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AND LOGIC PROGRAMS

by

NAVIN VISWANATH

Under the direction of Rajshekhar Sunderraman

ABSTRACT

The aim of this thesis is to study the role played by negation in databases and to develop

data models that can handle inconsistent and incomplete information. We develop models

that also allow incompleteness through disjunctive information under both the CWA and the

OWA in relational databases. In the area of logic programming, extended logic programs

allow explicit representation of negative information. As a result, a number of extended

logic programs have an inconsistent semantics. We present a translation of extended logic

programs to normal logic programs that is more tolerant to inconsistencies. Extended logic

programs have also been used widely in order to compute the repairs of an inconsistent

database. We present some preliminary ideas on how source information can be incorporated

into the repair program in order to produce a subset of the set of all repairs based on a

preference for certain sources over others.

INDEX WORDS: Incompleteness, Inconsistency, Logic programming, Negation,
Nonmonotonic reasoning
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1

CHAPTER 1.

INTRODUCTION

Typically, relational databases operate under the Closed World Assumption (CWA) of

Reiter [64]. The CWA is a meta-rule that says that given a knowledge base KB and a

sentence P, if P is not a logical consequence of KB, assume ∼ P (the negation of P). Thus,

we explicitly represent only positive facts in a knowledge base. A negative fact is implicit

if its positive counterpart is not present. Under the CWA we presume that our knowledge

about the world is complete i.e. there are no “gaps” in our knowledge of the real world.

The Open World Assumption (OWA) is the opposite point of view. Here, we “admit” that

our knowledge of the real world is incomplete. Thus we store everything we know about the

world - positive and negative. Consider a database which simply contains the information

“Tweety is a bird”. Assume that we want to ask this database the query “Does Tweety

fly?”. Under the CWA, since we assume that there are no gaps in our knowledge, every

query returns a yes/no answer. In this case we get the answer “no” because there is no

information in the database stating that Tweety can fly. However, under the OWA, the

answer to the query is “unknown”. i.e. the database does not know whether Tweety flies or

not. We would obtain a “no” answer to this query under the OWA only if it was explicitly

stated in the database that Tweety does not fly.

Current implementations of relational databases adopt the CWA; and for good reason.

The negative facts generally turn out to be much larger than the positive facts and it may

be unfeasible to store all of it in the database. A typical example is an airline database that

records the flights between cities. If there is no entry in the database of a flight between

city X and city Y, then it is reasonable to conclude that there is no flight between the cities.

Thus for many application domains the Closed World Assumption is appropriate. However,

there are a number of domains where the CWA is not appropriate. A prime example is

databases that require domain knowledge. For example, consider a biological database that
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stores pairs of neurons that are connected to each other. If we were to ask this database the

query “Is neuron N1 connected to neuron N2?” and this information was not available in

the database, is “no” an appropriate answer? What if we do not know yet whether N1 is

connected to N2? Then surely the answer “no” is misleading. A more appropriate answer

would be “unknown” which we would obtain under the OWA.

A problem that has recently been seeing a resurgence of interest in the database commu-

nity is that of incomplete information. In an era where it is common to see data integrated

from different sources, the importance of this problem cannot be overemphasized. The prob-

lem of incorporating incomplete information in a logical data model such as the relational

model was first emphasized by Codd. The earliest efforts in this area were targeted at in-

corporating a “null value” in the database. This null could be interpreted in a number of

different ways. Perhaps the most important work that laid the foundations for the problem

of query processing in a database containing incomplete information is that of Imielinski and

Lipski [41]. This work introduced a data model, called the c-tables, that extended the rela-

tional model of Codd and could represent any form of incompleteness. They also proposed

an algebra for query processing and laid out the definitions for what constitutes “correct”

query answers in the presence of incomplete information.

Deductive databases and logic programming have widely been recognized as expressive

knowledge representation formalisms. The idea of using first order predicate logic as a

programming language was first introduced by van Emden and Kowalski in [79]. In this

paper they provide a semantics for class of logic programs called the Horn programs. A

number of extensions were found to be necessary in order to gain expressivity. Initially, the

Horn logic programs were extended to include negation in the body of rules. The semantics of

such programs have been an active area of research for a number of years and two semantics

that have emerged as being the most widely accepted by the research community are the well-

founded semantics [81] and the stable model semantics [32]. Gelfond and Lifschitz showed in

[33] that even greater expressivity can be obtained by including a different kind of negation
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in logic programs. Logic programs containing two types of negation are called extended logic

programs. The two kinds of negation in extended logic programs are explicit negation and

default negation. Default negation is the ordinary negation considered in semantics such the

well-founded semantics and the stable model semantics. The semantics for such programs

were given by the answer set semantics. This led to the formulation of a number of different

semantics for extended logic programs [11, 73, 42, 5].

The relational model is devoid of semantics. One way of incorporating semantics into the

model is by introducing constraints on the schema. Typically a constraint is a statement in

first order logic to be satisfied by any instance of the database. For instance, the statement

that every individual has a unique social security number is one such constraint. However,

it is very often the case that these constraints are violated. In such a scenario, it is not clear

how query answering should be accomplished on such a database. This problem is partic-

ularly prevalent in the data integration scenario. When data is integrated from a number

of sources it may happen that while the data from each source is independently consistent,

inconsistencies may creep into the integrated database. However, even in such inconsistent

databases there is typically a large amount of useful information and the inconsistency is

usually limited to a small portion of the database. In such a situation we may want to

retrieve answers to queries only from the consistent portion of the database. This is known

as the problem of consistent query answering(CQA). Broadly, there are two ways to achieve

this goal. One of them is query rewriting, in which the query is rewritten so that it retrieves

only consistent answers. Another approach to the problem is to repair the database. A

repair of an inconsistent database is obtained by performing “minimal updates” to restore

consistency. As can be seen, an inconsistent database may have an exponential number of

repairs. A consistent query answer is an answer that is true in every repair of the database.

My research has touched upon all of the above mentioned problems. A significant por-

tion of my research has focused on the problems of incompleteness and inconsistency under
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the OWA. We develop data models based on the OWA that can handle inconsistent and

incomplete information.

The outline of this dissertation is as follows. The dissertation is divided into four parts.

Part I presents a background to the dissertation. Chapter 2 is an introduction to logic

programming. Chapter 3 briefly introduces constraints in relational databases. Chapter 4

introduces a data model based on the OWA, called the paraconsistent data model. Part II of

the dissertation concerns incompleteness. Chapter 5 introduces a data model based on the

CWA that handles incomplete information. Chapter 6 presents another data model based

on the OWA that handles incomplete information. It may be noted that both these models

are complete i.e. for any set of possible worlds there is an instance in these representation

formalisms. Part III of the dissertation studies nonmontonic reasoning. Chapter 7 intro-

duces a data model called d-relations that operates under the OWA and has two forms of

negation. One is the explicit negation found in the paraconsistent data model and the other

is a nonmonotonic form of negation. Chapter 8 studies that problem of inconsistency in

extended logic programs. We introduce a technique of translating extended logic programs

to normal logic programs so that inconsistencies may be avoided. Part IV of the dissertation

concerns the problem of consistent query answering in inconsistent databases. Chapter 9

is a treatment of functional dependencies under the OWA. We present a data model that

handles constraints in the open world setting. In chapter 10, we present a method by which

lineage information can be incorporated into the extended logic program that computes the

repairs of the inconsistent database. As a result, the number of repairs produced is reduced

largely.
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Part I

Background
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CHAPTER 2.

