〈M ′, N ′〉)(π(PG)) ∈ {b, t}. Due to Definition 2.15, we know that π(PG) con-
sists of a conjunction of implications of the form KH ⊂ KA1 ∧ . . . ∧ KAn ∧ notB1 ∧
. . . ∧ not Bm. First, we prove the claim for a single implication i, i.e. we show that
(I, 〈M,N〉, 〈M,N〉)(i) = t if and only if (∗, 〈M ′, N ′〉, 〈M ′, N ′〉)(i) ∈ {b, t}. An implica-
tion i in π(PG) is true in (I, 〈M,N〉, 〈M,N〉) iff its consequent is true; its implicant is false;
or both are undefined, regarding Definition 7 in [KAH11]. The previous holds iff KH

is true in (I, 〈M,N〉, 〈M,N〉); at least one KAi or notBj is false in (I, 〈M,N〉, 〈M,N〉);
or KH is undefined, all KAi and notBj are true or undefined and at least one KAi or
notBj is undefined in (I, 〈M,N〉, 〈M,N〉). According to Lemma 3.17, this is the case iff
KH is evaluated to t in (∗, 〈M ′, N ′〉, 〈M ′, N ′〉); some KAi is evaluated to one of f and
cf or some notBj is evaluated to f in (∗, 〈M ′, N ′〉, 〈M ′, N ′〉); or KH is evaluated to u,
all KAi and notBj are evaluated to one of t and u, and at least one KAi or notBj is
evaluated to u in (∗, 〈M ′, N ′〉, 〈M ′, N ′〉). Finally, the aforementioned holds iff the con-
sequent of i is evaluated to t in (∗, 〈M ′, N ′〉, 〈M ′, N ′〉); the implicant of i is evaluated to
one of f and cf in (∗, 〈M ′, N ′〉, 〈M ′, N ′〉); or both the implicant and the consequent of i
are evaluated to u in (∗, 〈M ′, N ′〉, 〈M ′, N ′〉). According to Table 3.1, i is mapped to t by
(∗, 〈M ′, N ′〉, 〈M ′, N ′〉) in all of these cases. This proves that if (I, 〈M,N〉, 〈M,N〉)(i) = t,
then (∗, 〈M ′, N ′〉, 〈M ′, N ′〉)(i) ∈ {b, t}.

In order to prove the other direction, we just have to show that these are all possible
cases where (∗, 〈M ′, N ′〉, 〈M ′, N ′〉)(i) ∈ {b, t}. According to Lemma 3.17, there cannot
be a modal K-atom KA in the implicant or the consequent of i such that it holds that
(∗, 〈M ′, N ′〉, 〈M ′, N ′〉)(KA) ∈ {b, st}, and also there cannot be a modal not-atom in the
implicant of i such that (∗, 〈M ′, N ′〉, 〈M ′, N ′〉)(notB) ∈ {b, st} holds. As a result, neither
the implicant of i nor the consequent of i can be evaluated to one of b and st in (M ′, N ′).
The only remaining case in which an implication is mapped to one of b and t, regarding
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Table 3.1, occurs when the implicant is evaluated to u and the consequent is evaluated
to cf . However, this case is already excluded by the definition of (M ′, N ′). Hence, both
directions of the claim hold for a single implication in π(PG). Since π(PG) constitutes
a conjunction of implications, the claim w.r.t. the program component follows directly
by the definition of the conjunction in Definition 7 of [KAH11] and Definition 3.6. The
same holds for the conjunction of π(O) and π(PG) and hence, this suffices to prove the
proposition for KG.

As the program component may be empty, the previous proposition obviously holds
for first-order formulas as well. As a result, we obtain the following corollary, where the
operator |= denotes the classical entailment relation of first-order logic.

Corollary 3.21. Let ϕ and ψ be two consistent closed first-order formulas. Then ϕ |= ψ if and
only if ϕ |=p ψ.

Proof. This is a direct consequence of Proposition 3.20 and the definition of the paracon-
sistent entailment relation in Definition 3.8.

Before we present the main faithfulness result w.r.t. the three-valued MKNF seman-
tics, we demonstrate that even a consistent hybrid MKNF knowledge base can have
p-models which do not correspond to any three-valued MKNF model. This fact moti-
vates the introduction of the additional condition on the p-interpretation pair (M ′, N ′)

in Proposition 3.20. By restricting the p-interpretations in Proposition 3.20 to those in
which no rule has an undefined body and a classically false head, we obtain the one-to-one
correspondence between three-valued MKNF models and p-models of hybrid MKNF
knowledge bases.

Example 3.22. Consider the following ground hybrid MKNF knowledge base KG.

P v ¬S

KP (a) ← notQ(a)

KQ(a) ← notP (a)

KR(a) ← notR(a)

KS(a) ← KR(a)

When only considering the program component, KR(a) has to be undefined in every
three-valued MKNF model (M,N) as well as in every p-model (M ′, N ′) of KG. For the
first two rules alone, there are three different models under both the three-valued and the
paraconsistent MKNF semantics. In particular, KP (a) takes each of the truth values t, u
and f in some model. Moreover, since KR(a) is undefined in every model of the program
component, KS(a) is also evaluated to u. Taking the ontology axiom into account, S(a)

has to be false or inconsistent in every p-interpretation in M ′, as well as false in every
interpretation inN . Hence, KS(a) cannot be undefined in the respective model under each
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of the two semantics anymore. Now, in the case of the paraconsistent MKNF semantics,
KS(a) can simply be evaluated to cf , resulting in a p-model. However, the mentioned
p-model would be the p-counterpart of an MKNF interpretation pair that evaluates the
head of the last rule to f and its body to u. This assignment does not yield a three-
valued MKNF model. As a consequence,KG only has two models under the three-valued
semantics such that there is one p-model that does not correspond to any three-valued
model, even though the knowledge base is consistent (in the sense that it has at least one
three-valued MKNF model). ♦

For the proof of the following theorem, we adapt the proof of Proposition 1 in [KAH11]
to our approach. Here, we may assume that π(KG) still equals π(O) ∧ π(PG) when con-
sidering three-valued MKNF models of KG and that the satisfaction relation in this case
is defined w.r.t. each I in M ∪ N , like in the case of p-satisfaction as defined in Defini-
tion 3.7. The previous is possible because the resulting three-valued semantics coincides
with the original semantics from [KAH11] when only considering ground hybrid MKNF
knowledge bases - as a result of the definition of the modal K-operator in Definition 7 of
[KAH11] and due to the fact that N ⊆ M in the definition of the satisfaction relation as
formulated in Definition 8 of [KAH11].

Theorem 3.23 (Faithfulness w.r.t. the three-valued MKNF semantics). Let KG = (O,PG)

be a consistent ground hybrid MKNF knowledge base, (M,N) an MKNF interpretation pair and
(M ′, N ′) its p-counterpart where there is no rule in PG for which the body is evaluated to u and
the head is evaluated to cf in (∗, 〈M ′, N ′〉, 〈M ′, N ′〉). Then (M,N) is a three-valued MKNF
model of KG if and only if (M ′, N ′) is a p-model of KG.

Proof. Assume that (M ′, N ′) is a p-model of KG, i.e. that (M ′, N ′) fulfills the three con-
ditions of Definition 3.10. We prove that (M,N) is a three-valued MKNF model of KG.
It follows from the first condition of Definition 3.10 that (I ′, 〈M ′, N ′〉, 〈M ′, N ′〉)(KG) ∈
{b, t} for each I ′ ∈M ′∪N ′ and thus, by Proposition 3.20, that (I, 〈M,N〉, 〈M,N〉)(KG) =

t for each I ∈ M ∪ N . The second condition states that for each p-interpretation pair
(M ′′, N ′′) with M ′ ⊆ M ′′ and N ′ ⊆ N ′′ where at least one of the inclusions is proper,
we have (〈I ′′, I1〉, 〈M ′′, N ′′〉, 〈M ′, N ′〉)(KG) 6∈ {b, t} for some 〈I ′′, I1〉 ∈ M ′′ ∪ N ′′. Due
to Proposition 3.20, we conclude that (I ′′, 〈M ′′, N ′′〉, 〈M,N〉)(KG) 6= t. Hence, we obtain
that also for any MKNF interpretation pair (M ′′, N ′′) with M ⊆ M ′′ and N ⊆ N ′′ where
at least one of the inclusions is proper it holds that (I ′′, 〈M ′′, N ′′〉, 〈M,N〉)(KG) 6= t for
some I ′′ ∈ M ′′ ∪ N ′′. Consequently, (M,N) fulfills the two conditions of Definition 9 in
[KAH11] and therefore, is a three-valued MKNF model of KG.

Now, assume that (M,N) is a three-valued MKNF model of KG. We prove that
(M ′, N ′) is a p-model ofKG. We know that (I, 〈M,N〉, 〈M,N〉)(KG) = t for each I ∈M ∪
N by condition (1) of Definition 9 in [KAH11]. Consequently, we obtain that it holds that
(I ′, 〈M ′, N ′〉, 〈M ′, N ′〉)(KG) ∈ {b, t} for each I ′ ∈M ′ ∪N ′ according to Proposition 3.20,
so that the first condition of Definition 3.10 is fulfilled. Moreover, as (M,N) is a three-
valued MKNF model of KG, we know that for all (M ′′, N ′′) with M ⊆ M ′′ and N ⊆ N ′′

65



3. MODEL-THEORETIC CHARACTERIZATION 3.8. Faithfulness of the Ontology Semantics w.r.t. ALC4

where at least one of the inclusions is proper, we have that (I ′′, 〈M ′′, N ′′〉, 〈M,N〉)(KG) 6=
t for some I ′′ ∈ M ′′ ∪ N ′′. We obtain that (〈I ′′, I1〉, 〈M ′′, N ′′〉, 〈M ′, N ′〉)(KG) 6∈ {b, t} for
every I1 ⊆ I ′′, again by Proposition 3.20. Hence, we infer that for any p-interpretation
pair (M ′′, N ′′) with M ′ ⊂M ′′ and N ′ ⊂ N ′′ where at least one of the inclusions is proper
we have that (I ′′, 〈M ′′, N ′′〉, 〈M ′, N ′〉)(KG) 6∈ {b, t} for some I ′′ ∈M ′′ ∪N ′′.

Regarding condition (3) of Definition 3.10, we just have to prove that for every Kξ ∈
KA(KG) it holds that (∗, 〈M,N〉, 〈M,N〉)(K ξ) = cf if and only if {π(O)} ∪ {ξ′ | K ξ′ ∈
KA(KG) and (∗, 〈M,N〉, 〈M,N〉)(K ξ′) = t} |=p ¬ξ because of the first item of Lemma
3.17. Let K ξ be an arbitrary K-atom in KA(KG). Now, due to Definition 3.6, it holds
that (∗, 〈M,N〉, 〈M,N〉)(K ξ) = cf iff (I, 〈M,N〉, 〈M,N〉)(ξ) = f for all I ∈ M because
otherwise there would be a p-interpretation in M ′ in which ξ is evaluated to t according
to the definition of (M ′, N ′). This in turn holds iff {π(O)} ∪ {ξ′ | K ξ′ ∈ KA(KG) and
(I, 〈M,N〉, 〈M,N〉)(Kξ′) = t for each I ∈M ∪N} |= ¬ξ since otherwise there would also
be an interpretation in M that evaluates ξ to t according to Proposition 3 in [KAH11]. By
means of Corollary 3.21 and Lemma 3.17, we derive that {π(O)}∪{ξ′ | Kξ′ ∈ KA(KG) and
(∗, 〈M ′, N ′〉, 〈M ′, N ′〉)(Kξ′) = t} |=p ¬ξ. This proves that (M ′, N ′) also fulfills condition
(3) of Definition 3.10 and hence, that it is a p-model of KG.

The following corollary to Theorem 3.23 lifts the faithfulness of total three-valued
MKNF models w.r.t. two-valued MKNF models to our paraconsistent semantics.

Corollary 3.24. Let KG = (O,PG) be a consistent ground hybrid MKNF knowledge base, M
an MKNF interpretation and (M ′,M ′) = ({〈I, I1〉 | I ∈ M and I1 ⊆ I}, {〈I, I1〉 | I ∈ M and
I1 ⊆ I}) a p-interpretation pair such that there is no rule in PG for which the body is evaluated
to u and the head is evaluated to cf in (∗, 〈M ′,M ′〉, 〈M ′,M ′〉). Then M is a two-valued MKNF
model of KG if and only if (M ′,M ′) is a p-model of KG.

Proof. This corollary is a direct consequence of Proposition 1 in [KAH11] and Theorem
3.23.

3.8 Faithfulness of the Ontology Semantics w.r.t. ALC4

Next, we consider the paraconsistent semantics assigned to a hybrid MKNF knowledge
base K with K = (O, ∅), i.e. a hybrid knowledge base where the program component is
empty such that our semantics effectively boils down to a paraconsistent ontology se-
mantics. As stated in Section 2.2, for the sake of a concise presentation, we only treat
ontologies expressed in the syntax of the expressive and widely used DLALC here. Nev-
ertheless, our framework can be extended to more expressive DLs such as SROIQ4 as
well. The results established in this section are twofold. Firstly, we show that every p-
interpretation 〈I, I1〉 in the sets M and N of a p-model (M,N) of a hybrid MKNF knowl-
edge base K = (O, ∅)3 corresponds to a 4-model of O ∪ LEM(O) and thus, that our

3We assume that O is expressed in the syntax of ALC.
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approach is faithful w.r.t. the semantics published in [MMH13]. Secondly, we obtain that
the consequences yielded by the p-entailment relation |=p w.r.t. π(O), which has been de-
fined in Definition 3.8 and will be used in the definition of the operatorDKG

in Definition
4.1, correspond to the consequences of the entailment relation |=ALC4 w.r.t. O ∪LEM(O)

presented in Section 2.2.
In Section 3.7, the p-counterpart of a three-valued MKNF interpretation pair has been

defined in order to derive the first faithfulness result. To show faithfulness in case of
the semantics of the ontology component, we adopt the same strategy and define the p-
counterpart of a 4-interpretation in the following definition. The notion of p-counterpart
is overloaded in this case, but it is clear from the context what it refers to. Furthermore,
just as in the case of the two first-order interpretations I and I1 forming a p-interpretation
I = 〈I, I1〉, we assume that 4-interpretations here also adhere to the Standard Name As-
sumption introduced in Section 2.4.2. This is a reasonable assumption since Maier et al.
describe an embedding of ALC4 into ALC [MMH13] and as mentioned already, the no-
tions of satisfiability w.r.t. interpretations complying with the Standard Name Assump-
tion and satisfiability w.r.t. unconstrained interpretations are equivalent in the case of
ALC.

Definition 3.25 (P-counterpart of a 4-interpretation). Let I be a 4-interpretation over
the signature (NI , NC , NR). Then, the p-interpretation 〈I, I1〉, where I1 ⊆ I , is the p-
counterpart of I if and only if the following conditions are fulfilled:

• For all a ∈ NI and all A ∈ NC it holds that:

– aI 6∈ AI if and only if aI 6∈ p+(AI) and aI ∈ p−(AI),

– aI ∈ AI if and only if aI ∈ p+(AI), and

– aI1 ∈ AI1 if and only if aI ∈ p+(AI) and aI ∈ p−(AI).

• For all a1, a2 ∈ NI and all r ∈ NR it holds that:

– (aI1, a
I
2) ∈ rI if and only if (aI1 , a

I
2 ) ∈ p+(rI), and

– (aI11 , a
I1
2 ) ∈ rI1 if and only if (aI1 , a

I
2 ) ∈ p+(rI) and (aI1 , a

I
2 ) ∈ p−(rI).

Due to Definition 3.25, obviously not every 4-interpretation has a p-counterpart. For
instance, if an atomic concept assertion A(a) is evaluated in a 4-interpretation such that
aI 6∈ p+AI and aI 6∈ p−AI , then there cannot exist a p-counterpart of I since neither
aI 6∈ AI nor aI ∈ AI is allowed in this case due to Definition 3.25. However, provided
a 4-interpretation I over a signature (NI , NC , NR) 4-models the set of axioms LEM(O)

w.r.t. an ontology O over the same signature, it is ensured that I has a p-counterpart
because then an atomic concept assertion cannot be evaluated to undefined in I.

