221 research outputs found

    Coherent Integration of Databases by Abductive Logic Programming

    Full text link
    We introduce an abductive method for a coherent integration of independent data-sources. The idea is to compute a list of data-facts that should be inserted to the amalgamated database or retracted from it in order to restore its consistency. This method is implemented by an abductive solver, called Asystem, that applies SLDNFA-resolution on a meta-theory that relates different, possibly contradicting, input databases. We also give a pure model-theoretic analysis of the possible ways to `recover' consistent data from an inconsistent database in terms of those models of the database that exhibit as minimal inconsistent information as reasonably possible. This allows us to characterize the `recovered databases' in terms of the `preferred' (i.e., most consistent) models of the theory. The outcome is an abductive-based application that is sound and complete with respect to a corresponding model-based, preferential semantics, and -- to the best of our knowledge -- is more expressive (thus more general) than any other implementation of coherent integration of databases

    Multi-dimensional Type Theory: Rules, Categories, and Combinators for Syntax and Semantics

    Full text link
    We investigate the possibility of modelling the syntax and semantics of natural language by constraints, or rules, imposed by the multi-dimensional type theory Nabla. The only multiplicity we explicitly consider is two, namely one dimension for the syntax and one dimension for the semantics, but the general perspective is important. For example, issues of pragmatics could be handled as additional dimensions. One of the main problems addressed is the rather complicated repertoire of operations that exists besides the notion of categories in traditional Montague grammar. For the syntax we use a categorial grammar along the lines of Lambek. For the semantics we use so-called lexical and logical combinators inspired by work in natural logic. Nabla provides a concise interpretation and a sequent calculus as the basis for implementations.Comment: 20 page

    Handling Inconsistency in Knowledge Bases

    Get PDF
    Real-world automated reasoning systems, based on classical logic, face logically inconsistent information, and they must cope with it. It is onerous to develop such systems because classical logic is explosive. Recently, progress has been made towards semantics that deal with logical inconsistency. However, such semantics was never analyzed in the aspect of inconsistency tolerant relational model. In our research work, we use an inconsistency and incompleteness tolerant relational model called Paraconsistent Relational Model. The paraconsistent relational model is an extension of the ordinary relational model that can store, not only positive information but also negative information. Therefore, a piece of information in the paraconsistent relational model has four truth values: true, false, both, and unknown. However, the paraconsistent relational model cannot represent disjunctive information (disjunctive tuples). We then introduce an extended paraconsistent relational model called disjunctive paraconsistent relational model. By using both the models, we handle inconsistency - similar to the notion of quasi-classic logic or four-valued logic -- in deductive databases (logic programs with no functional symbols). In addition to handling inconsistencies in extended databases, we also apply inconsistent tolerant reasoning technique in semantic web knowledge bases. Specifically, we handle inconsistency assosciated with closed predicates in semantic web. We use again the paraconsistent approach to handle inconsistency. We further extend the same idea to description logic programs (combination of semantic web and logic programs) and introduce dl-relation to represent inconsistency associated with description logic programs

    Paraconsistent logic and query answering in inconsistent databases

    Full text link
    This paper concerns the paraconsistent logic LPQ⊃,F^{\supset,\mathsf{F}} and an application of it in the area of relational database theory. The notions of a relational database, a query applicable to a relational database, and a consistent answer to a query with respect to a possibly inconsistent relational database are considered from the perspective of this logic. This perspective enables among other things the definition of a consistent answer to a query with respect to a possibly inconsistent database without resort to database repairs. In a previous paper, LPQ⊃,F^{\supset,\mathsf{F}} is presented with a sequent-style natural deduction proof system. In this paper, a sequent calculus proof system is presented because it is common to use a sequent calculus proof system as the basis of proof search procedures and such procedures may form the core of algorithms for computing consistent answers to queries.Comment: 21 pages; revision of v4, some inaccuracies removed and material streamlined at several place

    Inconsistency and Incompleteness in Relational Databases and Logic Programs

    Get PDF
    The aim of this thesis is to study the role played by negation in databases and to develop data models that can handle inconsistent and incomplete information. We develop models that also allow incompleteness through disjunctive information under both the CWA and the OWA in relational databases. In the area of logic programming, extended logic programs allow explicit representation of negative information. As a result, a number of extended logic programs have an inconsistent semantics. We present a translation of extended logic programs to normal logic programs that is more tolerant to inconsistencies. Extended logic programs have also been used widely in order to compute the repairs of an inconsistent database. We present some preliminary ideas on how source information can be incorporated into the repair program in order to produce a subset of the set of all repairs based on a preference for certain sources over others
    • …
    corecore