LOGIC PROGRAMMING

This chapter introduces the field of logic programming. Logic programming has emerged

as a very expressive tool for knowledge representation. We introduce the basic concepts of

logic programming and focus exclusively on the declarative semantics of logic programs. The

reader is referred to [50] for a more detailed description of the operational semantics of logic

programs.

2.1 Definite Logic Programs

We first introduce definite logic programs, which are logic programs that do not contain

negation. The semantics of definite logic programs is given by the TP operator of van Emden

and Kowalski in [79]. A definite logic program is a set of Horn clauses. We first introduce

some of the basic structures before defining a Horn clause.

A term is a constant, a variable or a complex term of the form f(t1, . . . , tn) where t1, . . . , tn

are terms and f is a function symbol with finite arity n ≥ 0. An atom is a formula of the

language of the form p(t1, . . . , tn) where p is a predicate symbol of finite arity n ≥ 0 and

t1, . . . , tn are terms. A literal is either an atom or its negation, denoted by p(t1, . . . , tn).

A definite logic program is a set of rules of the form

A← B1, . . . , Bn (2.1)

where A,B1, . . . , Bn are atoms. Here A is called the head of the rule and the conjunction

B1∧ . . .∧Bn is called the body of the rule. Given a logic program P , the Herbrand universe

of P , denoted UP , is the set of all possible ground terms constructed recursively using the

constants and function symbols occuring in P . The Herbrand base of P , denoted HBP , is the

set of all possible ground atoms whose predicate symbols occur in P and whose arguments
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are elements of UP . A term, atom, literal, rule or program is ground if it is free of variables.

A ground instance of a rule is obtained by replacing the variables in a program with elements

from UP in every possible way. A ground program is the union of the ground instances of

the rules in the program.

2.1.1 Model-theoretic semantics

A Herbrand interpretation I of P is any subset of the Herbrand base of P . A Herbrand

interpretation simultaneously associates, with every n-ary predicate symbol in P , a unique

n-ary relation over UP .

1. A ground atomic formula A is true in a Herbrand interpretation I iff A ∈ I.

2. A ground negative literal ¬A is true in I iff A 6∈ I.

3. A ground clause L1 ∨ . . . ∨ Lm is true in I iff at least one literal L, is true in I.

4. In general a clause C is true in I iff every ground instance Cσ of C is true in I. (Cσ is

obtained by replacing every occurrence of a variable in C by a term in UP . Different

occurrences of the same variable are replaced by the same term.)

5. A set of clauses A is true in I iff each clause in A is true in I.

A literal, clause, or set of clauses is false in I iff it is not true. If A is true in I, then we say

that I is a Herbrand model of A. Let M(A) be the set of all Herbrand models of A; then

∩M(A), the intersection of all Herbrand models of A, is itself a Herbrand interpretation of

A. This holds for any set of clauses A even if A is inconsistent. If A is a consistent set of

Horn clauses then ∩M(A) is itself a Herbrand model of A. More generally, Horn clauses

have the model intersection property: If L is any nonempty set of Herbrand models of A then

∩L is also a model of A, and is the least such model of A.

{P (a) ∨ P (b)}, where a and b are constants, is an example of a non-Horn sentence

which does not have the model-intersection property: {{P (a)}, {P (b)}} is a nonempty set

of models, yet its intersection ∅ is a Herbrand interpretation which is not a model.
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2.1.2 Fixpoint semantics

The fixpoint semantics of a definite logic program P is given by means of an operator TP

on interpretations. The least fixpoint of TP is the least model of P . This result relies on the

fact that the operator TP is monotonic and hence possesses a least fixpoint. TP is monotonic

since for any interpretations I1 and I2, such that I1 ⊆ I2, T (I1) ⊆ T (I2). The least fixpoint

is given by

∩{I : TP (I) ⊆ I} (2.2)

The definition of TP is given as follows:

T (I) contains a ground atomic formula A ∈ HP iff for some ground instance Cσ of a clause

C ∈ P , Cσ = A← B1, . . . Bn and B1, . . . Bn ∈ I, n ≥ 0.

For a definite logic program P , let M(P) be its Herbrand models and let ∩M(P) be its

least model. Let C(P) be the set of all interpretations closed under TP , i.e., I ∈ C(P) iff

TP (I) ⊆ I. We need to show that ∩M(P) = ∩C(P). It is easier to show that C(P) = M(P).

Theorem 2.1.1. If P is a definite logic program then M(P) = C(P), i.e. |=I P iff T (I) ⊆ I,

for all Herbrand interpretations I of P .

Proof. (|=I P implies TP (I) ⊆ I). Suppose I is a model of P . We want to show that if

A ∈ TP (I) then A ∈ I. Assume that A ∈ TP (I). Then by the definition of TP , there is a

clause C ∈ P such that Cσ = A ← B1, . . . Bn and B1, . . . Bn ∈ I. Since I is a model of P ,

Cσ is true in I which means that A is true in I since ¬B1, . . .¬Bn are false in I. Therefore

A ∈ I.

(TP (I) ⊆ I implies |=I P ). Suppose that I is not a model of P . Then for some clause C ∈ P ,

Cσ = A ← B1, . . . Bn is false in I, i.e., B1, . . . Bn ∈ I and A 6∈ I. But by the definition of

TP , since B1, . . . Bn ∈ I, A ∈ TP (I). Thus TP (I) 6⊆ I.

It can also be shown that the least model is the limit of the increasing, possibly infinite

sequence of iterations ∅, TP (∅), TP (TP (∅)) . . ..
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There is a standard notation used to denote elements of the sequence of interpretations

constructed for P . Namely:

TP ↑ 0 = ∅

TP ↑ i+ 1 = TP (TP ↑ i)

TP ↑ ω =
∞⋃
i=0

Tp ↑ i.

We show the iterations of the TP operator with an example.

Example 2.1.1

Consider the definite logic program

odd(s(0)).

odd(s(s(X)))← odd(X).

TP ↑ 0 = ∅

TP ↑ 1 = {odd(s(0))}
...

TP ↑ ω = {odd(sn(0)) | n ∈ {1, 3, 5, . . .}}

2.2 Introducing Negation

This section describes some of the results in extending Horn clause programs to include

negation in the body of clauses. We call such logic programs general logic programs or

normal logic programs. Work in this area has proceeded in two directions : one is the

program completion approach and the other is the search for a canonical model of the logic

program. A general logic program is a set of clauses of the form

A← B1, . . . Bn,∼ C1, . . . ,∼ Cm (2.3)
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Here the symbol ∼ denotes negation. This is different from a different form of negation ¬

that we will introduce later.

One of the major issues with introducing negation in the body of the program clauses

is that there is no longer a unique least model of the program. Instead there are several

minimal models. We illustrate this with an example. This is an example from [77]. The

program describes two bus lines, red and blue, each of which runs between pairs of cities.

Thus blue(X, Y ) means there is a bus of the blue line between cities X and Y . The president

of the red line wants to find if there is a pair of cities such that there is a bus of the red line

between them, but there is no way to go from one city to the other on the blue line even

through a sequence of intermediate stops.

Example 2.2.1

red(1, 2) ←

blue(1, 2) ←

red(2, 3) ←

bluePath(X, Y ) ← blue(X, Y ).

bluePath(X, Y ) ← blue(X,Z), bluePath(Z, Y ).

monopoly(X, Y ) ← red(X, Y ),∼ bluePath(X, Y ).

This program has two minimal models. They are {bluePath(1, 2),monopoly(2, 3)} and

{bluePath(1, 2), bluePath(2, 3), bluePath(1, 3)} along with the facts. The question now is to

decide which of these two models should be accepted as the intended model of the program.