In addition, note that according to Definition 3.25, every p-interpretation is the p-
counterpart of one or more 4-interpretations. Hence, the mapping of 4-interpretations
satisfying LEM(O) to their p-counterpart is surjective, but not injective. The reason
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for the latter fact is that role assertions can still be undefined in a 4-interpretation that
satisfies the set of axioms LEM(O) and a similar set of axioms regarding roles cannot
be formulated in the syntax of ALC (and even not in the one of SROIQ4) according to
Maier et al. On the basis of the previous definition we can formulate and prove the main
faithfulness result w.r.t. the ontology component, from which the two results mentioned
above follow directly as corollaries. In order to prove the faithfulness theorem, we recall
the following proposition established in the paper by Maier et al. [MMH13].

Proposition 3.26 (Characterization of LEM(O) [MMH13]). Let O be an ontology. A 4-
interpretation I is a 4-model of LEM(O) if and only if for each concept C of O it holds that
p+(CI) ∪ p−(CI) = ∆I .

Proof. The original proof can be found in the paper by Maier et al. [MMH13].

The following proposition shows that the truth assignments of 4-interpretations and
their p-counterpart correspond w.r.t. concept and role assertions.

Proposition 3.27 (Correspondence w.r.t. concept and role assertions). LetO be an ontology
expressed in the syntax of the DL ALC, C(a) a complex concept assertion and r(a1, a2) a role
assertion in O, I a 4-interpretation such that it holds for each concept C of O that p+(CI) ∪
p−(CI) = ∆I and 〈I, I1〉 the p-counterpart of I. Then it holds that

• aI ∈ p+(CI) if and only if (〈I, I1〉,M,N )(π(C(a))) ∈ {b, t},

• aI ∈ p−(CI) if and only if (〈I, I1〉,M,N )(π(C(a))) ∈ {b, f}, and

• (aI1 , a
I
2 ) ∈ p+(rI) if and only if (〈I, I1〉,M,N )(π(r(a1, a2))) ∈ {b, t}.

Proof. We begin by proving the claim regarding a role assertion r(a1, a2). It holds that
(aI1 , a

I
2 ) ∈ p+(rI) iff (aI1, a

I
2) ∈ rI (due to Definition 3.25) iff (〈I, I1〉,M,N )(π(r(a1, a2))) ∈

{b, t} is the case (according to Definition 3.6).
The proof of the first two claims is done simultaneously by a structural induction on

the structure of C. Let a be an individual in NI . We consider three base cases, namely
that the concept assertion is of the form⊥(a),>(a) orA(a), whereA is an atomic concept.
In the case of ⊥(a) and >(a) the claim follows directly because ⊥I = 〈∅,∆I〉 and π(⊥(a))

is evaluated to f in every 4-interpretation, and >I = 〈∆I , ∅〉 and π(>(a)) is evaluated to
t in every 4-interpretation. Given an atomic concept assertion A, aI ∈ p+(AI) holds iff
aI ∈ AI (due to Definition 3.25) iff it is the case that (〈I, I1〉,M,N )(π(A(a))) ∈ {b, t} (by
Definition 3.6). Additionally, it holds that aI ∈ p−(AI) iff aI 6∈ AI or aI1 ∈ AI1 (due to
Definition 3.25) iff (〈I, I1〉,M,N )(π(A(a))) ∈ {b, f} is the case (by Definition 3.6).

Now, assume that the claim holds for the concept description C and consider the
concept description ¬C. Then aI ∈ p+((¬C)I) holds iff aI ∈ p−(CI) (according to Table
2.1) iff (〈I, I1〉,M,N )(π(C(a))) ∈ {b, f} (by the induction hypothesis) iff it is the case

4Maier et al. note that there is an extension of SROIQ that could possibly express such axioms for roles,
introduced in [RKH08].
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that (〈I, I1〉,M,N )(π(¬C(a))) ∈ {b, t} (by Definition 3.6). In addition, aI ∈ p−((¬C)I)

holds iff aI ∈ p+(CI) (according to Table 2.1) iff (〈I, I1〉,M,N )(π(C(a))) ∈ {b, t} (by
the induction hypothesis) iff (〈I, I1〉,M,N )(π(¬C(a))) ∈ {b, f} is the case (by Definition
3.6).

Next, we perform the induction step for the DL-operator u. So, assume that the
claim holds for the concept descriptions C1 and C2 and consider the concept description
C1 u C2. Then aI ∈ p+((C1 u C2(a))I) holds iff aI ∈ p+(CI1 ) and aI ∈ p+(CI2 ) (accord-
ing to Table 2.1) iff (〈I, I1〉,M,N )(π(C1(a))) ∈ {b, t} and (〈I, I1〉,M,N )(π(C1(a))) ∈
{b, t} (by the induction hypothesis) iff it is the case that (〈I, I1〉,M,N )(π(C1 uC2(a))) ∈
{b, t} (by Definition 3.6). In addition, it holds that aI ∈ p−((C1 u C2(a))I) iff aI ∈
p−(CI1 ) or aI ∈ p−(CI2 ) (according to Table 2.1) iff (〈I, I1〉,M,N )(π(C1(a))) ∈ {b, f}
or (〈I, I1〉,M,N )(π(C1(a))) ∈ {b, f} (by the induction hypothesis) iff it is the case that
(〈I, I1〉,M,N )(π(C1 u C2(a))) ∈ {b, f} (by Definition 3.6).

Now, assume that r is a role name and that the claim holds for the concept descrip-
tion C. Consider the concept description ∃r.C. In this case, aI ∈ p+((∃r.C(a))I) holds
iff ∃y.[(a, y) ∈ p+(rI) ∧ y ∈ p+(CI)] (according to Table 2.1) iff there is a y ∈ ∆I s.t.
(a, y) ∈ p+(rI) and y ∈ p+(CI) iff there is a y ∈ ∆ s.t. (〈I, I1〉,M,N )(π(r(a, y))) ∈ {b, t}
and (〈I, I1〉,M,N )(π(C(y))) ∈ {b, t} (by the induction hypothesis) iff it is the case
that (〈I, I1〉,M,N )(π(∃r.C(a))) ∈ {b, t} (by Definition 3.6). Moreover, it holds that
aI ∈ p−((∃r.C(a))I) iff ∀y.[(a, y) ∈ p+(rI) → y ∈ p−(CI)] (according to Table 2.1) iff
for all y ∈ ∆I it holds that (a, y) ∈ p+(rI) implies that y ∈ p−(CI) iff for all y ∈ ∆ it holds
that (〈I, I1〉,M,N )(π(r(a, y))) ∈ {b, t} implies that (〈I, I1〉,M,N )(π(C(y))) ∈ {b, f} (by
the induction hypothesis) iff (〈I, I1〉,M,N )(π(∃r.C(a))) ∈ {b, f} (by Definition 3.6).

The induction steps for the other constructors contained in the syntax of ALC can be
shown similarly.

On the basis of the previous proposition, the main faithfulness result of this section
can be shown next.

Theorem 3.28 (Faithfulness w.r.t.ALC4). LetO be an ontology expressed in the syntax ofALC
and I a 4-interpretation such that it holds for each concept C ofO that p+(CI)∪ p−(CI) = ∆I .
Then I is a 4-model of O if and only if its p-counterpart 〈I, I1〉 p-satisfies π(O).

Proof. A 4-interpretation I is a 4-model of O if and only if it is a 4-model of the ABox A
and the TBox T of O. It is a 4-model of A if and only if it is a 4-model of all role and
concept assertions in A. The previous is the case if and only if aI ∈ p+(CI) holds for all
concept assertions C(a) ∈ A and (aI1 , a

I
2 ) ∈ p+(rI) holds for all role assertions r(a1, a2) ∈

A. According to Proposition 3.27, this holds if and only if (〈I, I1〉,M,N )(π(C(a))) ∈
{b, t} and (〈I, I1〉,M,N )(π(r(a1, a2))) ∈ {b, t} holds for all C(a), r(a1, a2) ∈ A. As π(A)

is a conjunction of first-order formulas corresponding to the role and concept assertions
in A, we obtain that the following is the case if and only if (〈I, I1〉,M,N )(π(A)) ∈ {b, t}
holds and hence, if and only if 〈I, I1〉 p-satisfies the first-order translation of the ABox of
O, due to Definition 3.8.
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Now, we consider the TBox of O. The 4-interpretation I is a 4-model of T if and only
if it is a 4-model of each GCI in T . We know due to Table 2.1 that it is a 4-model of a GCI
of the form C1 v C2 if and only if it is the case that p+(CI1 ) ⊆ p+(CI2 ). The previous holds
if and only if for every individual a ∈ NI we have that aI ∈ p+(CI1 ) implies that aI ∈
p+(CI2 ). Due to Proposition 3.27, this is the case if and only if (〈I, I1〉,M,N )(π(C1(a))) ∈
{b, t} implies that (〈I, I1〉,M,N )(π(C2(a))) ∈ {b, t}. The previous is the case if and only
if (〈I, I1〉,M,N )(π(C1 v C2)) ∈ {b, t} holds for every GCI C1 v C2 in T and thus, if and
only if 〈I, I1〉 also p-satisfies π(T ), according to Definition 3.8. Since π(O) = π(A)∧π(T ),
we can conclude that I is a 4-model of O if and only if 〈I, I1〉 p-satisfies π(O).

The two results mentioned in the beginning of this section now follow directly as
corollaries to Theorem 3.28. Firstly, it follows that the p-interpretations in the two sets of
a p-model correspond to 4-models in ALC4.

Corollary 3.29. Let K = (O, ∅) be a hybrid MKNF knowledge base, where O is expressed in the
syntax of ALC, and (M,N) a p-model of K. Then every p-interpretation 〈I, I1〉 ∈M ∪N is the
p-counterpart of a 4-interpretation I such that I is a 4-model of O ∪ LEM(O).

Proof. Since every p-interpretation 〈I, I1〉 ∈M∪N p-satisfies π(O) due to Definition 3.10,
the corollary follows directly from Theorem 3.28.

Secondly, the notions of p-entailment and entailment in ALC4 coincide as well.

Corollary 3.30 (Correspondence of p-entailment and entailment in ALC4). Let O be an
ontology expressed in the syntax of ALC and A an ALC-axiom. Then O ∪ LEM(O) |=ALC4 A
if and only if π(O) |=p π(A).

Proof. It holds that O ∪ LEM(O) |=ALC4 A if and only if every 4-model of O ∪ LEM(O)

is also a 4-model of O ∪ LEM(O) ∪ {A}. According to Theorem 3.28, a 4-interpretation
I is a 4-model of O ∪ LEM(O) if and only if its p-counterpart 〈I, I1〉 p-satisfies π(O),
and it is a 4-model of O ∪ LEM(O) ∪ {A} if and only if 〈I, I1〉 p-satisfies π(O ∪ {A}).
Consequently, π(O) |=p π(A) holds if and only if the previous is the case.

Consequently, algorithms developed for ALC4 can be used to derive consequences
from the ontology in the alternating fixpoint construction presented in the next Chapter.

3.9 The Well-Founded Paraconsistent Model

It is obvious from Example 3.12 that there can be several p-models for a given ground hy-
brid MKNF knowledge base. As has already been hinted, we aim at singling out one spe-
cific p-model for every hybrid MKNF knowledge base which is the most “skeptical” p-
model in that it makes the least assumptions about knowledge contained in a knowledge
base being either “true” or not “true or undefined”. This notion of “skeptical” reasoning
is realized by a p-model that assumes the least possible number of modal K-atoms to
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be either true (resp. inconsistent or suspiciously true) or false (resp. inconsistent, suspiciously
true, or classically false) by leaving everything undefined that is not evaluated either to one
of the formerly mentioned truth values, or to one of the latter values, in all p-models of a
knowledge base.

Next, we provide a formal definition of a p-model which has the mentioned property.
For this purpose, we adapt the notion of a well-founded MKNF model from [KAH11]. The
following two definitions are taken directly from [KAH11] and adapted to our frame-
work. As Knorr et al. note, MKNF interpretation pairs can be compared by defining an
order which is similar to the knowledge order used in logic programming [KAH11]. The
same can be done in the case of p-interpretation pairs.

Definition 3.31 (Knowledge order of p-interpretation pairs). Let (M1, N1) and (M2, N2)

be p-interpretation pairs. We have that (M1, N1) �k (M2, N2) iff M1 ⊆M2 and N1 ⊇ N2.

Regarding the truth evaluation w.r.t. a p-interpretation pair, the truth value undefined
is the least element of the order induced by the previous definition. For instance, a p-
interpretation pair (M2, N2) interpreting an MKNF formula only consisting of a single K-
atom which is evaluated to u by (M2, N2) is smaller in the order than any p-interpretation
pair (M1, N1) that evaluates the atom to another truth value. The order defined in Defi-
nition 3.31 can now be applied for comparing p-models.

Definition 3.32 (Well-founded paraconsistent model). LetKG be a ground hybrid MKNF
knowledge base and (M,N) a p-model of KG such that (M1, N1) �k (M,N) for all p-
models (M1, N1) of KG. Then (M,N) is a well-founded paraconsistent model (or well-founded
p-model) of KG.

Consequently, the well-founded p-model of a hybrid MKNF knowledge base is the
one that leaves as much as possible undefined. At the same time, a modal K-atom is incon-
sistent, suspiciously true or true in the well-founded p-model of a hybrid MKNF knowl-
edge base KG if and only if it is inconsistent, suspiciously true or true in every p-model of
KG; and it is false, inconsistent, suspiciously true, or classically false in the well-founded p-
model KG if and only if it is false, inconsistent, suspiciously true, or classically false in every
p-model of KG. This property will be proven in Chapter 4.

A well-founded p-model of a hybrid MKNF knowledge base always exists and it
is unique, as the following theorem states. The same theorem w.r.t. three-valued well-
founded MKNF models occurs nearly identical in the publication by Knorr et al. [KAH11].

Theorem 3.33 (Existence and uniqueness of p-models). If K is a DL-safe hybrid MKNF
knowledge base where the DL ALC is used for formalizing the ontology component, then a well-
founded p-model exists, and it is unique.

The restriction on the syntax of the DL used for formalizing the ontology compo-
nent in the previous theorem is imposed in order to ensure that the ontology is always
p-satisfied by some p-interpretation. According to Maier et al. [MMH13], it can be guar-
anteed that a 4-model of an ALC4-ontology exists. Nevertheless, this result can also be
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obtained if the syntax of the DL used in the ontology component is extended by certain
additional constructs, such as number restrictions and role composition [MMH13]. In the
remainder of this thesis, we assume that the DL used for expressing the ontology com-
ponent of a hybrid MKNF knowledge base always admits a 4-model.

The proof of the theorem is postponed until Chapter 4, where we show how the well-
founded p-model of a knowledge base can be obtained by means of an alternating fix-
point construction. There, we will show the correctness and completeness of this pro-
cedural characterization w.r.t. the model-theoretic definition of well-founded p-models
presented here, such that Theorem 3.33 will be a direct consequence of this proof.

It is now possible to check that one of the three p-models of the knowledge base KG
in Example 3.12 is in fact the well-founded p-model of KG.

Example 3.34. Consider again the ground hybrid MKNF knowledge base KG discussed
in Example 3.12. As we have seen, this knowledge base has three p-models resulting
from a recursion through default negation in the second and the third MKNF rule. We
recall these two rules here.

Krisk(food) ← not isLabelled(food).

K isLabelled(food) ← notrisk(food).

Let (M1, N1), (M2, N2) and (M,N) be the three p-models of the two MKNF rules alone,
corresponding to the p-models obtained by the first, second and third option presented
in Example 3.12, respectively. Since the K-atom K risk(food) is true in (M1, N1), risk(food)

is not false in any p-interpretation inM1 orN1 and it is true in at least one p-interpretation
in M1, according to the definition of the K-operator in Definition 3.6. On the other hand,
isLabelled(food) is false in at least one p-interpretation inM1 andN1, and it is true in at least
one p-interpretation in M1 because K isLabelled(food) is false in (M1, N1). Regarding the
p-model (M,N), both K-atoms K risk(food) and K isLabelled(food) are undefined. Hence,
risk(food) and isLabelled(food) are false as well as true in at least one p-interpretation in M ,
and they are both not false in any p-interpretation in N , by Definition 3.6. Consequently,
it holds that M1 ⊆ M and N1 ⊇ N since M , N1, M1 and N are the maximal sets having
the mentioned properties (due to knowledge minimization by condition (2) of Definition
3.10). As a result, we obtain that (M1, N1) �k (M,N). By the same line of reasoning,
(M2, N2) �k (M,N) holds as well. According to Definition 3.32, (M,N) is in fact the
well-founded p-model of KG, at least when only considering the second and the third
rule. It can be shown that the same holds when considering the whole knowledge base
KG. ♦

72



3. MODEL-THEORETIC CHARACTERIZATION 3.10. Finite Representations of Paraconsistent MKNF Models

3.10 Finite Representations of Paraconsistent MKNF Models

As described by Knorr et al. [KAH11] and originally proposed by Motik and Rosati
[MR10], we also aim at having a finite model-representation in the case of paraconsis-
tent MKNF models, which is not given if the domain is countably infinite [KAH11]. For
this purpose, we represent a p-model by means of two finite first-order formulas obtained
via the objective knowledge defined in Definition 3.9, so that the sets of p-interpretations
that satisfy them correspond to the given p-model. For this, we extend Definition 15 from
[KAH11] and speak of a pair of subsets induced by a paraconsistent MKNF interpretation
pair, instead of a partition, as K-atoms can be in T and F at the same time now according
to the following definition.

Definition 3.35 (The induced pair of a p-model). Given a set S of ground K-atoms and
a p-interpretation pair (M,N), the pair (T, F ) of subsets of S is induced by (M,N) as
follows:

(1) Kξ ∈ T if and only if (∗, 〈M,N〉, 〈M,N〉)(Kξ) ∈ {b, st, t}, and

(2) Kξ ∈ F if and only if (∗, 〈M,N〉, 〈M,N〉)(Kξ) ∈ {b, st, f , cf}.

The statement expressed by the following lemma corresponds to the Coherence Prin-
ciple and thus, postulates that classical negation implies negation by failure in the model-
theoretic definition of our semantics.

Lemma 3.36 (The Coherence Principle w.r.t. model-theoretic definition). Let (M,N) be a
p-model of a ground hybrid MKNF knowledge base KG = (O,PG), (T, F ) the pair of subsets of
KA(KG) induced by (M,N) and K ξ a K-atom in KA(KG). Then OBO,T |=p ¬ξ implies that
Kξ ∈ F .

Proof. Condition (3) of Definition 3.10 states that OBO,T |=p ¬ξ holds if and only if it is
the case that (∗, 〈M,N〉, 〈M,N〉)(Kξ) ∈ {b, cf}. From case (2) of Definition 3.35, we can
directly infer that Kξ has to be in F .

Obviously, we also know that the contrapositive of Lemma 3.36 is true, namely that
if some K-atom K ξ is not in F , then we also have that OBO,T 6|=p ¬ξ. We will use this
property in the proof of Proposition 3.37, which provides a means to obtain a p-model
from the pair induced by that model. This result will also be used to show that the p-
model we compute by means of the fixpoint calculation introduced in the next chapter is
in fact the well-founded p-model.

Knorr et al. show that the finite representations induced by three-valued MKNF mod-
els correspond exactly to the given three-valued MKNF model. We adapt their result to
the notion of the induced pair of a p-model defined in Definition 3.35. The following
proposition and its proof are similar to Proposition 3 and the corresponding proof in
[KAH11].
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Proposition 3.37 (Correspondence of p-models and the induced pair). Let (M,N) be a
p-model of a ground hybrid MKNF knowledge base KG = (O,PG), and (T, F ) the pair of
subsets of KA(KG) induced by (M,N). Then (M,N) = ({I | I |=p OBO,T }, {I | I |=p

OBO,KA(KG)\F }).

Proof. Given a ground hybrid MKNF knowledge base KG = (O,PG), let (M,N) be a p-
model of KG, (T, F ) the pair of subsets of KA(KG) induced by (M,N), and (M ′, N ′) =

({I | I |=p OBO,T }, {I | I |=p OBO,KA(KG)\F }). We prove that (M,N) = (M ′, N ′).
First, we prove M ⊆M ′. Accordingly, we prove that for each p-interpretation I ∈M

it holds that I ∈ M ′ = {I | I |=p OBO,T }, i.e. that I |=p {π(O)} and I |=p {ξ | K ξ ∈
T}. Since (M,N) is a p-model of KG, we know that (M,N) |=p π(O). Thus, we have
that I |=p π(O) for each I ∈ M . Now, consider each K ξ ∈ T . Since (M,N) induces
the pair (T, F ), we know that (∗, 〈M,N〉, 〈M,N〉)(K ξ) ∈ {b, st, t}. Thus, we obtain
(I, 〈M,N〉, 〈M,N〉)(ξ) = {b, t} for each I ∈ M by Definition 3.6, and therefore, I |=p ξ

for each I ∈ M . This proves that I |=p OBO,T for each I ∈ M . Hence, for each I ∈ M it
holds that I ∈M ′ and consequently, M ⊆M ′.

Next, we prove N ⊆ N ′. So, we have to prove that for each I ∈ N it holds that I ∈
N ′ = {I | I |=p OBO,KA(KG)\F }, i.e. that I |=p {π(O)} and I |=p {ξ | Kξ ∈ KA(KG) \ F}.
Again, since (M,N) |=p π(O), we know that I |=p π(O) for each I ∈ N . Consider each
Kξ ∈ KA(KG) with Kξ 6∈ F . By Definition 3.35, we know that (∗, 〈M,N〉, 〈M,N〉)(Kξ) 6∈
{b, st, f , cf} and hence, that (∗, 〈M,N〉, 〈M,N〉)(K ξ) ∈ {t,u}. Thus, by Definition 3.6,
we obtain that (I, 〈M,N〉, 〈M,N〉)(ξ) = {b, t} for each I ∈ N and therefore, also that
I |=p ξ for each I ∈ N . This suffices to prove that I |=p OBO,KA(KG)\F for each I ∈ N , i.e.
that I ∈ N ′ for each I ∈ N , from which N ⊆ N ′ follows.

We now prove that in fact (M,N) = (M ′, N ′), i.e. M = M ′ and N = N ′. So, assume
the contrary, namely that (M ′, N ′) is a p-interpretation pair with M ⊆ M ′ and N ⊆ N ′

where at least one of the inclusions is proper. We prove that (I ′, 〈M ′, N ′〉, 〈M,N〉)(KG) ∈
{b, t} for each I ′ ∈ M ′ ∪N ′. In this way, we derive a contradiction to (M,N) being a p-
model of KG. For the former, it is enough to prove that (I ′, 〈M ′, N ′〉, 〈M,N〉)(π(O) ∧
π(PG)) ∈ {b, t} for each I ′ ∈ M ′ ∪ N ′. By definition of M ′ and N ′ we know that
(I ′, 〈M ′, N ′〉, 〈M,N〉)(π(O)) ∈ {b, t} for each I ′ ∈ M ′ ∪ N ′. We only have to prove
the same for π(PG). We achieve this by proving that for each possible combination of
the cases in Definition 3.35, the modal atoms appearing in π(PG) are evaluated to iden-
tical truth values in the p-structures (∗, 〈M,N〉, 〈M,N〉) and (∗, 〈M ′, N ′〉, 〈M,N〉). Since
(M,N) being a p-model of KG ensures that (∗, 〈M,N〉, 〈M,N〉)(π(PG)) ∈ {b, t}, this suf-
fices to prove that (∗, 〈M ′, N ′〉, 〈M,N〉)(π(PG)) ∈ {b, t}. So, consider an arbitrary K-atom
Kξ in KA(KG).

• Suppose that K ξ ∈ T and OBO,T |=p ¬ξ. From Definition 3.35 and condition (3)
of Definition 3.10, it follows that (∗, 〈M,N〉, 〈M,N〉)(Kξ) = b. By definition of M ′,
we obtain (I ′, 〈M ′, N ′〉, 〈M,N〉)(ξ) ∈ {b, t} for each I ′ ∈ M ′. Because we have
that OBO,T |=p ¬ξ, we conclude (I ′, 〈M ′, N ′〉, 〈M,N〉)(ξ) = t is not possible for any
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I ′ ∈M ′. Hence, by Definition 3.6, we obtain (∗, 〈M ′, N ′〉, 〈M,N〉)(Kξ) = b as well.

• Suppose that Kξ ∈ T , Kξ ∈ F and OBO,T 6|=p ¬ξ. From Definition 3.35 and condi-
tion (3) of Definition 3.10, it follows that (∗, 〈M,N〉, 〈M,N〉)(Kξ) = st. We obtain
(I ′, 〈M ′, N ′〉, 〈M,N〉)(ξ) ∈ {b, t} for each I ′ ∈M ′ by definition of M ′ as in the pre-
vious case. Since we have that OBO,T 6|=p ¬ξ, we derive (I ′, 〈M ′, N ′〉, 〈M,N〉)(ξ) =

t for some I ′ ∈ M ′. We know that (I, 〈M,N〉, 〈M,N〉)(ξ) = f for some I ∈ N by
Definition 3.6 and sinceN is a subset ofN ′, the same holds for some I ∈ N ′. Hence,
by Definition 3.6, we obtain (∗, 〈M ′, N ′〉, 〈M,N〉)(Kξ) = st as well.

• Suppose that Kξ ∈ T and Kξ 6∈ F . It follows that (∗, 〈M,N〉, 〈M,N〉)(Kξ) = t by
Definition 3.35. We obtain (I ′, 〈M ′, N ′〉, 〈M,N〉)(ξ) ∈ {b, t} for each I ′ ∈M ′∪N ′ by
definition ofM ′ andN ′. From the fact that Kξ is not in F , we can infer OBO,T 6|=p ¬ξ
due to Lemma 3.36. Thus, we derive that (I ′, 〈M ′, N ′〉, 〈M,N〉)(ξ) = t for some
I ′ ∈M ′. Hence, by Definition 3.6, we obtain (∗, 〈M ′, N ′〉, 〈M,N〉)(Kξ) = t as well.

• Suppose that K ξ 6∈ T , K ξ ∈ F and OBO,T 6|=p ¬ξ. From Definition 3.35 and
condition (3) of Definition 3.10, it follows that (∗, 〈M,N〉, 〈M,N〉)(K ξ) = f . We
know that (I, 〈M,N〉, 〈M,N〉)(ξ) = f for some I ∈ M and for some I ∈ N by
Definition 3.6 and since M is a subset of M ′ and N is a subset of N ′, the same holds
for some I ′ ∈ M ′ and for some I ′ ∈ N ′. As we also have that OBO,T 6|=p ¬ξ, we
conclude (I ′, 〈M ′, N ′〉, 〈M,N〉)(ξ) = t for some I ′ ∈ M ′. Hence, by Definition 3.6,
we obtain (∗, 〈M ′, N ′〉, 〈M,N〉)(Kξ) = f as well.

• Suppose that K ξ 6∈ T and OBO,T |=p ¬ξ. From Definition 3.35 and condition (3)
of Definition 3.10, it follows that (∗, 〈M,N〉, 〈M,N〉)(K ξ) = cf . As before, we
can derive (I ′, 〈M ′, N ′〉, 〈M,N〉)(ξ) = f for some I ′ ∈ M ′. Since we have that
OBO,T |=p ¬ξ, we conclude (I ′, 〈M ′, N ′〉, 〈M,N〉)(ξ) = t is not possible for any
I ′ ∈ M ′. Hence, by Definition 3.6, we obtain (∗, 〈M ′, N ′〉, 〈M,N〉)(K ξ) = cf as
well.

• Suppose that K ξ 6∈ T and K ξ 6∈ F . It follows that (∗, 〈M,N〉, 〈M,N〉)(K ξ) = u,
by Definition 3.35. We know that (I, 〈M,N〉, 〈M,N〉)(ξ) = f for some I ∈ M

by Definition 3.6 and since M is a subset of M ′, the same holds for some I ′ ∈
M ′. Because K ξ is not in F , we can infer that OBO,T 6|=p ¬ξ by Lemma 3.36. We
conclude (I ′, 〈M ′, N ′〉, 〈M,N〉)(ξ) = t for some I ′ ∈ M ′. Additionally, we know
that (I ′, 〈M ′, N ′〉, 〈M,N〉)(ξ) ∈ {b, t} for each I ′ ∈ N ′ by definition of N ′. Hence,
by Definition 3.6, we obtain (∗, 〈M ′, N ′〉, 〈M,N〉)(Kξ) = u as well.

• For modal not-atoms appearing in π(PG) we directly obtain the identical evalua-
tions because they are interpreted w.r.t. (M,N) in each case.

Consequently, we obtain a contradiction to (M,N) being a p-model of KG and con-
clude that (M,N) = (M ′, N ′).
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As discussed in Section 3.6, dependencies on contradictions that occur in the pro-
gram component are propagated via the ontology, while dependencies on contradic-
tions that can be derived without involving inconsistent knowledge from the program
component are not propagated in our framework. It has been illustrated in Example
3.13 and Example 3.14 that this behavior can be achieved by deliberately relaxing the
conditions for a modal K-formula being interpreted with the truth value b in Defini-
tion 3.6. As a result, a K-formula is evaluated to b in a p-interpretation pair (M,N) if
and only if (

⋂
J∈M J , 〈M,N〉,N )(H) = b, and either (

⋂
J∈N J , 〈M,N〉,N )(H) 6= f or

(
⋂
J∈N J , 〈M,N〉,N )(H) = f holds. Hereby, inconsistencies interpreted in the former

way are propagated via the ontology, while those which are defined in the latter way
are not. The following corollary to Proposition 3.37 demonstrates that those K-atoms
which are interpreted with b such that (

⋂
J∈N J , 〈M,N〉,N )(H) 6= f are indeed those

modal K-atoms which can be derived from the ontology without involving any contra-
dictory knowledge from the program component (i.e. from the ontology and true as well
as undefined K-atoms alone). It might seem unintuitive that we have to consider undefined
K-atoms here as well. However, this results from the fact that Contradiction Support De-
tection is not complete and fails whenever a contradictory K-atom can also be derived
from undefined knowledge, as described in Section 2.3.3. Corollary 3.38 is used in the
proof of Proposition 4.18 in Chapter 5 to distinguish between inconsistencies that are
propagated within the ontology and those which are not.

Corollary 3.38. Let (M,N) be a p-model of a ground hybrid MKNF knowledge baseKG and KH

a K-atom in KA(KG). Then (
⋂
J∈M J , 〈M,N〉,N )(H) = b and (

⋂
J∈N J , 〈M,N〉,N )(H) 6=

f if and only if OBO,T |=p H , OBO,T |=p ¬H and OBO,{KH′|(∗,〈M,N〉,〈M,N〉)(KH′)∈{t,u}} |=p H .

Proof. The corollary follows directly from Definition 3.35 and Proposition 3.37.
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Alternating Fixpoint Characterization

In this chapter, we show how the well-founded p-model of a hybrid MKNF knowledge
base introduced in the last chapter can be obtained procedurally by means of an alternat-
ing fixpoint computation. Since the ontology component is considered as an oracle in this
computation, the procedural definition of well-founded p-models reflects the alternating
fixpoint computation of the paraconsistent well-founded model of an extended logic pro-
gram in WFSXp, which has been presented in Section 2.3.2. In addition, the algorithm
for obtaining the paraconsistent well-founded model of WFSXp works basically iden-
tical to the algorithm for obtaining the consistent well-founded model of WFSX (the
precursor of WFSXp not accounting for paraconsistent reasoning) in that only one con-
dition has to be relaxed [Dam96]. Knorr et al. [KAH08] adapt the latter construction in
their approach by following the principle of computing a fixpoint by alternately apply-
ing two anti-monotonic Γ-operators (defined for hybrid MKNF knowledge bases in this
case) and by using a transformation of a knowledge base resembling the semi-normal
version for LPs in order to enforce the Coherence Principle (at least in the version of
the approach presented in [KAH08]). Consequently, our definitions underlying the alter-
nating fixpoint construction of a well-founded p-model closely resemble the definitions
provided by Knorr et al. in [KAH11], and can partly be adopted directly. Additionally,
several results concerning the alternating fixpoint construction carry over directly from
[KAH11], so that we will just refer to the proofs given by Knorr et al. in these cases.
Accordingly, it also holds for the alternating fixpoint construction employed here that a
least fixpoint can always be obtained provided the DL used for formalizing the ontology
component adheres to the restrictions imposed in Theorem 3.33.