It is easy to see that the first model appears to be the intended one. The only blue path is

the one that follows from the data and using the first rule for bluePath. Then the monopoly

fact follows from the last rule. The second model seems to materialize bluePath(2, 3) and

bluePath(1, 3) from nowhere.
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2.2.1 Program completion

We first describe the program completion approach. Much of the results here are based

on the work of Clark [20]. The basic idea in program completion is to treat the implication in

the rule as only the “if” half of a first order theory. We obtain a completion by converting the

“if” to an “if and only if” along with a set of equality axioms and unique names assumptions.

The classical, 2-valued logical consequences of this theory should be the logical conclusions

of the program. The program completion approach is very attractive. First, it is logically

correct. Secondly, it lends itself very elegantly to a computation mechanism known as SLDNF

resolution and thus is very efficient. We illustrate the program completion using an example

from [81].

Example 2.2.2

p(d) ← q(a),∼ q(b).

p(d) ← q(b),∼ q(c).

q(a) ← p(d).

q(b) ← q(a).

The Clark completion combines the rules for p into one rule, the rules for q into another

rule, and replaces the ← with ↔. After some simplifications,

p(d) ↔ (q(a) ∧ ¬q(b)) ∨ (q(b) ∧ ¬q(c))

∀X(q(X) ↔ ((X = a) ∧ p(d)) ∨ ((X = b) ∧ q(a))

While the program completion approach is computationally very attractive (PROLOG

for instance, uses SLDNF resolution) it has a few drawbacks. One of the major drawbacks
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is that one some examples, the interpreter fails to derive conclusions when a goal neither

succeeds nor fails. In some cases, the program completion is inconsistent. Also sometimes

even when the completion is consistent, the conclusions are not very intuitive. The following

example from [81] demonstrates that problem.

Example 2.2.3

b(1, 2) ←

b(2, 1) ←

g(2, 3) ←

g(3, 2) ←

p(X, Y ) ← b(X, Y ).

p(X, Y ) ← b(X,U), p(U, Y ).

e(X, Y ) ← g(X, Y ).

e(X, Y ) ← g(X,U), e(U, Y ).

a(X, Y ) ← e(X, Y ),∼ p(X, Y ).

In this example it is easy to see that p is the transitive closure of b and e is the transitive

closure of g. The predicate a is the difference between e and p. It appears that a(2, 3) should

be true. However the program completion also admits models in which p(2, 3) and p(1, 3)

are true and a(2, 3) is false.

2.2.2 3-valued program completion

The landmark paper of Fitting [29] introduced a semantics for logic programs with nega-

tion that was based on the three-valued logic of Kleene. The most important feature of this

semantics, which we will henceforth call the Fitting semantics, is that every logic program
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has a unique least model. Fitting’s semantics was based on the notion of partial interpre-

tations. We briefly describe here the Fitting semantics. The reader is referred to [29] for a

detailed exposition.

Definition 1. A partial interpretation is a pair 〈I+, I−〉, where I+ and I− are any subsets

of the Herbrand base.

A partial interpretation I is consistent if I+ ∩ I− = ∅. For any partial interpretations

I and J , we let I ∩ J be the partial interpretation 〈I+ ∩ J+, I− ∩ J−〉 , and I ∪ J be the

partial interpretation 〈I+ ∪ J+, I− ∪ J−〉. We also say that I ⊆ J whenever I+ ⊆ J+

and I− ⊆ J−. While the collection of all consistent partial interpretations is closed under

arbitrary intersections, it is not closed under arbitrary unions. Therefore the collection,

under the subset relation ⊆, does not form a complete lattice, but can be seen to meet the

conditions for the following weaker structure:

Definition 2. 〈S,⊆〉 is a complete semilattice if

1. The set S is partially ordered by ⊆

2. Every nonempty subset of S has a greatest lower bound in S and

3. every nonempty directed subset of S has a least upper bound in S (A subset A is directed

if for every X, Y ∈ A there is some Z ∈ A such that X ⊆ Z and Y ⊆ Z)

Complete semilattices are weaker structures than complete lattices, and monotonic maps on

them are guaranteed to possess only unique least fixed points, but not greatest fixed points.

For our purposes, however, this property is sufficient.

Definition 3. Let S be partially ordered by ⊆. A map T : S → S is monotonic, if for any

X, Y ∈ S, X ⊆ Y implies T (X) ⊆ T (Y ).

The Fitting model of a general logic program P is the least fixed point of the immediate

consequence function T FP on consistent partial interpretations defined as follows (let P ∗ the

ground version of P ):
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Definition 4. Let I be a partial interpretation. Then T FP (I) is the partial interpretation

given by

T FP (I)+ = {a | for some clause a← l1, l2, . . . , lm ∈ P ∗, for each 1 ≤ i ≤ m

if li is positive li ∈ I+ and,

if li is negative l′i ∈ I−}

T FP (I)− = {a | for every clause a← l1, l2, . . . , lm ∈ P ∗, there is some 1 ≤ i ≤ m

if li is positive li ∈ I− and,

if li is negative l′i ∈ I+}

where l′i is the complement of the literal li.

It is easily seen that T FP is monotonic and its application on consistent partial interpre-

tations results in a consistent partial interpretation. It thus possesses a least fixed point,

which is the Fitting model for P . This least fixed point is easily shown to be T FP ↑ ω, where

the ordinal powers of T FP are defined as follows:

Definition 5. For any ordinal α,

T FP ↑ α =


〈∅, ∅〉 if α = 0,

T FP (T FP ↑ (α− 1)) if α is a successor ordinal,

〈∪β<α(T FP ↑ β)+, ∪β<α (T FP ↑ β)−〉 if α is a limit ordinal.

Example 2.2.4

Let P be the following general deductive database:

r(a,c)

r(b,b)

s(a,a)
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p(X) ← r(X,Y), ∼p(Y)

p(Y) ← s(Y,a)

Then, T FP ↑ 0 = 〈∅, ∅〉. T FP ↑ 1 is the following partial interpretation:

(T FP ↑ 1)+ = { r(a,c), r(b,b), s(a,a) },

(T FP ↑ 1)− = { r(a,a), r(a,b), r(b,a), r(b,c), r(c,a), r(c,b), r(c,c),

s(a,b), s(a,c), s(b,a), s(b,b), s(b,c),

s(c,a), s(c,b), s(c,c) }.

And T FP ↑ 2 = I ∪ T FP ↑ 1, where I is the partial interpretation 〈{p(a)}, {p(c)}〉. Further-

more, for every ordinal α > 2, T FP ↑ α can be seen to be the same as T FP ↑ 2. Note that

in the Fitting model the atom p(a) is true and the atom p(c) is false. No truth value is

assigned to the atom p(b).

The Fitting semantics has the distinction of being the first semantics to assign a unique

model to general logic programs. However, it suffers from a drawback. It does not truly

extend the van Emdem-Kowalski semantics definite logic programs. The Fitting semantics

fails to capture positive recursion.

Example 2.2.5

Consider the following logic program:

a(0) ← b(0).

b(0) ← a(0).

The Fitting model of the program is 〈∅, ∅〉. Thus both a(0) and b(0) are assigned the

truth value unknown. But since this is a definite logic program, the van Emden-Kowalski

semantics declares both a(0) and b(0) to be false. It is easy to see that there is a positive
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recursion between the atoms a(0) and b(0). The Fitting semantics thus does not extend the

van Emden-Kowalski semantics.

2.2.3 The well-founded semantics

Arguably the most widely accepted semantics for general logic programs is the well-

founded semantics of van Gelder et al. The well-founded semantics extends the van Emden-

Kowalski semantics to general logic programs. The reader is referred to [81] for a detailed

description of the well-founded semantics.

The well-founded semantics is a 3-valued semantics. The negative conclusions in a general

logic program are derived in the well-founded semantics on the basis of unfounded sets. We

first define unfounded sets.

Definition 6. A set A ⊆ HBP is an unfounded set of a general logic program P with respect

to a partial interpretation I if each atom p ∈ A satisfies the following condition: For each

rule R of P whose head is p, atleast one of the following hold:

1. Some positive subgoal q of the body is false in I

2. Some positive subgoal of the body occurs in A

We illustrate unfounded sets through an example from [81].

Example 2.2.6

Consider the following ground logic program
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p(a) ← p(c),∼ p(b).

p(b) ← ∼ p(a).

p(e) ← ∼ p(d).

p(c) ← .

p(d) ← q(a),∼ q(b).

p(d) ← q(b),∼ q(c).

q(a) ← p(d).

q(b) ← q(a).

The atoms {p(d), q(a), q(b), q(c)} form an unfounded set with respect to the interpretation

∅. q(c) satisfies the first condition and the other three atoms satisfy the second condition.

It can be seen that p(d), q(a) and q(b) depend positively on each other. As a result, none

of them can be the first to be proven true. Also declaring any one of them false does not

make any of the remaining two true. This is where the set {p(a), p(b)} does not form an

unfounded set even though they depend on each other. The dependence is through negation.

As a result, making one of them false results in the other being declared true.

Simultaneously negating all atoms in the unfounded set generalizes negation by failure

in horn clause programs. If H is the Herbrand base of a Horn clause program and I is its

least Herbrand model, then the atoms in H − I form an unfounded set with respect to I.

It is easily seen that the arbitrary union of unfounded sets is an unfounded set.

Definition 7. The greatest unfounded set of P with respect to I, denoted GUSP (I), is the

union of all sets unfounded with respect to I.

We are now ready to define the well-founded partial model of P . We first define three

monotonic transformations.

Definition 8. Transformations TP , GUSP and WP are defined as follows:
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• p ∈ TP (I) if and only if there is some instantiated rule R in P such that R has head

p, and each subgoal literal in the body of R is true in I

• GUSP (I) is the greatest unfounded set of P with respect to I, as in Definition 7

• WP (I) = TP (I) ∪ ¬.GUSP (I)

where ¬.S of a set of atoms S is the set of all the complementary literals of the atoms in S.

Definition 9. The well-founded semantics of a program P is the least fixed point of WP .

Every positive literal denotes that its atom is true, every negative literal denotes that its atom

is false, and missing atoms have no truth value assigned to them in the semantics.

2.2.4 Stable model semantics

We next define an important semantics for general logic programs that markedly differs

from the semantics described so far. The stable model semantics was defined by Gelfond and

Lifschitz in [32]. It has its roots in a nonmonotonic reasoning formalism called autoepistemic

logic [56]. A notable feature of the stable model semantics is its simplicity.

The stable model semantics is a 2-valued semantics. We first define the stable models of

a logic program without negation i.e., the definite logic programs.

Definition 10. The least model of a definite logic program (without the appearance of ∼) is

the smallest set of atoms M such that for every rule of the form

A ← B1, . . . , Bn

if B1, . . . , Bn ∈M , then A ∈M .

This definition is the same as the TP for definite logic programs defined by van Emden

and Kowalski. For general logic programs, the stable model is based on a set of atoms. We

assume that a set of atoms is available to us and based on a certain transformation to be

defined, we decide whether this set is a stable model or not.
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Definition 11. Let P be a ground general logic program and let S be a set of atoms. The

Gelfond-Lifschitz transformation P S of P w.r.t S is obtained by

1. Deleting every rule with ∼ L in the body with L ∈ S

2. Deleting the negative literals from the bodies of the remaining rules

P S is a definite logic program. S is a stable model of P iff S is the least model of P S.

It can be seen that this definition is simple and elegant. However, the stable model

semantics is not constructive and hence is computationally expensive. It is apparent that a

general logic program can have a number of stable models. The semantics of the program is

taken to be the set of atoms in the intersection of all the stable models.

Example 2.2.7

Consider the ground program

a ← ∼ b.

b ← ∼ a.

This program has two stable models {a} and {b}.

There is a difference between the stable model semantic and the other semantics discussed

so far. While the well-founded semantics is a skeptical semantics, which means that the well-

founded conclusions are only those that are necessarily true, the stable model semantics is a

credulous semantics. Each stable model corresponds to a possible set of beliefs. Thus, when

a program has more than one stable model, it essentially means that there is more than one

way in which the meaning of the program may be interpreted.

There is a close connection between the well-founded and stable models of a program.

Theorem 2.2.1. If the well-founded model of a program P is total, then it is the unique

stable model for P .
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However, as shown in [81], the converse is not true. There are programs with unique

stable models which do not coincide with the well-founded model.

Example 2.2.8

a ← ∼ b.

b ← ∼ a.

p ← ∼ p.

p ← ∼ b.

This program has a unique stable model {a, p} whereas its well-founded model is empty.

2.2.5 An alternative definition of the well-founded semantics

The well-founded semantics may be defined in terms of the Gelfond-Lifschitz transform.

This was first demonstrated by Baral and Subrahmaniam in [8]. Let us denote the Gelfond-

Lifschitz transform by ΓP , i.e., ΓP is a map on interpretations. For a set of atoms S, ΓP (S)

is simply the least model of P S.

It was shown in [8] that the well-founded positive conclusions of the general logic program

P can be obtained by iterating Γ2
P from below. i.e., the least fixed point of Γ2

P is the set

of well-founded positive conclusions. The fact that Γ2
P possesses a least fixed point follows

from the observation that ΓP is anti-monotonic. As a result, Γ2
P is monotonic and hence

possesses a least fixed point. Let us denote by (Γ2
P )fp(P ) the least fixed point of Γ2

P . Then

Γ((Γ2
P )fp(P )) gives the set of conclusions that are possibly true. Hence HBP −Γ((Γ2

P )fp(P ))

is the set of all negative well-founded conclusions. It can be seen that ΓP alternates in a

certain fashion. That is, one application of ΓP produces conclusions that are possibly true

and a second application produces conclusions that are necessarily true. Thus even powers
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of ΓP produce conclusions that are necessarily true. Hence the least fixed point of Γ2
P is the

set of well-founded positive conclusions. This was first demonstrated by van Gelder in [80].

2.2.6 Stratified negation

The search for a canonical model has often been targeted at identifying the class of

programs that it can interpret satisfactorily. The least controversy surrounds a class of logic

programs called stratified programs.

A program is stratified if its predicates can be assigned a partial ordering priority relation

< such that

1. Negative premises must have higher priority than heads

2. Positive premises must have priority greater than or equal to that of the heads

For the class of stratified (and locally stratified) programs, Przymusinski gives the perfect

model semantics We describe this notion in terms of the description in [63].

This notion can be formalized through a dependency graph G for a program P whose

vertices are the predicate symbols. For any two predicate symbols A and B, there is an edge

from A to be B iff there is a clause in P such that B is the head of the clause and A is in

the body. If B is negative, then we draw a negative edge.

We can now define priority relations ≤ and < on the set of all predicate symbols in

program P . A ≤ B (resp. A < B) if there is a directed path in G leading from B to A (resp.

passing through atleast one negative edge).