At the same time, the details of the proofs showing the correspondence between the
procedural and the declarative characterization of our semantics become more intricate
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due to the fact that six different truth values have to be accounted for. After the adapta-
tion of the alternating fixpoint construction from [KAH11] to our approach, we will first
show that the well-founded pair of a hybrid MKNF knowledge base obtained by this con-
struction corresponds to a p-model of the knowledge base. Afterwards, we will prove
that it exactly corresponds to the well-founded p-model of a knowledge base, i.e. that
the construction is sound and complete w.r.t. the model-based definition of well-founded
p-models. Since a least fixpoint of the construction always exists, the latter result im-
plies that a unique well-founded p-model exists for every hybrid MKNF knowledge base
in case the ontology component of the knowledge base is always p-satisfied by some
p-interpretation. On the basis of the formalization of our paraconsistent well-founded
hybrid MKNF semantics, the faithfulness result w.r.t. the semantics of WFSXp for LPs
follows straightforwardly due to the close relation between the different formalizations
of the alternating fixpoint constructions applied in the two approaches. Furthermore,
we will discuss the complexity of computing the well-founded p-model by means of the
alternating fixpoint construction in the end of this chapter.

4.1 Derivation of Immediate Consequences

We begin by defining how the set of all modal K-atoms that can be derived from a positive
ground hybrid MKNF knowledge base, i.e. a hybrid MKNF knowledge base where all
MKNF rules in the program component are positive according to Definition 2.13, can
be obtained. The following definition is adapted from Definition 16 in [KAH11] to our
framework.

Definition 4.1 (Immediate consequence operators). Let KG = (O,PG) be a positive,
ground hybrid MKNF knowledge base. The operators RKG

, DKG
, TKG

and T ′KG,C are
defined on subsets of KA(KG) as follows.

RKG
(S) = {KH | PG contains a rule of the form KH ← KA1, . . . ,KAn

such that, for all i, 1 ≤ i ≤ n, KAi ∈ S}
DKG

(S) = {Kξ | Kξ ∈ KA(KG) and OBO,S |=p ξ}

TKG
(S) = RKG

(S) ∪DKG
(S)

T ′KG,C(S) = (RKG
(S) ∪DKG

(S)) \ {Kξ | Kξ ∈ KA(KG) and OBO,C |=p ¬ξ}

In contrast to the T -operator presented in Section 2.3, which is applied repeatedly
w.r.t. a positive logic program to derive all of its consequences and thus, to compute
its minimal model, the operators TKG

and T ′KG,C introduced in the previous definition
integrate the results of two “sub-operators”, RKG

and DKG
. While the operator RKG

derives consequences from the program component just like the T -operator in the case of
LPs, the operator DKG

derives all modal K-atoms which are p-entailed by the ontology
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component (after adding those first-order atoms that correspond to a K-atom that has
already been derived). The definition here differs from the one in [KAH11] in that T ′KG,C
is introduced as a second immediate consequence operator in order to implement the
Coherence Principle in our approach. How this strategy relates to the one pursued by
Knorr et al. will be discussed in detail in the next section, where we will also demonstrate
the need for two immediate consequence operators with an example. Moreover, another
difference consists in the fact that we use the p-entailment operator |=p to derive K-atoms
from the ontology component, and not the classical first-order entailment operator |=.
As already mentioned, for certain tractable DLs such as EL++ and DL-Lite, standard
reasoners can be applied to derive these paraconsistent consequences in the computation
of immediate consequences (cf. [MMH13]).

Knorr et al. show that the TKG
-operator in their framework is monotonic (cf. Propo-

sition 4 in [KAH11]). Now, the definition of the TKG
-operator in Definition 4.1 only dif-

fers in terms of the entailment operator applied. Further, the entailment operator used
in the paraconsistent approach by Maier et al. is monotonic [MMH13] and thus, the p-
entailment operator |=p is monotonic as well due to Corollary 3.30. As a result, the proof
of monotonicity of the operator TKG

can be directly transferred to the operator TKG
used

in our approach, i.e. TKG
as defined above is monotonic. Moreover, the operator T ′KG,C

is monotonic as well because only a fixed set of modal K-atoms is removed from the re-
sults of the operators RKG

and DKG
in every application of the operator. As a result, the

operators TKG
and T ′KG,C have a least fixpoint by the Knaster-Tarski Theorem, as noted by

Knorr et al. [KAH11]. As in [KAH11], we denote the least fixpoint of the two operators
by TKG

↑ ω and T ′KG,C ↑ ω, respectively. Here, ω denotes the limit ordinal of natural
numbers and the computation of the respective fixpoint is reached after finitely many
iterations, according to Knorr et al. [KAH11]. The least fixpoint of TKG

is obtained as
follows (corresponding to the formulation in [KAH11]):

TKG
↑ 0 = ∅

TKG
↑ (n+ 1) = TKG

(TKG
↑ n)

TKG
↑ ω =

⋃
i≥0

TKG
↑ i

Further, the least fixpoint of T ′KG,C is obtained in the same way. Intuitively, the least
fixpoint TKG

↑ ω contains all modal K-atoms that can be derived from the hybrid MKNF
knowledge base KG and contains nothing else and thus, can be viewed as the counter-
part to the minimal model of an LP. Similarly, T ′KG,C ↑ ω contains all K-atoms that can
be derived without involving any K-atom whose classical negation is p-entailed by the
objective knowledge of C w.r.t. KG.

As the immediate consequence operators discussed before are only applicable to pos-
itive knowledge bases, we need a means to obtain a positive version of a ground hybrid
MKNF knowledge base. This can be done by defining a transformation of ground hybrid
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MKNF knowledge bases into a positive version, which resembles the GL-transformation
discussed in Section 2.3. While Knorr et al. have to define two different kinds of trans-
formation in their approach to enforce the Coherence Principle by following a strategy
similar to the idea of using the semi-normal version of a program for certain derivations
in WFSXp, we only have to define a single transformation since we move the imple-
mentation of the Coherence Principle into the computation of immediate consequences.
The following definition of the MKNF transform is identical to the definition of the first
transformation provided by Knorr et al. in [KAH11].

Definition 4.2 (MKNF transform [KAH11]). LetKG = (O,PG) be a ground hybrid MKNF
knowledge base and S ⊆ KA(KG). The MKNF transform KG/S is defined as KG/S =

(O,PG/S), where PG/S contains all rules

KH ← KA1, . . . ,KAn

for which there exists a rule

KH ← KA1, . . . ,KAn,notB1, . . . ,notBm

in PG with KBj 6∈ S for each 1 ≤ j ≤ m.

The following example illustrates the two notions of the MKNF transform and the
direct consequences of a ground hybrid MKNF knowledge base.

Example 4.3. Consider the following ground hybrid MKNF knowledge base KG, which
corresponds to the hybrid knowledge base shown in Example 1.1 and is only grounded
with the constant pesticide (omitting the constant food and the predicate good). Further-
more, we compute the MKNF transformKG/S where S is equal to {KisLabelled(pesticide),

KHasCertifiedForwarder(pesticide)}, which results in the following positive ground hy-
brid MKNF knowledge base:

ToxicChemical v ∃Contains.ToxicSubstance

∃Contains.ToxicSubstance v ProvenRisk

ProvenRisk t PotentialRisk v Risk

HasCertifiedForwarder v ¬IsMonitored

ToxicChemical(pesticide)

K IsMonitored(pesticide) ← KRisk(pesticide).

KPotentialRisk(pesticide) ← notK isLabelled(pesticide).

KresolvedRisk(pesticide) ← K IsMonitored(pesticide).

K isLabelled(pesticide) ←
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Note that the second MKNF rule is not contained in the MKNF transform KG/S, indi-
cated by canceling out this rule. We now show the computation of the least fixpoint of
the operator T ′KG/S,C according to Definition 4.1, where we assume that C = S. In the
computation, we abbreviate pesticide, isLabelled, isMonitored, resolvedRisk, ToxicChemi-

cal, ProvenRisk and Risk by p, l, m, resR, TC, PrR and R, respectively.

T ′KG/S,C ↑ 0 = ∅

T ′KG/S,C ↑ 1 = ({K l(p)} ∪ {KTC(p)}) \ {Km(p)}

T ′KG/S,C ↑ 2 = ({K l(p)} ∪ {KTC(p),KPrR(p),KR(p)}) \ {Km(p)}

T ′KG/S,C ↑ 3 = ({K l(p),Km(p)} ∪ {KTC(p),KPrR(p),KR(p)}) \ {Km(p)}

T ′KG/S,C ↑ ω = {K l(p),KTC(p),KPrR(p),KR(p)}

First, note that the result of the immediate consequence operator is in fact monotonically
increasing in every iteration and that the ontology and the program component interact
in the derivation of consequences. Because the K-atom KHasCertifiedForwarder(pesticide)

is contained in the set C, ¬isMonitored(pesticide) is p-entailed by the objective knowl-
edge of C w.r.t. KG/S. Consequently, K isMonitored(pesticide) is not contained in the
least fixpoint of T ′KG/S,C , even though it can be derived by means of the program com-
ponent (cf. iteration 3). This illustrates that the Coherence Principle is implemented in
the operator T ′KG,C . Additionally, the deletion of modal K-atoms whose classical nega-
tion can be derived from the ontology also affects other K-atoms even if their classi-
cal negation is not derivable. For example, the K-atom K resolvedRisk(pesticide) can-
not be derived because K isMonitored(pesticide) is deleted from the results of the op-
erators RKG

and DKG
. As a result, inconsistencies are propagated in the alternating

fixpoint construction presented in the next section. In the least fixpoint of the oper-
ator TKG/S , K isMonitored(pesticide) is not deleted and thus, we obtain TKG/S ↑ ω =

{K l(p),KTC(p),KPrR(p),KR(p),Km(p),KresR(p)}. ♦

Just like in the case of the SMS and the WFS for LPs, we can combine the transfor-
mation of a ground hybrid MKNF knowledge base by means of the MKNF transform
defined above and the derivation of all immediate consequences of the resulting positive
knowledge base by means of the operator TKG

(resp. T ′KG,C) within a single Γ-operator.
In the following definition, similar to Knorr et al. [KAH11], we define two distinct Γ-
operators, one for each of our two immediate consequence operators introduced in Defi-
nition 4.1.

Definition 4.4 (The operators ΓKG
and Γ′KG

). Let KG = (O,PG) be a ground hybrid
MKNF knowledge base and S ⊆ KA(KG). We define the two operators ΓKG

(S) = TKG/S ↑
ω, and Γ′KG

(S) = T ′KG/S,S
↑ ω.

Note that the Γ′KG
-operator is defined in terms of the operator T ′KG/S,C where C = S.

Consequently, checking for the derivability of the classical and the default negation of
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atoms is done w.r.t. the same set, which corresponds to the approach by Knorr et al.
[KAH11]. In the fixpoint computation of the well-founded p-model introduced in the
next section, S will contain all K-atoms that could already be proven to be true (resp. in-
consistent or suspiciously true). Before presenting the definition of the alternating fixpoint
construction of our semantics, we just have to transfer one result proven in [KAH11]
to our approach. The following Lemma states that both the ΓKG

- and Γ′KG
-operator are

anti-monotonic.

Lemma 4.5 (Anti-monotonicity of the operators ΓKG
and Γ′KG

). If KG is a ground hybrid
MKNF knowledge base and S ⊆ S′ ⊆ KA(KG), then ΓKG

(S′) ⊆ ΓKG
(S) and Γ′KG

(S′) ⊆
Γ′KG

(S).

Proof. Considering that the p-entailment operator |=p is monotonic, the proof equals the
proof of Lemma 3 in [KAH11]. So, we simply refer to the proof given there.

4.2 The Alternating Fixpoint Construction

On the basis of the two previously defined anti-monotonic operators ΓKG
and Γ′KG

, it is
now possible to define two monotonic, alternating sequences which compute the sets of
modal K-atoms which are “true”, i.e. those which are inconsistent, suspiciously true or true;
and those K-atoms which are not “false”, i.e. the ones which are true or undefined, respec-
tively. Note that this is very similar to the fixpoint computation of the paraconsistent
well-founded model in WFSXp where those objective literals which are obtained after
an application of the operator ΓΓs are “true” while those which are not obtained after
an application of the operator Γs are “false”. The following definition of the alternating
fixpoint construction of the well-founded p-model of a ground hybrid MKNF knowledge
base makes the two sequences that are implicitly present in the fixpoint computation de-
fined by Alferes et al. for WFSXp [ADP95] explicit. The definition corresponds to the
definition given by Knorr et al. [KAH11].

Definition 4.6 (Alternating fixpoint construction [KAH11]). Let KG be a ground hybrid
MKNF knowledge base. We define two sequences Pi and Ni as follows.

P0 = ∅ N0 = KA(KG)

Pn+1 = ΓKG
(Nn) Nn+1 = Γ′KG

(Pn)

Pω =
⋃
Pi Nω =

⋂
Ni

It will always be clear from the context which is the underlying knowledge base of
the two sequences, so that we can omit a reference to the respective knowledge base in
the denotation of the two sequences. The sequence of Pi is a monotonically increasing
sequence, while the sequence of Ni is a monotonically decreasing sequence, as stated
by the following lemma adopted from [KAH11]. Consequently, the former sequence
maximizes the set of modal K-atoms that are “true”, while the latter minimizes the set of
K-atoms which are not “false”.
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Lemma 4.7 (Monotonicity of the sequences of Pi and Ni [KAH11]). Let KG be a ground
hybrid MKNF knowledge base. Then Pα ⊆ Pβ and Nβ ⊆ Nα for all ordinals α, β with α ≤
β ≤ ω.

Proof. The proof of this lemma is identical to the proof of Lemma 4 in [KAH11] and thus,
omitted here.

Moreover, by drawing on the Knaster-Tarski Theorem, Knorr et al. show that a least
fixpoint is reached in case of the sequence of Pi, and that a greatest fixpoint is reached
in case of the sequence of Ni, after n < ω iterations. Consequently, both sequences are
finite. We recall the following result from [KAH11].

Proposition 4.8 (Least and greatest fixpoint [KAH11]). Let KG be a ground hybrid MKNF
knowledge base. Then Pω is the least fixpoint of the sequence of Pi and Nω is the greatest fixpoint
of the sequence of Ni.

Proof. Again, the proof is identical to the proof given by Knorr et al. (cf. Proposition 5 in
[KAH11]).

Consequently, the two sets Pω and Nω exist for every ground hybrid MKNF knowl-
edge base and are unique. Next, we define the well-founded pair of a ground hybrid
MKNF knowledge base in terms of Pω and Nω, which we will use to show the corre-
spondence between the result obtained by the alternating fixpoint construction and the
well-founded p-model of a ground hybrid MKNF knowledge base in Section 4.5. While
Knorr et al. define a well-founded partition of a consistent hybrid MKNF knowledge base
[KAH11], in our case the knowledge base does not have to be consistent and accordingly,
K-atoms can be in the sets TW and FW simultaneously.

Definition 4.9 (The well-founded pair). The well-founded pair of a ground hybrid MKNF
knowledge base KG is defined by:

(TW , FW ) = (Pω,KA(KG) \Nω)

In Section 4.5, we will show that the set TW of the well-founded pair of a ground
hybrid MKNF knoweldge base KG contains all modal K-atoms which are inconsistent,
suspiciously true or true in the well-founded p-model of KG, while the set FW contains all
K-atoms which are inconsistent, suspiciously true, false, or classically false. All atoms which
are neither in TW nor in FW will be shown to be undefined in the well-founded p-model
of KG.

On the basis of Definition 4.9, we can now state the procedural counterpart of Lemma
3.36, which has been expressed in terms of the model-theoretic definition of our seman-
tics and characterizes the implementation of the Coherence Principle. Therefore, the fol-
lowing lemma reveals the enforcement of the Coherence Principle w.r.t. the well-founded
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pair of a hybrid MKNF knowledge base. How the implementation of the Coherence Prin-
ciple is achieved in the alternating fixpoint construction just presented is the topic of the
next section.

Lemma 4.10 (The Coherence Principle w.r.t. the procedural characterization). Let KG =

(O,PG) be a ground hybrid MKNF knowledge base and KH a K-atom in KA(KG). Then
OBO,TW |=p ¬H implies that KH ∈ FW .

Proof. The lemma follows directly from the construction of Nω by means of the operator
Γ′KG

and the definition of T ′KG,C in Definition 4.1, where those K-atoms are removed from
T ′KG/Pω ,Pω

(S) which are derivable from the objective knowledge of Pω.

4.3 Implementation of the Coherence Principle

In the three-valued version of the well-founded MKNF semantics introduced in [KAH11],
the Coherence Principle is implemented by introducing a second variant of the MKNF
transform, the so-called MKNF-coherent transform. Due to an additional condition in the
definition of the MKNF-coherent transform, not only rules where a modal not-atom is
false are removed from PG in the transform, but also those rules for which the classical
negation of the head can be derived from the objective knowledge of Pi. As a result, in
[KAH11], the corresponding K-atoms cannot be derived by the operator RKG

from the
MKNF-coherent transform in the sequence of Ni and thus, the default negation of these
atoms is implied by the derivation of the corresponding classically negated first-order
atom (as postulated by the Coherence Principle).