Example 2.2.9

a(X) ← b(X),∼ g(X).

g(X) ← p(X).

Here we have a < g and a ≤ b, g ≤ p.
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The goal now is to minimize the extensions of higher priority predicates as much as

possible. Does is done even at the expense of increasing the extensions of lower priority

predicates. Thus if M is a model of P and a new model N is obtained by changing some

predicates, we say that N is preferable to M iff the addition of new elements to the extension

(in M) of a lower priority predicate A is justified by removing elements from the extension

(in M)of a higher priority predicate B.

Definition 12. Let M and N be two models of a program P . Denote by EM(A) and EN(A)

the extensions of a predicate A of P in M and N respectively. We say N is preferable to M ,

N ≺M , if for every predicate A such that EN(A)−EM(A) is non-empty there is a predicate

B > A such that EM(B)−EN(B) is non-empty. A model N is a perfect model of P if there

are no models preferable to N .

This definition can be extended by defining the priority relation < on the set of all

ground atoms instead of predicate symbols. When the extended < is a partial order, then

the program is called locally stratified.

The program in example 2.2.7 has two minimal models M1 = {a} and M2 = {b} but

since a ≺ b and b ≺ a we have M1 ≺M2 and M2 ≺M1 and neither of them is perfect.

The following result is from [81].

Theorem 2.2.2. If P is locally stratified, then it has a well-founded model, which is identical

to the perfect model.

2.2.7 Beyond stratification

It was thought that programs that are not stratified (locally stratified) do not make

“sense”. However it was shown by Kolaitis in [43] that there are queries in fixpoint logic that

are not expressible by stratified programs. Consider the following program which describes

a game in which a player wins when there is no move for the opponent, as in checkers.
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Example 2.2.10

win(X) ← move(X, Y ),∼ win(Y )

This program says that a player wins the game if the board is in position X and the move

results in position Y and Y is not a winning position. This program is not locally stratified

because the Herbrand instantiation of the program contains the rule

win(a) ← move(a, a),∼ win(a)

Thus even when the EDB does not contain a cycle of this form, the perfect model of the

program is destroyed. However, Przymusinska and Przymusinski define the weakly perfect

models which handle such a situation.

In order to efficiently compute semantics for such non-stratified databases, Ross intro-

duced the concept of modularly stratified programs [65]. In order for a logic program and

data to be modularly stratified, it should be possible to divide the predicates into modules

with the following properties:

1. It is possible to order the modules so that predicates in a module depend only on

predicates in that or previous modules.

2. Each module has a locally stratified model when we instantiate its rules and treat

subgoals in previous modules as true or false according to the well-founded model for

its module.

This is illustrated by an example in [77]. Consider a variation of the checkers program in

which we introduce a new predicate move1 which is simply a copy of move.
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Example 2.2.11

win(X) ← move1(X, Y ),∼ win(Y )

move1(X, Y ) ← move(X, Y ).

In this case, even though the program is not locally stratified if move is acyclic, the rules are

modularly stratified. Because move is acyclic, we can put both move and move1 in the same

module. Now since move1 is simply a copy of move, it behaves like an EDB predicate, and

so we can compute the locally stratified model for this module even though move is acyclic.

2.3 Other Semantics

Although most researchers are convinced that the well-founded and stable model seman-

tics are in a sense the final frontier, there has been some skepticism. There are examples of

programs for which neither the well-founded nor the stable model semantics derive intuitive

conclusions. Such examples are handled by other semantics that deserve special mention.

One of them is the stable class semantics of Baral and Subrahmanian [9], which is an ex-

tension of the stable model semantics. Essentially, it assigns a set of stable models as the

semantics of the program. This set is closed under the Γ operator introduced earlier.

Another direction of research has been by applying argumentation based semantics. Per-

haps the most important work in this area is that of Dung [25]. This work generalizes both

the well-founded and stable model semantics. The general idea is to consider sets of negated

literals, called hypothesis.

Definition 13. A scenario of a logic program P is a consistent theory P ∪H, where H is

a set of negated literals.

Definition 14. A set of hypotheses E is called an evidence of an atom A if P ∪ E ` A
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Definition 15. A hypothesis ∼ A is said to be acceptable with respect to a scenario S if for

every evidence E of A, there is ∼ B ∈ E such that S ` B

Definition 16. A scenario S = P ∪H is admissible if each hypothesis ∼ A ∈ H is acceptable

w.r.t S

Definition 17. A preferred extension of a program P is a maximal admissible scenario of

P

It was shown in [25] that both the stable models and the well-founded models can be

described in terms of the preferred extensions.

Other developments are the three-valued stable model semantics of Przymusinski [62]

and the partial stable models of Sacca and Zaniolo [68]. It has been shown that the partial

stable models are the preferred extensions.



26

CHAPTER 3.

CONSTRAINTS AND REPAIRS

In this chapter we introduce the notion of constraints on a relational database and an

associated problem: the state in which a database fails to satisfy the constraints imposed

on it. We assume that the reader is somewhat familiar with the theory of dependencies in a

relational database. The reader is referred to [27] and [1] for a detailed study of constraints.

We present a broad overview of the constraints typically seen in a database and present

recent developments in handling databases that do not obey constraints imposed on them.

The relational model, as defined by Codd [22], is as such devoid of any semantics. The

tuples in a relation simply correspond to data values that are related to each other. The

exact nature of this relationship is not apparent. For instance, whether the relationships

are one-to-one, many-to-one and so on is not implicit in the model. However, Codd himself

introduced the notion of constraints in a database. the first such constraint to be introduced

is the functional dependency.

3.1 Constraints

This section introduces a number of constraints commonly seen in a database.

3.1.1 Functional dependency

Consider the following database taken from [27]. It describes a database with attributes

{EMP,DEPT,MGR}.

This relation obeys the functional dependency(or FD) DEPT → MGR read as “DEPT

determines MGR”. This means that whenever two tuples agree in the DEPT column, they

must also agree on the MGR column. More formally, let X and Y be subsets of the set of
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EMP DEPT MGR

Hilbert Math Gauss

Pythagoras Math Gauss

Turing Computer Science von Neumann

Figure 3.1. An employee relation

attributes. Then FD X → Y is said to hold for an instance of a relation I if every pair of

tuples that agree on each of the attributes in X also agree in the attributes in Y .

It is easy to see that FDs can be represented as sentences in first order logic. For example,

if we were dealing with a 4-ary relation where the first, second, third and fourth columns

are called A, B, C and D respectively, then the FD AB → C can be represented by the

following sentence:

(∀abc1c2d1d2)((Pabc1d1 ∧ Pabc2d2)→ (c1 = c2)) (3.1)

3.1.2 Multivalued dependency

The next dependency to be introduced was the multivalued dependency(or MVD) dis-

covered independently by Fagin and Zaniolo. There was a perception that the functional

dependency did not completely capture the notion of “depends on”. Consider the following

relation, again from [27].

EMP SALARY CHILD

Hilbert $80K Hilda

Pythagoras $30K Peter

Pythagoras $30K Paul

Turing $70K Tom

Figure 3.2. An employee-salary-child relation

It can be seen that this instance obeys the FD EMP → SALARY . however it does not obey

the FD EMP → CHILD. But it is obvious that an employee “determines” his children
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in some sense. It is this notion that a multivalued dependency captures. we shall see that

the multivalued dependency EMP � CHILD holds for this instance. as another example,

consider the following relation with attributes EMP , CHILD and SKILL.

EMP CHILD SKILL

Hilbert Hilda Math

Hilbert Hilda Physics

Pythagoras Peter Math

Pythagoras Paul Math

Pythagoras Peter Philosophy

Pythagoras Paul Philosophy

Turing Tom Computer Science

Figure 3.3. An employee-child-skill relation

It can be seen that this relation does not obey any functional dependencies. However, it

obeys the MVDs EMP � CHILD and EMP � SKILL.

We can now formally define MVDs. Let I be a relation over a scheme U . Let X,Y be

subsets of U and let Z = U − XY . The multivalued dependency X � Y holds for the

relation I if for every pair of tuples r and s for which r[X] = s[X], there is a tuple t in I

such that t[X] = r[X] = s[X] and t[Y ] = r[Y ] and t[Z] = s[Z]. It follows by symmetry that

there is also a tuple u in I such that u[X] = r[X] = s[X] and u[Y ] = s[Y ] and u[Z] = r[Z].

Like FDs, MVDs can also be expressed in first order logic. For example, assume U =

{A,B,C,D,E}. Then the MVD AB � CD holds for a relation over U if the following

sentence holds, where P is the relation symbol.

(∀abc1c2d1d2e1e2)((Pabc1d1e1 ∧ Pabc2d2e2)→ Pabc2d2e1) (3.2)

3.1.3 Join dependency

The join dependency may be defined as follows. Let X = {X1, . . . , Xk} be a collection

of subsets of U such that U = X1 ∪ . . . ∪ Xk. The relation I over U is said to obey



29

the join dependency on [X1, . . . , Xk], denoted by on [X], if I is the join of its projections

I[X1], . . . , I[Xk]. It follows that the join dependency holds for the relation I if and only if I

contains each tuple t for which there are tuples w1, . . . , wn of I such that wi[Xi] = t[Xi] for

each 1 ≤ i ≤ n. Consider the following relation.

A B C D

0 1 0 0

0 2 3 4

5 1 3 0

Figure 3.4. Join dependency

This relation violates the join dependency on [AB,ACD,BC]. Let w1, w2 and w3 be the tu-

ples (0, 1, 0, 0), (0, 2, 3, 4) and (5, 1, 3, 0) respectively. LetX1, X2, X3 respectively beAB,ACD

and BC. Let t be the tuple (0, 1, 3, 4). Now wi[Xi] = t[Xi] for each 1 ≤ i ≤ n although t is

not in I. However this relation obeys the join dependency on [ABC,BCD,ABD].

Join dependencies can also be written in first order logic. if we are dealing with relations

with attirbutes c, t, r, s, h, g then the join dependency on [TC,CRH, SGC] can be written as

(∀ct1t2rr1r2hh1h2ss1s2gg1g2)((Pctr1h1s1g1 ∧ Pctr1h1s2g2 ∧ Pct2r2h2sg)→ Pctrhsg) (3.3)

3.1.4 Inclusion dependency

The dependencies that we have discussed so far can be seen to have the following two

properties:

1. they are uni-relational

2. they are typed

By uni-relational we mean that they deal with one relation at a time. By typed we mean that

no variables appear in two distinct columns. For example, the sentence (∀xy)((Pxy∧Pyz)→
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Pxz), which says that a relation is transitive, is not typed since y appears in both the first

and second columns of P . Inclusion dependencies (or IND) violate both of these properties.

For example, an IND can say that every manager entry of the P relation appears as an

employee in the Q relation. In general an IND is of the form

P [A1, . . . , Am] ⊆ Q[B1, . . . , Bm] (3.4)

where P and Q are relation names(possibly the same), where the Ai’s and Bi’s are attributes.

If I is the P relation and J is the Q relation, then the IND 3.4 holds if for each tuple s of I,

there is a tuple t of J such that s[A1, . . . , Am] ⊆ t[B1, . . . , Bm]. INDs are commonly referred

to as ISA relationships in the AI community. INDs can also be expressed in first order logic.

For example, if the P relation has attributes ABC, and the Q relation has the attributes

CDE, then the IND P [AB] ⊆ Q[CE] can be written as

(∀abc)(Pabc→ ∃dQadb) (3.5)

It was observed that all the dependencies discussed above could united into a single class,

called dependencies. A dependency is a first order sentence

(∀x1, . . . , xm)((A1 ∧ . . . ∧ An)→ ∃y1, . . . , yr(B1 ∧ . . . ∧Bs)) (3.6)

We assume that each of the xj’s appears in atleast one of the Ai’s, and that n ≥ 1. We assume

that r ≥ 0 and that s ≥ 1. It can be seen that the empty database obeys these constraints.

Also, we can check whether a dependency holds for a relation simply by assuming that the

quantifiers range over the elements that appear in the relation, a property called domain

independence.

If each formula Bi on the right-hand side of equation 3.6 is a relational formula, the

dependency is called a tuple generating dependency; if all of these formulas are equalities,
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then we call the dependency an equality generating dependency. Of the dependencies we

have seen, multi-valued dependencies, join dependencies and inclusion dependencies are tuple

generating dependencies and functional dependencies are equality generating dependencies.

When r = 0 and s = 1 in Equation 3.6 the dependency is called a full dependency. Thus, a

full dependency is of the form

(∀x1, . . . , xm)((A1 ∧ . . . ∧ An)→ B) (3.7)

where each Ai is a relational formula and B is atomic. Functional, multi-valued and join

dependencies are full dependencies. Note that allowing several atomic formulas on the right-

hand side results in no gain since such a sentence is equivalent to a finite set of full depen-

dencies.

It should be noted that in the “real world” dependencies rarely appear in their most

general form. FDs, INDs and maybe MVDs are the only kinds of dependencies that may be

called “real world dependencies”.

3.1.5 Conditional functional dependencies

Conditional functional dependencies are a recent development. These were introduced by

Fan et al with the aim of capturing constraints in data for which the traditional FDs incur

high complexity. The reader is referred to [28] for a detailed description. Here we provide a

brief introduction to it since it plays an important role in the problem of data cleaning.

We first illustrate conditional functional dependencies (or CFDs) through an example.

This example is from [28]. Consider a relation schema cust(CC, AC, PN, NM, STR, CT,ZIP),

which specifies a customer in terms of the customers phone (country code(CC), area code

(AC), phone number (PN)), name (NM), and address (street (STR), city (CT), zip code

(ZIP)). Figure 3.1.5 is an instance of this relation. Traditional FDs on this relation include:
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CC AC PN NM STR CT ZIP

01 908 1111111 Mike Tree Ave. NYC 07974

01 908 1111111 Rick Tree Ave. NYC 07974

01 212 2222222 Joe Elm St. NYC 01202

01 212 2222222 Jim Elm St. NYC 02404

01 215 3333333 Ben Oak Ave. PHI 02394

44 131 4444444 Ian High St. EDI EH4 1DT

Figure 3.5. A CFD illustration

f1 : [CC,AC, PN ] → [STR,CT, ZIP ]

f2 : [CC,AC] → [CT ].

Now consider the following constraint on this relation. In the UK, ZIP determines STR.

This can be expressed as

φ0 : [CT = 44, ZIP ]→ [STR]

In other words, φ0 is an FD that is to hold on the subset of tuples that satisfies the pattern

“CC = 44”, rather than on the entire cust relation. It is generally not considered an FD in

the standard definition since φ0 includes a pattern with data values in its specification.

φ1 : [CC = 01, AC = 908, PN ] → [STR,CT = MH,ZIP ]

φ2 : [CC = 01, AC = 212, PN ] → [STR,CT = NY C,ZIP ]

φ3 : [CC = 01, AC = 215] → [CT = PHI].