In our case, we have to extend the implementation of the Coherence Principle to the
ontology component because our goal is to also model inconsistent hybrid MKNF knowl-
edge bases. As a consequence, it is possible that some first-order atom as well as its classi-
cal negation can be derived from the ontology at the same time. Therefore, it is necessary
to not only cover the cases where some K-atom may not be derived from the program
by means of RKG

, but also those where a K-atom is introduced in the sequence of Ni by
means of the operator DKG

.

We achieve the desired behavior of the alternating fixpoint construction by moving
the deletion of classically false K-atoms into the operator T ′KG,C , which represents a mod-
ification of the simpler operator TKG

. In this operator, after forming the union of the
results of the operator RKG

(yielding K-atoms which are a consequence of the program)
and of the operator DKG

(yielding K-atoms which are a consequence of the ontology), all
K-atoms K ξ where OBO,Pi |=p ¬ξ holds are removed from the result of T ′KG,Pi

. In this
way, the MKNF-coherent transform can be omitted in the presentation of our approach,
so that we obtain a unified implementation of the Coherence Principle not only for K-
atoms which are in the head of an MKNF rule, but also for those where the first-order
atom under the K-operator is a consequence of the ontology.
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In the alternating fixpoint construction, the T ′KG,C-operator is only used to compute
the result of the operator Γ′KG

, which in turn is only used in the sequence of Ni. As a
result, if the classical negation of a first-order atom follows from the objective knowledge
of Pi, then the corresponding K-atom is contained in FW as shown by Lemma 4.10. Note
that this fact about the procedural formulation of our semantics in terms of the alternating
fixpoint construction reflects the manifestation of the Coherence Principle in the model-
based presentation of our semantics as revealed by Lemma 3.36 and can be viewed as its
counterpart.

As the Coherence Principle states that classical negation must imply default negation,
the extension of the Coherence Principle to the ontology is crucial for the evaluation of
modal not-atoms, which is demonstrated in the subsequent example.

Example 4.11. Consider the following ground hybrid MKNF knowledge base KG.

> v ¬Q

> v Q

KP (a) ← notQ(a)

We start with P0 = ∅ and compute N1 = ΓKG
(P0), P2 = ΓKG

(N1), N3 = ΓKG
(P1) and

P4 = ΓKG
(N3), i.e. construct the two sequences by using ΓKG

in place of Γ′KG
, so that

those K-atoms are not removed from N1 and N3 of which the classical negation can be
derived from the objective knowledge of OBO,P0 and OBO,P2 , respectively:

N1 = {KQ(a),KP (a)}

P2 = {KQ(a)}

N3 = {KQ(a)}

P4 = {KQ(a)}

P4 is the least fixpoint of the sequence of Pi, N3 is the greatest fixpoint of the sequence
of Ni and the corresponding well-founded pair is ({KQ(a)}, {KP (a)}). Consequently,
KQ(a) does not appear in the set FW of the well-founded pair, even though the classical
negation of Q(a) is p-entailed by the ontology. This constitutes a violation of the Coher-
ence Principle. Additionally, KP (a) is false in the p-model which can be obtained from
this well-founded pair (as will be shown later).

Next, we compute the two sequences as defined in Definition 4.6, i.e. remove classi-
cally false K-atoms from the sequence of Ni, and start again with P0 = ∅. Accordingly, we
compute N1 = Γ′KG

(P0), P2 = ΓKG
(N1), N3 = Γ′KG

(P2) and P4 = ΓKG
(N3) now:

N1 = {KP (a)}

P2 = {KQ(a),KP (a)}

N3 = {}
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P4 = {KQ(a),KP (a)}

Again, P4 and N3 are the least and greatest fixpoints of the respective sequence. The
corresponding well-founded pair is ({KQ(a),K P (a)}, {KQ(a),K P (a)}). Due to the
deletion of those K-atoms KH where ¬H follows from OBO,Pi in the sequence of Ni,
KQ(a) is also in the set FW of the well-founded pair now. In addition, as it holds that
OBO,Pi 6|=p ¬P (a) for all i ≥ 0, KP (a) is suspiciously true in the p-model which can be
obtained from the well-founded pair, as intended. ♦

4.4 Soundness Result w.r.t. P-Models

After having introduced the procedural definition of our paraconsistent well-founded
hybrid MKNF semantics in Section 4.2, we can now develop the first soundness re-
sult of the well-founded pair computed by the alternating fixpoint construction w.r.t.
p-models as defined in Chapter 3. That is, we show that the well-founded pair of a hy-
brid MKNF knowledge base KG induces a p-model of KG. As a first step, we show that
the p-interpretation pair induced by the well-founded pair of a hybrid MKNF knowledge
base p-satisfies the knowledge base by proving the following theorem. Accordingly, the
following result implies that the p-interpretation pair induced by the well-founded pair
fulfills condition (1) of Definition 3.10 for being a p-model of KG. The proof of the theo-
rem follows the same ideas as the corresponding proof of Theorem 3 in [KAH11].

Theorem 4.12 (Correspondence to a p-interpretation pair p-satisfying KG). Let KG be a
ground hybrid MKNF knowledge base and (TW , FW ) = (Pω,KA(KG) \Nω) the well-founded
pair of KG. Then (IP , IN ) |=p KG where IP = {I | I |=p OBO,Pω} and IN = {I | I |=p

OBO,Nω}.

Proof. By Definition 2.15, we know that KG = π(O) ∧ π(PG). Since π(O) occurs in both
OBO,Pω and OBO,Nω , we have that (I, 〈IP , IN 〉, 〈IP , IN 〉)(π(O)) ∈ {b, t} for each I ∈ IP ∪
IN . Therefore, we only have to consider the evaluation of (∗, 〈IP , IN 〉, 〈IP , IN 〉)(π(PG)).
We begin by evaluating all modal atoms occurring in π(PG). So, assume KH occurs in
π(PG).

At first, suppose that KH ∈ TW and OBO,Pω |=p ¬H . From KH ∈ TW , we know that
(I, 〈IP , IN 〉, 〈IP , IN 〉)(H) ∈ {b, t} for each I ∈ IP and since OBO,Pω |=p ¬H , we obtain
(I, 〈IP , IN 〉, 〈IP , IN 〉)(H) = t is not possible for any I ∈ IP . Accordingly, we have that
(∗, 〈IP , IN 〉, 〈IP , IN 〉)(KH) = b by Definition 3.6.

Next, suppose that KH ∈ TW , KH ∈ FW and OBO,TW 6|=p ¬H . Because KH ∈ TW ,
we know that (I, 〈IP , IN 〉, 〈IP , IN 〉)(H) ∈ {b, t} for each I ∈ IP and since it holds that
OBO,TW 6|=p ¬H , we obtain (I, 〈IP , IN 〉, 〈IP , IN 〉)(H) = t for some I ∈ IP . Assume
that OBO,Nω |=p H . In this case, we have that KH ∈ Nω by means of DKG

and since
OBO,TW 6|=p ¬H . Hence, we conclude OBO,Nω 6|=p H since we have that KH ∈ FW .
Thus, we derive that (I, 〈IP , IN 〉, 〈IP , IN 〉)(H) = f for some I ∈ IN . We conclude that
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(∗, 〈IP , IN 〉, 〈IP , IN 〉)(KH) = st by Definition 3.6.

Now, suppose that KH ∈ TW and KH 6∈ FW . Because KH 6∈ FW , we know that
OBO,TW 6|=p ¬H by Lemma 4.10. We obtain (I, 〈IP , IN 〉, 〈IP , IN 〉)(H) = t for some I ∈ IP
as before. Since we know that KH 6∈ FW , we have that OBO,Nω |=p H and conse-
quently, (I, 〈IP , IN 〉, 〈IP , IN 〉)(H) ∈ {b, t} for each I ∈ IN . From this, we conclude
(∗, 〈IP , IN 〉, 〈IP , IN 〉)(KH) = t by Definition 3.6.

Now, suppose that KH 6∈ TW , KH ∈ FW and OBO,TW 6|=p ¬H , and assume that
OBO,Pω |=p H . In this case, KH ∈ Pω by means of DKG

. This is a contradiction to
KH 6∈ TW and we conclude OBO,Pω 6|=p H since we have that KH ∈ FW . Thus, we derive
(I, 〈IP , IN 〉, 〈IP , IN 〉)(H) = f for some I ∈ IP . We have that (I, 〈IP , IN 〉, 〈IP , IN 〉)(H) = t

for some I ∈ IP because it holds that OBO,TW 6|=p ¬H . Next, assume that OBO,Nω |=p H .
Then, we have that KH ∈ Nω by means of DKG

and since OBO,TW 6|=p ¬H . Thus, we
conclude OBO,Nω 6|=p H . From this, we derive (I, 〈IP , IN 〉, 〈IP , IN 〉)(H) = f for some
I ∈ IN . Consequently, we know that (∗, 〈IP , IN 〉, 〈IP , IN 〉)(KH) = f by Definition 3.6.

Now, suppose that K H 6∈ TW and OBO,TW |=p ¬H . As before, we can derive
(I, 〈IP , IN 〉, 〈IP , IN 〉)(H) = f for some I ∈ IP . However, in this case we do not have
(I, 〈IP , IN 〉, 〈IP , IN 〉)(H) = t for any I ∈ IP because it holds that OBO,TW |=p ¬H . Ac-
cordingly, we obtain (∗, 〈IP , IN 〉, 〈IP , IN 〉)(KH) = cf by Definition 3.6.

Finally, suppose that KH 6∈ TW and KH 6∈ FW . Like in the previous two cases, we ob-
tain that (I, 〈IP , IN 〉, 〈IP , IN 〉)(H) = f for some I ∈ IP . Because KH 6∈ FW , we also have
that OBO,TW 6|=p ¬H by Lemma 4.10. Hence, we derive (I, 〈IP , IN 〉, 〈IP , IN 〉)(H) = t

for some I ∈ IP . Because KH 6∈ FW , we know that OBO,Nω |=p H . Consequently,
we obtain that (I, 〈IP , IN 〉, 〈IP , IN 〉)(H) ∈ {b, t} for each I ∈ IN , and we conclude
(∗, 〈IP , IN 〉, 〈IP , IN 〉)(KH) = u by Definition 3.6.

The cases for notH ∈ π(P) proceed similarly. Accordingly, in case KH ∈ TW and
OBO,TW |=p ¬H hold, we obtain (∗, 〈IP , IN 〉, 〈IP , IN 〉)(notH) = b; in case KH ∈ TW ,
KH ∈ FW and OBO,TW 6|=p ¬H hold, we obtain (∗, 〈IP , IN 〉, 〈IP , IN 〉)(notH) = st; in
case KH ∈ TW and KH 6∈ FW hold, we obtain (∗, 〈IP , IN 〉, 〈IP , IN 〉)(notH) = f ; in
case KH 6∈ TW and KH ∈ FW hold, we obtain (∗, 〈IP , IN 〉, 〈IP , IN 〉)(notH) = t; and
otherwise we obtain (∗, 〈IP , IN 〉, 〈IP , IN 〉)(notH) = u.

Now, consider π(PG), which consists of a conjunction of implications, each represent-
ing a rule in PG. In order to prove that (∗, 〈IP , IN 〉, 〈IP , IN 〉)(π(PG)) ∈ {b, t}, we just
have to make sure that none of the cases that map an implication to a non-designated
truth value (i.e. st, f , cf or u) occurs. According to Table 3.1, these cases arise when ei-
ther the body of a rule is assigned a truth value from the set {b, st, t} and the rule-head
is evaluated to one of the truth values from the set {f , cf ,u}, or the body of a rule is true
or undefined and the head is suspiciously true or false.

We start by proving that the firstly mentioned cases are not possible. If the body of a
rule with head KH is assigned one of the truth values b, st and t by the p-interpretation
pair (IP , IN ), this means that for all modal K-atoms KAi occurring in the body of the
rule we have that (∗, 〈IP , IN 〉, 〈IP , IN 〉)(KAi) ∈ {b, st, t}, and for all modal not-atoms
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notBj which occur in the body we have that (∗, 〈IP , IN 〉, 〈IP , IN 〉)(KBj) ∈ {b, st, f , cf}.
Consequently, we obtain that OBO,Pω |=p Ai and KBj 6∈ Nω for all i and j. (Note, that the
latter is true because, if some KBj is inconsistent or classically false, then OBO,Pω |=p ¬Bj
and hence, it is not in Nω according to Lemma 4.10.) Thus, the rule KH ← KA1, . . . ,KAn

occurs in the MKNF transformKG/Nω due to Definition 4.2. As allAi are in Pω by means
of DKG

, KH is in Pω as well, by means of RKG
. But, this means that the head of the rule

cannot be assigned any of the truth values f , cf and u by (IP , IN ) since we can infer that
(I, 〈IP , IN 〉, 〈IP , IN 〉)(H) ∈ {b, t} for each I ∈ IP . Hence, these cases cannot occur.

Now, assume that the body of a rule with head KH is either true or undefined in the
p-interpretation pair (IP , IN ). In this case, for all modal K-atoms KAi occurring in the
rule-body, we have that (∗, 〈IP , IN 〉, 〈IP , IN 〉)(KAi) ∈ {t,u}, and for all modal not-atoms
notBj occurring in the rule-body we have that (∗, 〈IP , IN 〉, 〈IP , IN 〉)(KBj) ∈ {f , cf ,u}.
So, we know that OBO,Nω |=p Ai for all i, and KBj 6∈ Pω for all j. From the latter, we
derive that the rule KH ← KA1, . . . ,KAn occurs in the MKNF transform KG/Pω due to
Definition 4.2. If it holds that OBO,Pω |=p ¬H , then only b and cf are possible for KH .
So, assume OBO,Pω 6|=p ¬H . Like before, since allAi are in Nω by means ofDKG

, KH is in
Nω as well, by means of RKG

and since OBO,Pω 6|=p ¬H . So, we have that OBO,Nω |=p H

and hence, that (I, 〈IP , IN 〉, 〈IP , IN 〉)(H) = t for each I ∈ IN . Consequently, the head of
the rule can neither be assigned the truth value st nor the truth value f in (IP , IN ) and
the latter cases cannot occur either. Thus, (∗, 〈IP , IN 〉, 〈IP , IN 〉)(π(PG)) ∈ {b, t} holds,
which proves that the p-interpretation pair (IP , IN ) in fact p-satisfies the knowledge base
KG.

By proving the next theorem we show that the p-interpretation pair induced by the
well-founded pair of a hybrid MKNF knowledge base is in fact a p-model of the knowl-
edge base that fulfills all three conditions of Definition 3.10.

Theorem 4.13 (Soundness w.r.t. p-models). Let KG be an MKNF-consistent ground hybrid
MKNF knowledge base and (TW , FW ) = (Pω,KA(KG)\Nω) the well-founded pair ofKG. Then
(IP , IN ) is a p-model of KG, where IP = {I | I |=p OBO,Pω} and IN = {I | I |=p OBO,Nω}.

Proof. We know from Theorem 4.12 that (IP , IN ) p-satisfies KG. Hence, (IP , IN ) fulfills
condition (1) for being a p-model of KG as specified in Definition 3.10. Therefore, in
order to prove that (IP , IN ) is a p-model of KG, we only have to prove that it also fulfills
conditions (2) and (3) of that definition.

Regarding condition (2) of Definition 3.10, we have to prove that there is no p-interpre-
tation pair (M ′, N ′) with IP ⊆ M ′ and IN ⊆ N ′ where at least one of the inclusions
is proper and (I ′, 〈M ′, N ′〉, 〈IP , IN 〉)(KG) ∈ {b, t} for each I ′ ∈ M ′ ∪ N ′. First, as-
sume that there is a p-interpretation pair (M ′, N ′) where IP ⊂ M ′ and IN ⊆ N ′, i.e.
at least the first inclusion is proper, and (I ′, 〈M ′, N ′〉, 〈IP , IN 〉)(KG) ∈ {b, t} for each
I ′ ∈ M ′ ∪ N ′. We show that if some p-interpretation I ′ is in M ′, then it also has to be
in IP and thus, derive a contradiction to our assumption that IP ⊂ M ′. First, we con-
sider the case where the program component PG is empty, i.e. where KG = π(O). In
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this case, we obtain that (I ′,M,N )(π(O)) ∈ {b, t} for each I ′ ∈ M ′ by our assumption
that (I ′, 〈M ′, N ′〉, 〈IP , IN 〉)(KG) ∈ {b, t} for each I ′ ∈ M ′ ∪ N ′. Hence, it holds that
I ′ |=p π(O). However, then I ′ must also be in IP because IP = {I | I |=p π(O)} in this
case. This is a contradiction to our assumption that IP ⊂M ′.