Constraint φ1 assures that only in the US (country code 01) and for area code 908, if two

tuples have the same PN, then they must have the same STR and ZIP and moreover, the

city must be MH. Similarly,φ2 assures that if the area code is 212 then the city must be

NYC; and φ3 specifies that for all tuples in the US and with area code 215, their city must

be PHI (irrespective of the values of the other attributes).
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Observe that φ1 and φ2 refine the standard FD f1 given above, while φ3 refines the FD f2.

These refinements essentially enforce bindings of semantically related data values. Indeed,

while tuples t1 and t2 in Figure 3.1.5 do not violate f1, they violate its refinement φ1, since

the city cannot be NYC if the area code is 908.

We now formally define CFDs. Consider a relation schema R defined over a fixed set of

attributes, denoted by attr(R). For each attribute A ∈ attr(R), its domain is specified in R,

denoted as dom(A).

Definition 18. A CFD ϕ on R is a pair (R : X → Y, Tp) where

1. X, Y are sets of attributes in attr(R)

2. X → Y is a standard FD, called the FD embedded in ϕ and

3. Tp is a tableau containing attributes in X and Y , called the pattern tableau of ϕ, where

for each A ∈ X ∪ Y and each tuple t ∈ Tp, t[A] is either a constant ‘a’ in dom(A) or

an unnamed variable ‘-’ that draws values from dom(A).

If A occurs in both X and Y , we use t[AL] and t[AR] to indicate the occurrence of A in

X and Y , respectively, and separate the X and Y attributes in a pattern tuple with ‘||’.

Example 3.1.1

The constraints φ0, f1, φ1, φ2, f2 and φ3 can be expressed as CFDs ϕ1 (for φ0) ϕ2 (for f1, φ1

and φ2, one per line respectively) and ϕ3 (for f2, φ3 and an additional [CC = 44, AC =

141]→ [CT = GLA]) as shown in Figure 3.6.

W now describe the semantics for CFDs. An instantiation ρ of a tableau tuple tp in

tableau Tp is a mapping from tp to data values with no variables such that for each attribute

A ∈ X ∪ Y , if tp[A] is ‘-’ ρ maps tp[A] to a constant in dom(a) and if tp[A] is constant a,

ρ maps it to the same constant a. For example, for tp[A,B] = (a,−) we can define ρ such

that tp[A,B] = (a, b) which maps tp[A] to itself and tp[B] to a value b ∈ dom(B).



34

Tableau T1 for ϕ1 = ([CC,ZIP ]→ [STR], T1)

CC ZIP STR

44 - -

Tableau T2 for ϕ2 = ([CC,AC, PN ]→ [STR,CT, ZIP ], T2)

CC AC PN STR CT ZIP

- - - - - -

01 908 - - MH -

01 212 - - NYC -

Tableau T3 for ϕ3 = ([CC,AC]→ [CT ], T3)

CC AC CT

- - -

01 215 PHI

44 141 GLA

Figure 3.6. An example of CFDs

A data tuple t is said to match a pattern tuple tp, dnoted by t � tp if there is an

instantiation ρ such that ρ(tp) = t.

An instance I of R satisfies a CFD ϕ, denoted by I |= ϕ, if for each pair of tuples t1, t2 ∈ I,

and for each pattern tuple tp in the pattern tableau Tp of ϕ, if t1[X] = t2[X] � tp[X], then

t1[Y ] = t2[Y ] � tp[Y ]. That is, if t1[X] and t2[X] are equal and in addition, they both match

the pattern tp[X], then t1[Y ] and t2[Y ] must also be equal to each other and both match the

pattern tp[Y ].

If Σ is a set of CFDs, we write I |= Σ if I |= ϕ for each ϕ ∈ Σ.

Example 3.1.2

The cust relation of Figure 3.1.5 satisfies ϕ1 and ϕ3 but violates ϕ2. The first and second

tuples violate the pattern tuple tp = (01, 908,− || −,MH,−).

It can be observed that while violation of FDs requires two tuples, a single tuple may

violate a CFD.
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Observe that a standard FD X → Y can be expressed as a CFD (X → Y, Tp) in which

Tp contains a single tuple consisting of - only, without constants.

3.2 Repairs

The second half of this chapter focuses on the problem of query answering in a database

that violates constraints imposed on it. The problem is commonly referred to as the problem

of consistent query answering (or CQA). A database that violates constraints imposed on

it is said to be inconsistent. Although the database is inconsistent, this inconsistency is

usually local to a few tuples. A large portion of the information in the database remains

useful. Thus being able to extract information from such databases is of significance. CQA

addresses this problem. CQA has generally been approached from two directions: one is

the query rewriting approach in which the original query is transformed into a new query

that retrieves answers only from the consistent portion of the database. However, this

approach can handle only a small class of constraints. The complexity of query rewriting

gets extremely high for certain commonly seen constraints. The other approach is what is

commonly known as repairing the database. Informally, the idea is to perform updates on

the database such that consistency is restored. Such updates can be performed in a number

of ways: by deleting tuples, by inserting tuples, or by modifying values in the database. This

section focuses on this approach to the CQA problem. We first introduce repairs. The idea

of repairs was first introduced by Arenas et al. in [3]. The reader is referred to this work for

details.

We first demonstrate the inconsistency problem through an example. Assume that the

Computer Science department of a university has more than one location and each location

maintains the relation Teaches(class, professor) of the class offered and the faculty member

that teaches it. Assume that we have the functional dependency class→ professor on this

relation. The data is collected from two different locations and they are shown in Figure 3.7.

Notice that each source by itself satisfies the integrity constraint but when combined the
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Class Professor

c1 p1

c2 p2

c3 p3

Class Professor

c1 p2

c3 p3

Figure 3.7. Two relations whose union is inconsistent w.r.t FD

Class Professor

c1 p1

c2 p2

c3 p3

Class Professor

c1 p2

c2 p2

c3 p3

Figure 3.8. Minimal repairs of the Teaches(Class, Professor) relation

constraint is violated. In this instance we have that course c1 is taught by both professors p1

and p2. However, as can be seen, such inconsistencies are local to a few tuples in the database

and the rest of the database is consistent with the integrity constraints. In such a situation,

it becomes important to be able to extract answers to queries from the consistent part of

the database. A repair of a database is the set of changes made to the database so that

consistency is restored. We are interested in the minimal repairs, the repairs that involve

minimal updates to the orginal database (or maximal under set inclusion). A consistent

query answer is defined as the set of tuples that is true in every minimal repair of the

database. For the database shown in Figure 3.7 the minimal repairs are shown in Figure 3.8.

We now formally define repairs.

Definition 19. A relational database scheme R is a finite set of attribute names {A1, . . . , An}

where for any attribute name Ai ∈ R, dom(Ai) is a non-empty set of constants denoting the

domain of the attribute Ai.

Definition 20. A relational database instance r on a database scheme R = {A1, . . . , An} is

any subset of dom(A1)× . . .× dom(An).
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A database scheme may be subjected to integrity constraints. A set of integrity con-

straints IC is a set of first order formulas over the database scheme which the database

instance is expected to satisfy. If a database instance r satisfies IC in the standard model

theoretic sense, then we say that r is consistent with IC, denoted by r |= IC. Otherwise,

we say that r is inconsistent.

Example 3.2.1

Consider a database instance r = {p(a, b), p(b, c), p(a, c)} subject to the functional depen-

dency constraint IC : p(X, Y ) ∧ p(X,Z)→ Y = Z. It is easy to see that r 6|= IC.