Now, we consider a ground hybrid MKNF knowledge base KG = π(O) ∧ π(PG) with
PG 6= ∅. Since IP ⊆ M ′, we can define a set of modal K-atoms RM such that M ′ =

{I ′ | I ′ |=p OBO,Pω\RM
} where RM ⊆ Pω and there is no ξ in {ξ | Kξ ∈ RM} such that

OBO,Pω\RM
|=p ξ. The latter restriction is necessary since all ξ in {ξ | Kξ ∈ RM} might

actually be derivable from the objective knowledge of Pω \ RM in which case we would
directly obtain that M ′ = IP . We prove that RM is empty. In this way, we can show again
that if some p-interpretation I ′ is in M ′, then it has to be in IP as well, and therefore, also
in this case we are able to derive a contradiction to our assumption that IP ⊂M ′.

As every modal K-atom KH which is in RM is also in Pω, we know that KH ∈
TKG/Nω

↑ j for some j. We show by an induction on j that if some KH is in RM and we
have that KH ∈ TKG/Nω

↑ j, then we can derive a contradiction and it follows that KH

cannot be in RM . Thus, RM has to be empty.

The base case holds straightforwardly, since TKG/Nω
↑ 0 is empty. Now, assume that

the claim holds for all j ≤ m, and consider KH ∈ TKG/Nω
↑ m+ 1. If KH already occurs

in TKG/Nω
↑ m, then the claim holds directly by the induction hypothesis. Otherwise,

there are two cases to consider. Either there is a positive rule KH ← KA1, . . .KAn in
KG/Nω with KAi ∈ TKG/Nω

↑ m, or KH is the consequence of DKG/Nω
(TKG/Nω

↑ m).

In the first case, by the induction hypothesis, if some KAi is in RM , then it follows
that KH cannot be in RM . So, assume that KAi 6∈ RM for all KAi. This means that
OBO,Pω\RM

|=p Ai for all KAi and hence, (∗, 〈M ′, N ′〉, 〈IP , IN 〉)(KAi) ∈ {b, st, t} for
all KAi. Additionally, there is a rule KH ← KA1, . . .KAn,notB1, . . . ,notBm in KG,
and since the positive version of this rule occurs in KG/Nω, no KBj occurs in Nω. If
OBO,Pω |=p ¬Bj for some notBj , then (∗, 〈M ′, N ′〉, 〈IP , IN 〉)(notBj) ∈ {b, t} due to Def-
inition 3.6. (Note that all notBj are still interpreted w.r.t. (IP , IN ).) So, consider all notBk
such that OBO,Pω 6|=p ¬Bk and assume that OBO,Nω |=p Bk for some notBk. In this case,
we have that KBk ∈ Nω by means of DKG

and since OBO,Pω 6|=p ¬Bk. Hence, we con-
clude that OBO,Nω 6|=p Bk for all notBk. Consequently, (∗, 〈M ′, N ′〉, 〈IP , IN 〉)(notBj) ∈
{b, st, t} for all not Bj . Now, if K H is in RM , then OBO,Pω\RM

6|=p H and hence,
H is evaluated to f by some p-interpretation in M ′. By Definition 3.6, we infer that
(∗, 〈M ′, N ′〉, 〈IP , IN 〉)(KH) ∈ {f , cf ,u}. This means that we have a rule with inconsis-
tent, suspiciously true or true body and false, classically false or undefined head in this case,
and we derive that (I ′, 〈M ′, N ′〉, 〈IP , IN 〉)(π(PG)) 6∈ {b, t} according to the definition of
the implication operator in Table 3.1. So, we derive a contradiction to our assumption
that (∗, 〈M ′, N ′〉, 〈IP , IN 〉)(π(PG)) ∈ {b, t} and thus, KH actually cannot be in RM .

In the second case, OBO,S |= H with S = TKG/Nω
↑ m holds. Since we have that

(I ′, 〈M ′, N ′〉, 〈IP , IN 〉)(π(O)) ∈ {b, t} for each I ′ ∈M ′, we also know that I ′ |=p π(O) for
each I ′ ∈M ′. We assume that KAi 6∈ RM for each KAi in S since, if some KAi is in RM ,
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then (∗, 〈M ′, N ′〉, 〈IP , IN 〉)(π(PG)) 6∈ {b, t} follows again by the induction hypothesis.
So, we also know that OBO,Pω\RM

|=p H since A ⊆ Pω. According to the restriction of
the set RM , we again derive a contradiction to KH being in RM . This proves that RM
can only be empty. Consequently, if some p-interpretation I ′ is in M ′, then it has to be in
IP as well, which is a contradiction to our assumption that IP ⊂M ′.

Now, assume that there is a p-interpretation pair (M ′, N ′) where IP ⊆ M ′ and IN ⊂
N ′, i.e. at least the second inclusion is proper, and that (I ′, 〈M ′, N ′〉, 〈M,N〉)(KG) ∈ {b, t}
holds for each I ′ ∈ M ′ ∪ N ′. Similar to the first part of the proof, we show that if some
p-interpretation I ′ is in N ′, then it also has to be in IN and thus, derive a contradiction
to our assumption that IN ⊂ N ′. The proof for the case where the program component is
empty proceeds analogously to the proof above. So, assume that the program component
is not empty. In this case, we can define a set of modal K-atoms RN such that N ′ = {I ′ |
I ′ |=p OBO,Nω\RN

} where RN ⊆ Nω and there is no ξ in {ξ | K ξ ∈ RN} such that
OBO,Nω\RN

|=p ξ. As before, we also have that M ′ = {I ′ | I ′ |=p OBO,Pω\RM
} where

RM ⊆ Pω. RM may be empty in this case since M ′ = IP is allowed to hold. Again, we
show that RN can only be empty, from which the contradiction follows.

We know that if KH ∈ RN , then KH ∈ T ′KG/Pω ,Pω
↑ j for some j holds. As before, we

show by an induction on j that if some KH is inRN and we have that KH ∈ T ′KG/Pω ,Pω
↑

j for some j, then we can derive a contradiction and it follows that KH cannot be in RN .
Therefore, RN has to be empty.

The base case holds as before, because T ′KG/Pω ,Pω
↑ 0 is empty. So, assume that the

claim holds for all j ≤ m, and consider KH ∈ T ′KG/Pω ,Pω
↑ m+ 1. If KH already occurs

in T ′KG/Pω ,Pω
↑ m, then the claim holds directly by the induction hypothesis. Otherwise,

there are again two possible cases. Either there is a positive rule KH ← KA1, . . .KAn in
KG/Pω with KAi ∈ T ′KG/Pω ,Pω

↑ m, or KH is the consequence of DKG/Pω
(T ′KG/Pω ,Pω

↑
m).

In the first case, by the induction hypothesis, if some KAi is inRN , then it follows that
KH cannot be inRN . So, assume that no KAi is inRN . Consequently, OBO,Nω\RN

|=p Ai

holds for all K Ai. Since K Ai ∈ T ′KG/Pω ,Pω
↑ m holds for all K Ai, we also know

that OBO,Pω 6|=p ¬H due to Definition 4.1. So, we obtain that OBO,Pω\RM
6|=p ¬H

as well. Therefore, we know that for each Ai there is a p-interpretation in M ′ such
that Ai is evaluated to true in that p-interpretation. We derive by Definition 3.6 that
(∗, 〈M ′, N ′〉, 〈IP , IN 〉)(KAi) ∈ {t,u} holds for all KAi. Besides, there is a rule KH ←
KA1, . . .KAn,notB1, . . . ,notBm in KG, and since the positive version of this rule oc-
curs in KG/Pω, no KBj occurs in Pω. Now, assume that OBO,Pω |=p Bk for some notBk.
In this case, we have that KBk ∈ Pω by means of DKG

. Hence, we can conclude that
OBO,Pω 6|=p Bk for all notBk. As a result, we obtain that (I ′, 〈M ′, N ′〉, 〈IP , IN 〉)(notBj) ∈
{t,u} for all notBj by Definition 3.6. Now, if KH is in RN , then OBO,Nω\RN

6|=p H and
hence, H is evaluated to f by some p-interpretation in N ′. By Definition 3.6, we infer that
(I ′, 〈M ′, N ′〉, 〈IP , IN 〉)(KH) ∈ {st, f}. Note that since we have that KH ∈ T ′KG/Pω ,Pω

↑
m + 1 we know that OBO,Pω 6|=p ¬H and thus, (I ′, 〈M ′, N ′〉, 〈IP , IN 〉)(KH) ∈ {b, cf} is
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not possible. This means that we have a rule with true or undefined body and suspiciously
true or false head in this case, and we derive that (I ′, 〈M ′, N ′〉, 〈IP , IN 〉)(π(PG)) 6∈ {b, t}
according to the definition of the implication operator in Table 3.1. So, we derive a con-
tradiction to our assumption that (∗, 〈M ′, N ′〉, 〈IP , IN 〉)(π(PG)) ∈ {b, t} and thus, KH

actually cannot be in RN .

The second case proceeds analogously to the second case of the previous induction.
This proves thatRN can only be empty. Consequently, if some p-interpretation I ′ is inN ′,
then it has to be in IN as well, which is a contradiction to our assumption that IN ⊂ N ′.

Finally, consider condition (3) of Definition 3.10. In this case, we have to prove that
it holds for all K ξ ∈ KA(KG) that (∗, 〈IP , IN 〉, 〈IP , IN 〉)(K ξ) ∈ {b, cf} if and only if
{π(O)} ∪ {ξ′ | Kξ′ ∈ KA(KG) and (∗, 〈IP , IN 〉, 〈IP , IN 〉)(Kξ′) ∈ {b, st, t}} |=p ¬ξ, i.e. if
and only if OBO,Pω |=p ¬ξ. First, assume that (∗, 〈IP , IN 〉, 〈IP , IN 〉)(K ξ) ∈ {b, cf}, but
OBO,Pω 6|=p ¬ξ. Since OBO,Pω 6|=p ¬ξ, we know there is a p-interpretation I in IP s.t.
(I, 〈IP , IN 〉, 〈IP , IN 〉)(ξ) = t. Hence, due to Definition 3.6, (∗, 〈IP , IN 〉, 〈IP , IN 〉)(K ξ) 6∈
{b, cf}, which is a contradiction to our assumption. Consequently the first direction
of condition (3) from left to right holds for (IP , IN ). Now, assume OBO,Pω |=p ¬ξ. It
follows that there cannot be a p-interpretation I in IP s.t. (I, 〈IP , IN 〉, 〈IP , IN 〉)(ξ) = t.
Therefore, only the truth values b and cf are possible for Kξ under the p-interpretation
pair (IP , IN ) according to Definition 3.6. Thus, also the second direction from right to left
of the biconditional is fulfilled by (IP , IN ). Accordingly, the p-interpretation pair (IP , IN )

fulfills condition (3) of Definition 3.10. This proves that (IP , IN ) is in fact a p-model of
KG.

4.5 Soundness and Completeness Result

In this section, we develop the main soundness and completeness result for the well-
founded pair of a hybrid MKNF knowledge base KG w.r.t. the well-founded p-model of
KG. By showing that the unique result of the alternating fixpoint construction introduced
in Section 4.2 corresponds exactly to the well-founded p-model of a knowledge base in
case the DL used for expressing the ontology component admits a 4-model, we obtain
that the well-founded p-model always exists and that it is unique.

Before we can prove the main result of this section, we have to establish an inter-
mediate result in Proposition 4.18 and introduce the definitions needed to prove this
proposition next. Knorr et al. define the following notion of a K-atom depending on a
set of K-atom via the objective knowledge to be able to better characterize derivations
performed by the operator DKG

in the immediate consequence operator [KAH11]. We
first present our adaptation of the definition provided by Knorr et al. and extend it sub-
sequently in order to also capture derivations performed by the operator RKG

.

Definition 4.14 (Dependence via the objective knowledge). Let KG be a ground hybrid
MKNF knowledge base, KH a modal K-atom with KH ∈ KA(KG), and S a (possibly
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empty) set of modal K-atoms with S ⊆ KA(KG). We say that KH depends on S if and
only if

(i) OBO,S |=p H and

(ii) there is no S′ with S′ ⊂ S such that OBO,S′ |=p H .

The notion of a K-atom depending on a set of K-atoms introduced in Definition 4.14 is
used in the following definition of hybrid dependence, which applies to a positive ground
hybrid MKNF knowledge base and extends the concept of dependence by also taking the
program component into account.

Definition 4.15 (Hybrid dependence). LetKG be a positive ground hybrid MKNF knowl-
edge base, KH a modal K-atom with KH ∈ KA(KG), and S a (possibly empty) set of
modal K-atoms with S ⊆ KA(KG). We say that KH hybrid-depends on a set S if and only
if

(i) KH is in S,

(ii) for every KH ′ ∈ S

– there is a positive rule KH ′ ← KA1, ...,KAn in PG such that all KAi are in S,
or

– there is a set {A1, ..., An} on which KH ′ depends (not containing H ′ itself)1

and all KAi are in S, and

(iii) there is no S′ with S′ ⊂ S such that S′ fulfills the conditions (i) and (ii).

We call S a hybrid dependence set of KH .

The following example illustrates the notion of hybrid dependence.

Example 4.16 (Hybrid dependence sets). Consider the following positive ground hybrid
MKNF knowledge base KG.

Q v P

KQ(a) ←

KR(a) ←

KS(a) ←

KP (a) ← KR(a),KQ(a)

KP (a) ← KS(a)

KP (a) ← KT (a)

Since KQ(a), KR(a) and KS(a) are contained as facts in the program, they only hybrid-
depend on the set containing themselves, respectively. The K-atom KP (a) depends on

1We exclude this case since every K-atom vacuously depends on itself.
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the set {KQ(a)} due to the ontology axiom. As KQ(a) only hybrid-depends on the set
containing itself, {KP (a),KQ(a)} is a hybrid dependence set of KP (a). In addition,
there are three rules with head KP (a) in the program component. However, no hybrid
dependence set can be obtained from the first rule because the elements of the hybrid de-
pendence set {KP (a),KQ(a)} are contained in the set {KP (a),KQ(a),KR(a)}, so that
the minimality condition (iii) of Definition 4.15 would be violated. Regarding the second
rule with head KP (a), another hybrid dependence set {KP (a),KS(a)} can be obtained
since KS(a) hybrid-depends on the set {KS(a)} and there is no set on which KP (a)

hybrid-depends that is a subset of the set {KP (a),KS(a)}. Finally, the last rule does not
yield another hybrid dependence set of KP (a) because there is neither a rule with head
KT (a) in the program nor a set of K-atoms on which KT (a) depends according to Defi-
nition 4.14. Note that if we would not exclude those dependence sets in condition (ii) of
Definition 4.15 which contain the atom itself, there would be another hybrid dependence
set of KP (a), namely {KP (a),KT (a)}. ♦

Intuitively, a modal K-atom is derivable from a hybrid MKNF knowledge base if and
only if all K-atoms in at least one of its hybrid dependence sets are derivable at the same
time. This intuition is formalized in the following lemma.

Lemma 4.17. Let KG = (O,PG) be a ground hybrid MKNF knowledge base, KH a K-atom in
KA(KG) and S a subset of KA(KG). Then it holds that KH 6∈ Γ′KG

(S) if and only if for every set
S′ ⊆ KA(KG) on which KH hybrid-depends there is some KH ′ ∈ S′ such that KH ′ 6∈ Γ′KG

(S).

Proof. The first direction of the statement, from left to right, can easily be proven by
showing the contrapositive. Assume that there is a set S′ ⊆ KA(KG) on which KH

hybrid-depends such that for all KH ′ ∈ S′ it is the case that KH ′ ∈ Γ′KG
(S). By Definition

4.15 and the definition of the operator Γ′ it follows that KH has to be in Γ′KG
(S) as

well. The other direction, from right to left, also follows directly by the definition of the
operator Γ′ since KH can only be derived by T ′KG/S,S

↑ i for some i if all elements in
some set S′ are derived by T ′KG/S,S

↑ m for some m < i. The previous results from the
definition of the operator T ′KG,C in Definition 4.1. On the one hand, the operator DKG

in
this definition derives all modal K-atoms for which there is a rule in PG such that all K-
atoms in the body have already been derived, corresponding to the first item of condition
(ii) in the definition of hybrid dependence sets. On the other hand, the operator DKG

yields all those modal K-atoms KH such that there is a set S on which KH depends and
all elements of S have been derived before, corresponding to the second item of condition
(ii) in Definition 4.15.

When we introduced well-founded p-models in Section 3.9, we mentioned that a
modal K-atom is inconsistent, suspiciously true or true in the well-founded p-model of a
hybrid MKNF knowledge base KG if and only if this holds for every p-model of KG; and
that a K-atom is inconsistent, suspiciously true, false or classically false in the well-founded
p-model ofKG if and only if this is the case for all p-models ofKG as well. The next result
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transfers the mentioned property to the result of the alternating fixpoint computation and
will be needed for showing that the well-founded pair we compute not only corresponds
to a p-model, but to the unique well-founded p-model of the respective hybrid MKNF
knowledge base. The idea behind the proof of the following definition is identical to the
one of the proof for Proposition 7 in [KAH11], and its structure is reflected here. How-
ever, due to the three additional truth values we employ, the details of the proof are more
intricate.

Proposition 4.18 (Characterization of the well-founded pair). Given a ground hybrid MKNF
knowledge base KG and the pair (T, F ) = (Pω,KA(KG) \Nω),

• KH ∈ T implies that KH is inconsistent, suspiciously true or true in every p-model of
KG, and

• KH ∈ F implies that KH is inconsistent, suspiciously true, false or classically false in
every p-model of KG.

Proof. Let KG be a ground hybrid MKNF knowledge base and let (T, F ) be the pair
(Pω,KA(KG)\Nω). According to Proposition 4.8, we can prove this proposition by show-
ing that, for all i,

(1) KH ∈ Pi implies that KH is inconsistent, suspiciously true or true in every p-model
of KG, and

(2) KH 6∈ Ni implies that KH is inconsistent, suspiciously true, false or classically false in
every p-model of KG.

We prove the cases (1) and (2) simultaneously by an induction on i. For both cases,
the base case i = 0 holds trivially since P0 is empty and N0 is equal to KA(KG).

(i) Assume that the cases (1) and (2) hold for all i ≤ n. We consider i = n+ 1 for both
cases, namely KH ∈ Pn+1 and KH 6∈ Nn+1.

Case (1): First, let KH ∈ Pn+1. If KH already occurs in Pn, then KH is inconsistent,
suspiciously true or true in every p-model (M,N) of KG, by the induction hypothesis (i).
Otherwise, KH ∈ ΓKG

(Nn), i.e. KH ∈ TKG/Nn
↑ ω but KH 6∈ Pn. Since KH is

introduced by TKG/Nn
↑ ω, we know that KH ∈ TKG/Nn

↑ j for some j, and we prove by
induction on j that KH is inconsistent, suspiciously true or true in every p-model (M,N)

of KG.
The base case obviously holds, since TKG/Nn

↑ 0 is empty.
(ii) Assume that the claim holds for all j ≤ m, and consider KH ∈ TKG/Nn

↑ m+ 1.
If KH already occurs in TKG/Nn

↑ m, then the claim holds automatically by the
induction hypothesis (ii). Otherwise, there are two cases to consider. Either there is a
positive rule KH ← KA1, . . .KAn in KG/Nn with KAi ∈ TKG/Nn

↑ m, or KH is the
consequence of DKG/Nn

(TKG/Nn
↑ m). In the first case, by the induction hypothesis (ii),

all KAi are inconsistent, suspiciously true or true in every p-model of KG. Additionally,
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there is a rule KH ← KA1, . . .KAn,notB1, . . . ,notBm in KG, and since the positive
version of this rule occurs in KG/Nn, no KBj occurs in Nn, and thus (by the induction
hypothesis (i)), all KBj are inconsistent, suspiciously true, false or classically false in every
p-model of KG. Thus, all notBj are inconsistent, suspiciously true or true in every p-model
of KG. Consequently, KH has to be inconsistent, suspiciously true or true in every p-model
(M,N) of KG.

In the second case, OBO,S |=p H holds, where S = TKG/Nn
↑ m. Because we have that

(M,N) |=p π(O), we know that I |=p π(O) for each I ∈ M of every p-model (M,N) of
KG. Since we also know that all modal K-atoms KAi ∈ S are inconsistent, suspiciously true
or true in every p-model of KG (by the induction hypothesis (ii)), we can conclude that
I |=p Ai for each I ∈ M of every p-model (M,N) of KG, by the definition of the modal
K-operator in Definition 3.6. From this, we derive that also I |=p H holds for each I ∈M
and every p-model (M,N) of KG and hence, KH has to be inconsistent, suspiciously true
or true in every p-model of KG, again by Definition 3.6.

Case (2): Next, consider all KH ∈ KA(KG) s.t. KH 6∈ Nn+1. Let U be the set of all
such KH , i.e. the set of all KH ∈ KA(KG) s.t. KH 6∈ Γ′KG

(Pn). Now, from the definition
of Γ′KG

(Pn) in Definition 4.4 and 4.1, we can conclude that for each modal K-atom KH

in U , it is the case that OBO,Pn |=p ¬H holds or the following conditions2 are fulfilled:

(Ui) For each rule KH ← KA1, . . . ,KAn,notB1, . . . ,notBm in PG at least one of the
following holds:

(Uia) Some modal K-atom KAi appears in U ∪ KA(KG) \Nn or

(Uib) some modal K-atom KBi appears in Pn, and

(Uii) it holds that OBO,Nn\U 6|= H .

We consider an arbitrary KH in U . If OBO,Pn |=p ¬H , then we can directly infer from
condition (3) of Definition 3.10 that KH is inconsistent or classically false in every p-model
ofKG because we know by the induction hypothesis (i) that all KH ∈ Pn are inconsistent,
suspiciously true or true in every p-model of KG. Alternatively, we assume that ¬H is
not derivable, i.e. that OBO,Pn 6|=p ¬H . Then, in order to prove the induction step for
case (2), it suffices to prove that if the conditions (Ui)-(Uii) are fulfilled for KH , then it is
suspiciously true or false in every p-model of KG. We begin by proving that the previous
holds if the conditions (Ui)-(Uii) are fulfilled for KH without any reference to U . For this,
we show that if the conditions are fulfilled for KH without any reference to U , then the
body of each rule with head KH is inconsistent, suspiciously true, false or classically false in
every p-model of KG and additionally, that the ontology component does not force KH

to be either true or undefined in every p-model of KG. As p-models minimize derivable
knowledge according to Definition 3.10, we can then infer directly that KH is suspiciously

2As mentioned by Knorr et al. in [KAH11], these conditions are similar to the conditions of the definition
of an unfounded set in [GRS91b].
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true or false in every p-model of KG if it fulfills the conditions without any reference to U .
Finally, we will show that the same holds for all KH ∈ U .

Regarding condition (Uia), we know by the induction hypothesis (i) that every KAi ∈
KA(KG) \Nn is inconsistent, suspiciously true, false or classically false in every p-model of
KG. Thus, the body of the rule is also inconsistent, suspiciously true, false or classically false
in every p-model of KG according to Definition 3.6.

In the case of condition (Uib), we know by the induction hypothesis (i) that every
KB ∈ Pn is inconsistent, suspiciously true or true in every p-model of KG. Therefore, there
is a modal not-atom notBi in the body of the rule which is evaluated to one of the truth
values inconsistent, suspiciously true and false in every p-model of KG. Thus, in case of
(Uib), the body of the rule is inconsistent, suspiciously true or false in every p-model of KG
according to Definition 3.6.

Finally, condition (Uii) states thatH can only be derived from the objective knowledge
of a set containing at least one modal K-atom which is not in Nn+1. As before, we assume
that the condition is already fulfilled for KH when only considering Nn, where Nn ⊆
Nn+1 according to Lemma 4.7. We know by the induction hypothesis (i) that all K-atoms
KAi which are not in Nn are inconsistent, suspiciously true, false or classically false in every
p-model of KG. Besides the case where a modal K-atom KAi is inconsistent in a p-model
(M,N) ofKG such that (

⋂
J∈N J , 〈M,N〉,N )(Ai) 6= f , we know that for all KAi there is a

p-interpretation I in the set N of every p-model (M,N) of KG such that (I,M,N )(Ai) =

f .

Regarding those KAi which are inconsistent in some p-model (M,N) of KG such that
(
⋂
J∈N J , 〈M,N〉,N )(Ai) 6= f , we know according to Corollary 3.38 that it holds that

OBO,{KH′|(∗,〈M,N〉,〈M,N〉)(KH′)∈{t,u}} |=p Ai. Consequently, Ai can also be derived from
OBO,Nn itself as Nn contains all modal K-atoms KH ′ where (∗, 〈M,N〉, 〈M,N〉)(KH ′) ∈
{t,u} for some p-model (M,N) of KG, according to the induction hypothesis (i). Hence,
we can neglect those KAi 6∈ Nn which are inconsistent in some p-model (M,N) of KG
s.t. (

⋂
J∈N J , 〈M,N〉,N )(Ai) 6= f as they are derivable from Nn and thus, do not satisfy

condition (Uii) without any reference to U . We conclude that the only reason for such
K-atoms KAi not being in Nn+1 is that OBO,Pn |=p ¬Ai holds.

So, for every Ai which cannot be derived from OBO,Nn we have that there is a p-
interpretation I in the set N of every p-model (M,N) ofKG such that (I,M,N )(Ai) = f .
We also know that the derivation of H from the ontology depends on at least one KAi 6∈
Nn such that OBO,Nn 6|=p Ai. As a result, considering the ontology component, H does
not have to be t or b in every p-interpretation in N of some p-model (M,N) of KG and
thus, KH is not forced by the ontology component to be either true or undefined in every
p-model of KG.

Now, consider the conditions (Ui)-(Uii) together. If the body of each rule with head
KH is either false or classically false in some p-model (M,N) of KG and KH is not forced
by the ontology to be suspiciously true in the same p-model (M,N), then it will be mini-
mized to f in (M,N) due to knowledge minimization by condition (2) of Definition 3.10.
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Otherwise, if the body of some rule with head KH is either inconsistent or suspiciously
true in some p-model (M,N) of KG or KH is forced by the ontology to be suspiciously
true in some p-model (M,N) ofKG, then it will be minimized to st in (M,N). As a result,
KH is suspiciously true or false in every p-model ofKG. Hence, item (2) of this proposition
clearly holds for all modal K-atoms in U which fulfill the conditions (Ui)-(Uii) without
any reference to U .

Due to Lemma 4.17, the only possible reason why some KH ∈ Nn is in U consists in
the fact that at least one K-atom KAi in each hybrid dependence set S of KH does not
occur in Nn+1 anymore. Since the sequence of Pi is monotonically decreasing according
to Lemma 4.7, the previous can only be the case if for every hybrid dependence set S of
KH and some KAi ∈ S a rule with head KAi was removed in the MKNF transform
because a modal not-atom in the rule of the body occurs in Pn, or because OBO,Pn |=p

¬Ai holds. This implies that each KH ∈ U hybrid-depends on some modal K-atom that
fulfills the conditions (Ui)-(Uii) without any reference to U . Consequently, the conditions
(Ui)-(Uii) are also fulfilled by those KH which are in Nn, but not in Nn+1. As a result,
it is the case that for all KH in U it holds that OBO,Pn |=p ¬H or that KH fulfills the
complete conditions (Ui)-(Uii) including the reference to U , and we derive that all KH in
U are inconsistent, suspiciously true, false or classically false in every p-model of KG.

On the basis of Proposition 4.18, it is now straightforward to show the correspon-
dence of the well-founded pair and the well-founded p-model of a ground hybrid MKNF
knowledge base. The statement and the proof mirror Theorem 5 and the corresponding
proof from [KAH11].

Theorem 4.19 (Soundness and completeness of the procedural definition). Let KG be a
ground hybrid MKNF knowledge base and (IP , IN ) the p-model of KG induced by the well-
founded pair (TW , FW ). For any p-model (M,N) of KG we have (M,N) �k (IP , IN ). Indeed,
(IP , IN ) is the well-founded p-model of KG.

Proof. We have shown in Proposition 3.37 that any p-model (M,N) of KG induces a pair
(T, F ) which in turn gives rise to the same p-model (via the objective knowledge). By
Proposition 4.18, KH ∈ TW implies that KH is inconsistent, suspiciously true or true
in every p-model of KG, and KH ∈ FW implies that KH is inconsistent, suspiciously
true, false or classically false in every p-model of KG. We conclude that TW ⊆ T and
FW ⊆ F . Furthermore, we know that IP = {I | I |= OBO,TW } and IN = {I | I |=
OBO,KA(KG)\FW

}, and also that M = {I | I |= OBO,T } and N = {I | I |= OBO,KA(KG)\F }.
It is straightforward to see that M ⊆ IP and IN ⊆ N , which by Definition 3.31 finishes
the proof.

4.6 Faithfulness of the Program Semantics w.r.t. WFSXp

One main goal and contribution of this thesis consists in establishing a paraconsistent se-
mantics for hybrid knowledge bases which is faithful w.r.t. to some well-studied [Dam96;

97



4. ALTERNATING FIXPOINT CHARACTERIZATION 4.6. Faithfulness of the Program Semantics w.r.t. WFSXp

PA92] paraconsistent semantics for logic programs, namelyWFSXp, if the ontology com-
ponent is constrained. After having proven that the procedural computation of well-
founded p-models by means of the alternating fixpoint construction introduced in the
previous chapter is sound and complete, we can use this result to show that the paracon-
sistent well-founded model WFMp(Π) of an extended logic program Π, as defined by
Damásio [Dam96], matches exactly the well-founded pair of the corresponding hybrid
MKNF knowledge base. However, we have to impose a restriction on the extended logic
programs for which this correspondence holds since classical negation cannot be used in
MKNF rules of hybrid MKNF knowledge bases employed in our approach. As a conse-
quence, we are able to show the correspondence if and only if classical negation is only
used in front of ground program atoms consisting of a unary predicate and a constant
(i.e. unary program atoms). In this case, the faithfulness result w.r.t. WFSXp follows nat-
urally because the procedural computation defined in this thesis works nearly identical
to the alternating fixpoint construction developed by Damásio, under the condition that
the ontology component is only used to ensure coherence and not to derive K-atoms by
means of the operator DKG

.

As described in Section 2.3.2, the Coherence Principle is enforced in the alternating
fixpoint definition of WFSXp, by not using the original program Π when computing the
result of the operator Γs (which is the equivalent of the operator Γ′KG

in our approach)
but a transformation of the original program, called its semi-normal version and denoted
by Πs (cf. Section 2.3.2). In this way, it can be ensured that an objective literal is not
derivable by means of the operator Γs whenever its explicit complement can be derived
by the operator ΓΓs, due to the removal of the respective rule from the GL-transformation
(which resembles the MKNF transform of our approach).

Although the syntax of hybrid MKNF knowledge bases does not allow classically
negated atoms in the program component, classical negation in MKNF rules can easily
be simulated by designating a prefix for marking the classical negation of unary program
atoms. For instance, we can specify that for every first-order atom H(a) in a ground pro-
gram component, the first-order atom neg_H(a) denotes the classical negation of H(a).
Note that the literals of the form A and ¬A in an extended logic program can also be
viewed as independent entities when the Coherence Principle is not taken into account
[Dam96]. Thus, they are only connected by the Coherence Principle and in order to simu-
late classical negation in the program component we just have to make sure that p-models
of the knowledge base are coherent w.r.t. to the atoms carrying the prefix neg_. This can
be done by delegating the enforcement of the Coherence Principle to the ontology com-
ponent. For this reason, we do not deal with an empty ontology component here.

In order to show the correspondence of the well-founded pair (TW , FW ) of a ground
hybrid MKNF knowledge base KG and the paraconsistent well-founded model of a ex-
tended logic program Π (restricted in the aforementioned sense), we define a translation
between Π and KG and show that WFMp(Π) and (TW , FW ) are semantically equiva-
lent. To establish the semantical relation between unary program atoms and their explicit
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complements, in addition to the program component, we also take a restricted ontology
component into account.

Definition 4.20 (MKNF-translation of an extended logic program). Let Π be a ground
extended logic program [Dam96] where classical negation is only used in front of unary
program atoms. The MKNF-translation of Π is a hybrid MKNF knowledge base KΠ

G =

(OΠ,PΠ
G) that fulfills the following condition.

(1) The program component PΠ
G contains precisely one MKNF rule

KH ← KA1, . . . ,KAn,notB1, . . . ,notBm

for every rule of the form

H ← A1, . . . , An,notB1, . . . ,notBm

in Π, where all objective literals in Π of the form ¬A (consisting of a unary predicate
symbol and a constant) are replaced by the first-order atom neg_A in PΠ

G .

(2) The ontology component OΠ only contains two axioms of the form

P v ¬neg_P

neg_P v ¬P

for every unary predicate P occurring in Π.

Theorem 4.21 (Faithfulness w.r.t. WFSXp). Let Π be a ground extended logic program where
classical negation is only used in front of unary program atoms, WFMp(Π) the paraconsistent
well-founded model of Π, KΠ

G the MKNF-translation of Π and (TW , FW ) the well-founded pair
of KΠ

G. Then KH ∈ TW if and only if H ∈ WFMp(Π), and KH ∈ FW if and only if
notH ∈WFMp(Π).

Proof. First, assume that Π does not contain any classically negated atom in the head of a
rule. In this case, the claim follows trivially since the fixpoint computation for obtaining
(TW , FW ) and WFMp(Π) correspond exactly. Note that the previous holds since the
operator Γs can be replaced by Γ in the computation of WFMp(Π), and the operator Γ′KG

can be replaced by ΓKG
in the computation of the well-founded pair, in this case.

If Π contains a classically negated atom in the head of some rule, applying the op-
erator Γs to the semi-normal version of Π ensures that the explicit complement of an
objective literal L cannot be derived by Γs if L can be derived by Γ, by removing all
rules where the explicit complement of L occurs in the head. Now, the deletion of those
K-atoms KH from the result of the operator T ′KG,Pi

in the sequence of Ni for which it
holds that OBO,Pi |=p ¬H (according to Definition 4.1) has exactly the same effect. That
is to say, whenever KA can be derived by means of ΓKG

, K neg_A cannot be derived
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by Γ′KG
, and vice versa. The reason is that the definition of the ontology component

O of KΠ
G makes sure that OBO,Pi |=p ¬A holds iff it is the case that neg_A ∈ Pi, and

that OBO,Pi |=p ¬neg_A holds iff it is the case that A ∈ Pi. Consequently, the alternat-
ing fixpoint computation of (TW , FW ) and WFMp(Π) correspond and hence, they are
semantically equivalent.

The previous theorem proves that properties that have been shown for the logic
WFSXp can directly be lifted to the program semantics provided by our framework.
For instance, the Coherence Principle formalized in Definition 2.6 holds in our seman-
tics, and Contradiction Support Detection is implemented for the program component in
our framework (cf. Theorem 1). In addition, the model-based definition of our semantics
provides a novel and concise characterization of WFSXp.

4.7 Data Complexity of Computing the Well-Founded Pair

As discussed in the first chapter, using the WFS as the foundation for the logic program
semantics of hybrid MKNF knowledge bases has the distinct advantage that, in contrast
to the stable model semantics, a low worst-case complexity can be achieved. As a result,
the tractability of the whole formalism only depends on the expressivity of the descrip-
tion logic used to formalize the ontology component. Since the procedural computation
of the well-founded pair largely resembles3 the computation of the well-founed partition
of Knorr et al. [KAH11], the complexity result of the three-valued well-founded MKNF
semantics presented by Knorr et al. carries over to our approach.

The complexity result is stated for data complexity which is measured in terms of the
number of concept and role assertions in the ABox of the ontology component and the
number of facts in the program component [KAH08].

Theorem 4.22 (Data Complexity w.r.t. the Well-Founded Pair [KAH11]). Let K be a hybrid
MKNF knowledge base. Assuming that entailment of ground DL-atoms in the DL used to formal-
ize the ontology component is decidable with data complexity C, the data complexity of computing
the well-founded pair is in P C .

Proof. Knorr et al. have shown that this claim holds for the alternating fixpoint con-
struction utilized to compute the well-founded partition in their framework [KAH08],
by resorting to a result proven by Motik and Rosati that shows that the computation
performed by the operator TKG

is PTime-complete [MR10]. The computation of the al-
ternating fixpoint presented in Chapter 5 only differs from the definition by Knorr et al.
in that the deletion of those modal K-atoms K ξ for which it holds that OBO,Pi |=p ¬ξ,
in the sequence of Ni, is moved into the operator T ′KG,C , which does not alter the data
complexity of the formalism. Furthermore, using the paraconsistent entailment opera-
tor |=p instead of the classical entailment operator |= for deriving consequences from the

3Only the operator Γ′
KG

is adapted to extend the Coherence Principle to the ontology.
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ontology does not change the complexity result either since the ontology component is
considered to be an oracle in the proof of Motik and Rosati. Hence, the theorem still holds
like for the three-valued well-founded MKNF semantics.

The previous theorem implies that if consequences can be derived from the ontology
component in polynomial time by means of the p-entailment operator |=p, the computa-
tion of the well-founded pair is tractable as well. For instance, an ontology component
expressed in the syntax of the tractable DL EL++ can be used in our framework and, since
Maier et al. show that tractability of reasoning in EL++ can be preserved when applying
their four-valued semantics [MMH13], the well-founded p-model can be computed in
polynomial time then.
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5
Conclusions, Related and Future

Work

In this thesis, a new six-valued semantics for hybrid MKNF knowledge bases has been
developed that allows for paraconsistent reasoning. In this way, our approach extends
the expressive power of the three-valued semantics introduced by Knorr et al. in that it
also gives a meaning to inconsistent knowledge bases, propagates dependencies on con-
tradictions that arise in the program component, and distinguishes between pieces of
knowledge that are false by default and those which can be proven to be classically false.

In Chapter 3, it has been shown that our approach is faithful w.r.t. previous seman-
tics for hybrid MKNF knowledge bases in case the knowledge base is consistent, so that
our framework constitutes a proper extension of the work carried out in [MR10] and
[KAH11]. Moreover, it has been proven that the paraconsistent semantics assigned to the
ontology component in our framework corresponds to the paraconsistent DL semantics
ALC4 (without gaps) of Maier et al. [MMH13]. As a result, in many cases the seman-
tics of the ontology component can be computed by means of standard DL-reasoners
by applying one of the translations provided by Maier et al. in [MMH13]. Furthermore,
in Chapter 3, a definition of a specific p-model among the p-models of a hybrid MKNF
knowledge base has been provided, the so-called well-founded p-model, which is the
most “skeptical” p-model w.r.t. derivable knowledge.

After the discussion of the model-theoretic characterization of our six-valued hybrid
MKNF semantics, a procedural computation of such well-founded p-models has been
provided in Chapter 4, which is similar to the procedural computation of paraconsistent
well-founded models for LPs [Dam96], and closely resembles the construction developed
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by Knorr et al. in [KAH11]. It has been proven that the well-founded pair of a hybrid
MKNF knowledge base obtained by an alternating fixpoint construction is sound w.r.t.
our model-based definition in that it corresponds to a p-model of the knowledge base
(where it is presupposed that the DL used for formalizing the ontology component of
the respective hybrid MKNF knowledge base always admits a 4-model). Furthermore,
when only considering well-founded p-models, the construction constitutes a sound and
complete computation of these particular p-models. Since we have shown that the al-
ternating fixpoint construction has a least fixpoint and thus, always computes a unique
well-founded pair of a knowledge base, this implies that a well-founded p-model of a
hybrid MKNF knowledge base always exists and that it is unique if the ontology compo-
nent is always p-satisfied by some p-interpretation. In addition, it has been shown that
there is a translation of an extended normal logic program, in which classical negation is
only used in front of unary program atoms, into a hybrid MKNF knowledge base such
that its well-founded pair exactly corresponds to the paraconsistent well-founded model
of the program, i.e. our semantics is faithful w.r.t. WFSXp under the mentioned condi-
tion. Finally, we could show that the efficiency of the approach by Knorr et al. [KAH08]
in terms of data complexity holds for our approach as well, so that our procedural char-
acterization describes a tractable algorithm for obtaining the well-founded p-model of a
hybrid MKNF knowledge base (provided that paraconsistent reasoning in the employed
DL is tractable).

We will now conclude this thesis by reviewing two related approaches and by shortly
discussing possible future extensions of our work.

5.1 Related Work

As the related work that is generalized by our approach (i.e. paraconsistent LPs and DLs,
as well as approaches that combine rules and ontologies) has already been treated when
we discussed the background of our work in Chapter 2, we can restrict ourselves to ap-
proaches that pursue the same goal as our approach here. To the best of our knowledge,
there are only two other approaches that have addressed the problem of assigning a para-
consistent semantics to hybrid knowledge bases so far. The first one has been published
by Huang et al. in [HLH11] and has been extended recently in [HHL14]. Another ap-
proach has been developed by Fink and is discussed in [Fin12]. Both of these approaches
have in common that they are founded in the SMS for logic programs. Accordingly, the
main difference between these two approaches and the work presented here is character-
ized by the tradeoff between the semantical strength and the computational complexity
realized by the SMS and the WFS, respectively, as well as a different underlying formal-
ism in the case of the approach by Fink.

The approach most closely related to the work presented here is the one by Huang
et al. [HLH11] since the authors have also developed a paraconsistent semantics for hy-
brid MKNF knowledge bases. However, their framework is an extension of the hybrid
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MKNF semantics developed by Motik and Rosati [MR10] founded in the SMS. For this
reason, the authors also consider MKNF rules where disjunctions may occur in the heads
of rules. The approach of Huang et al. presented in [HLH11] uses the four truth values
of Belnap’s logic FOUR and its implication operator is defined like internal implica-
tion in [MMH13], such that it equals the implication operator used in this thesis w.r.t.
the truth values b, t and f . In contrast to our approach, the authors use the same four
truth values for interpreting first-order formulas and formulas containing modal opera-
tors and therefore, their semantics is founded on four-valued first-order interpretations
which are different from the paraconsistent (first-order) interpretations we define. As a
result, the authors show the faithfulness of their approach w.r.t. the semantics of Maier
et al. [MHL07] where gaps are not removed in the ontology semantics. Moreover, the
semantics assigned to the program component in the approach by Huang et al. is faith-
ful w.r.t. the paraconsistent stable models introduced by Sakama and Inoue [SI95] and dis-
cussed in Section 2.3.1. Further, the authors also present a fixpoint computation of their
paraconsistent MKNF models and a linear and consequence preserving translation of
four-valued into two-valued hybrid MKNF knowledge bases. A problem that exists in
the model-theoretic characterization of Huang et al. and which has been solved in our ap-
proach consists in the fact that the truth value undefined is minimal w.r.t. the minimization
order employed by the authors and thus, falsity is minimized to undefinedness regarding
modal K-atoms. However, this fact does not influence the definition of paraconsistent
satisfaction provided by Huang et al.

In [HHL14], Huang et al. extend their work in two directions. Firstly, they define a
paracoherent semantics for hybrid MKNF knowledge bases by extending their logic to
nine truth values. In this way, they are able to assign a paraconsistent MKNF model also
to incoherent programs which contain a rule such as a ← nota and thus, do not have
a model in the four-valued approach discussed before. The paracoherent approach of
Huang et al. is based on work by Sakama and Inoue [SI95] and the bilattice underlying
their nine-valued logic is identical to the bilattice IX depicted in Figure 2.2. Secondly,
suspicious reasoning in hybrid MKNF knowledge bases is considered in [HHL14] that
follows the same strategy followed by Sakama and Inoue [SI95], which has been dis-
cussed in Section 2.3.1 and uses the six-valued lattice shown in Figure 2.2. Moreover,
Huang et al. also provide procedural definitions of their paracoherent and suspicious
MKNF semantics, respectively, and show that the construction of models is sound and
complete w.r.t. their model-based definition in the former case, and sound in the latter
case.

Like the framework of Huang et al. [HHL14], the approach introduced by Fink [Fin12]
also takes inconsistencies as well as incoherencies in hybrid knowledge bases into ac-
count. The approach by Fink has its roots in the intuitionistic Quantified Logic of Here-and-
There and its non-monotonic extension in form of Quantified Equilibrium Logic (QEL). QEL
has been used by de Bruijn et al. to provided a common framework for rules and ontolo-
gies [BPPV07]. Though rule and ontology predicates are distinguished in [BPPV07], such
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that the former are interpreted classically and the latter are interpreted non-monotonically,
Eiter et al. remark that the approach should still be viewed as a full integration approach
since it defines a unifying logic for both components [EIKP08]. The approach by Fink is
based on a generalization of hybrid knowledge bases as defined by de Bruijn to so-called
hybrid theories, and on a nine-valued extension of semi-equilibrium semantics (which has
been introduced by Eiter et al. in order to deal with incoherencies in Answer Set Programs
[EFM10]) to so-called paraconsistent semi-equilibrium semantics. As a result, the framework
developed by Fink is able to deal with classical inconsistencies and incoherencies in hy-
brid knowledge bases simultaneously. Like in the approach by Huang et al., classical
predicates in the ontology component are paraconsistently interpreted by means of four
truth values, in contrast to just three truth values used in our approach, and the impli-
cation operator is defined like internal implication by Fink in this case. Accordingly,
the author can show that the semantics is faithful w.r.t. paraconsistent first-order seman-
tics as used e.g. in [MMH13]. Moreover, Fink states in [Fin12] that the paraconsistent
semi-equilibrium semantics of the program component of the framework corresponds to
well-known paraconsistent and paracoherent ASP semantics, which have been published
in [EFM10] and [SI95]. The author further provides a detailed complexity analysis of his
approach, for which the condition of weak DL-safeness is adopted (also applied in DL+log
knowledge bases of Rosati [Ros06], which have been described in Section 2.4). Since the
approach by Fink extends the SMS, reasoning is generally of non-tractable computational
complexity in the framework. Suspicious reasoning is not discussed in the paper [Fin12]
by Fink.

5.2 Future Work

Regarding future extensions of our work, there are two obvious directions that can be
pursued to expand, respectively enhance, the approach developed in this thesis. Firstly,
since a query-driven top-down procedure for deriving the three-valued well-founded
MKNF model, named SLG(O), has already been developed by Knorr et al. [AKS13], it
would be an evident next step to adapt this procedure in order to compute well-founded
p-models. For query-answering, a top-down derivation procedure is considerably faster
than the bottom-up computation by means of the alternating fixpoint construction pre-
sented in this thesis because only the part of the model which is relevant for answering
the respective query has to be computed in the former case [AKS13]. Since the ontology
component is treated as an oracle in the SLG(O) procedure, standard reasoners could
be directly applied for deriving paraconsistent consequences from the ontology compo-
nent by utilizing the translations of paraconsistent DLs into classical DLs provided by
[MMH13]. The SLG(O) procedure has also been implemented in the NoHR-plug-in for
the ontology editor Protégé [IKL13]. Consequently, by adapting the SLG(O) procdure to
our paraconsistent framework it would be possible to allow for paraconsistent reasoning
in a future version of the NoHR-plug-in.
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Secondly, Contradiction Support Detection could be improved in our approach. As
discussed in Section 2.3.3, detection of dependencies on contradiction fails in WFSXp

whenever a program atom that is not inconsistent itself but can only be derived by involv-
ing contradictory information also occurs in the head of a rule whose body is undefined.
Since our six-valued semantics is constructed in a way such that the meaning assigned
to the program component corresponds to WFSXp, the same problem is present in our
approach. To tackle this issue, Damásio and Pereira have defined a program transforma-
tion that deletes certain rules that have an undefined body from a program [DP97]. This
transformation is then iteratively applied in the alternating fixpoint construction of the
paraconsistent well-founded model. The alternating fixpoint construction presented in
this thesis could be adapted in a similar way in order to ensure that Contradiction Sup-
port Detection is complete w.r.t. the program component. Regarding the model-theoretic
characterization of our semantics, the semantics of the implication operator would have
to be changed accordingly in order to maintain the respective soundness and complete-
ness results.

Furthermore, for the same reasons as given to motivate Contradiction Support De-
tection in the program component, it would be desirable that Contradiction Support De-
tection would also work for inconsistencies that arise within the ontology component.
However, to implement propagation of inconsistencies in the semantics of an ontology is
more difficult compared to the implementation in LP semantics since, in contrast to the
program component, the ontology component lacks a rule-like structure. To the best of
our knowledge, whether and how Contradiction Support Detection could be defined in
case of the ontology semantics is an open question.
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