Example 3.2.2

Consider a database instance r = {p(a), p(b), q(a), q(c)} subject to the constraint IC :

(∀X)(p(X)→ q(X)). r 6|= IC since q(b) 6∈ r.

Definition 21. Given a database instance r on a scheme R, and a set of integrity constraints

IC, a repair of r w.r.t IC is a database instance r′ on the scheme R, such that r′ |= IC and

such that r∆r′ = (r − r′) ∪ (r′ − r), the symmetric difference between r and r′, is minimal

under set inclusion.

Example 3.2.3

The possible repairs of the database instance of Example 3.2.1 are r1 = {p(a, b), p(b, c)} and

r2 = {p(a, c), p(b, c)}

Example 3.2.4

The possible repairs of the database instance of Example 3.2.2 are r1 = {p(a), p(b), q(a), q(b), q(c)}

and r2 = {p(a), q(a), q(c)}

Definition 22. A tuple t is a consistent answer to a query Q(x̄) on a database instance r

if t is an answer to Q on every repair r′ of r w.r.t IC.

Q(x̄) = {t | (∀r′)(r′ is a repair of r → r′ |= Q(t))}
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Example 3.2.5

The consistent answers to the query q(X) on the database instance r of Example 3.2.2 are

{q(a), q(c)} since they appear in both repairs of r.

It is easy to see that the number of repairs can be exponential. The following example

demonstrates such a situation.

Example 3.2.6

Consider the following relation subject to the FD X → Y .

X Y

a1 b1

a1 b′1
a2 b2

a2 b′2
· · ·

an bn
an b′n

Figure 3.9. A relation with an exponential number of repairs

It is easy to see that this relation has 2n repairs.

3.2.1 Denial constraints

As shown in Figure 3.2.6 the complexity of CQA can be exponential even for relatively

simple queries. It is then of interest to delineate the boundary between the queries that

are tractable and those that are not. Chomicki and Marcinkowski in [19] consider denial

constraints. The denial constraints are first order sentences of the form

∀x̄1 . . . x̄m¬[P1(x̄1) ∧ . . . ∧ Pm(x̄m) ∧ ϕ(x̄1 . . . x̄m)]

It is easy to see that FDs are a special case of denial constraints. It is shown in [19] that

CQA is in PTIME for the following classes of queries and constraints.
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1. queries: quantifier-free, constraints: arbitrary denial;

2. queries: simple conjunctive, constraints: functional dependencies (at most one FD per

relation);

3. queries: quantifier-free or simple conjunctive, constraints: key functional dependencies

and foreign key constraints, with at most one key per relation.

It can be seen that for our definition of repair, for the denial constraints repairs can be

obtained by deletion alone. For such constraints the repairs can be represented by a conflict

hypergraph.

Definition 23. The conflict hypergraph GF,r is a hypergraph whose set of vertices is the set

Σ(r) of facts of an instance r and whose set of edges consists of all the sets

{P1(t̄1), P2(t̄2), . . . , Pl(t̄l)}

such that

P1(t̄1), P2(t̄2), . . . , Pl(t̄l) ∈ Σ(r)

and there is a constraint

∀x̄1 . . . x̄l¬[P1(x̄1) ∧ . . . ∧ Pl(x̄l) ∧ ϕ(x̄1 . . . x̄l)]

such that P1(t̄1), P2(t̄2), . . . , Pl(t̄l) together violate this constraint.

Note that there may be edges in GF,r that contain only one vertex. Also, the size of the

conflict hypergraph is polynomial in the number of tuples in the database instance.

By an independent set in a hypergraph we mean a subset of its set of vertices which does

not contain any edge.

We now state without proof a number of results on the complexity of CQA. The reader

is referred to [19] for proofs.
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Theorem 3.2.1. For every set F of denial constraints and quantifier-free queries φ, CQA

is in PTIME.

Theorem 3.2.2. Let F be a set of FDs, each dependency over a different relation among

P1, P2, . . . , Pk. Then for each closed simple conjunctive query Q, there exists a sentence Q′

such that for every database instance r, r |=F Q iff r |= Q′. Consequently, CQA is in P.

The above results are the strongest that can be obtained. For relaxing any of the above

restrictions leads to co-NP-completeness.

Theorem 3.2.3. There exist a key FD f and a closed conjunctive query

Q ≡ (∃x, y, z)(R(x, y, c) ∧R(z′, y, d) ∧ y = y′)

for which CQA is co-NP-complete.

Theorem 3.2.4. There is a set F of two key dependencies and a closed conjunctive query

Q ≡ (∃x, y)(R(x, y, b)), for which CQA is co-NP-complete.

Theorem 3.2.5. There exist a denial constraint f and a closed conjunctive query Q ≡

(∃x, y)(R(x, y, b)), for which CQA is co-NP-complete.

Theorem 3.2.6. For every set of INDs I and query Q, CQA is in PTIME.

The reader is referred to [19] for a number of complexity results on databases having

both FD and IND constraints.
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CHAPTER 4.

A PARACONSISTENT RELATIONAL DATA MODEL

In this chapter, we present some background material related to the thesis. We introduce

a data model based on the OWA, called paraconsistent relations and an algebra for query

processing on paraconsistent relations.

4.1 Paraconsistent Relations

In this section, we present a brief overview of a data model based on the OWA called

paraconsistent relations and the algebraic operations on them. For a more detailed descrip-

tion, refer to [6]. Unlike ordinary relations that can model worlds in which every tuple is

known to either hold a certain underlying predicate or to not hold it, paraconsistent re-

lations provide a framework for incomplete or even inconsistent information about tuples.

They naturally model belief systems rather than knowledge systems, and are thus a gener-

alisation of ordinary relations. The operators on ordinary relations can also be generalised

for paraconsistent relations.

4.2 Formal Definition of Paraconsistent Relations

Let a relation scheme (or just scheme) Σ be a finite set of attribute names, where for any

attribute name A ∈ Σ, dom(A) is a non-empty domain of values for A. A tuple on Σ is any

map t : Σ → ∪A∈Σdom(A), such that t(A) ∈ dom(A), for each A ∈ Σ. Let τ(Σ) denote the

set of all tuples on Σ.

Definition 24. A paraconsistent relation on scheme Σ is a pair R = 〈R+, R−〉, where R+

and R− are any subsets of τ(Σ). We let P(Σ) be the set of all paraconsistent relations on

Σ.
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Definition 25. A paraconsistent relation R on scheme Σ is called a consistent paraconsistent

relation if R+ ∩R− = ∅. We let C(Σ) be the set of all consistent relations on Σ. Moreover,

R is called a complete paraconsistent relation if R+ ∪ R− = τ(Σ). If R is both consistent

and complete, i.e. R− = τ(Σ) − R+, then it is a total paraconsistent relation, and we let

T (Σ) be the set of all total paraconsistent relations on Σ.

Figure 4.1 is an example paraconsistent relation. The solid lines are used to separate

tuples in a component and solid double lines are used to separate the positive and negative

components.

supply

SNUM PNUM

s1 p1

s1 p3

s2 p2

s3 p4

s1 p2

s2 p3

s3 p3

Figure 4.1. An example of a paraconsistent relation

4.3 Algebraic Operators on Paraconsistent Relations

We now define the relational algebra operators for paraconsistent relations. To reflect

generalization of relational algebra operators, a dot is placed over an ordinary relational op-

erator to obtain the corresponding paraconsistent relation operator. For example, ./ denotes

the natural join among ordinary relations, and .̇/ denotes natural join on paraconsistent rela-

tions. We first introduce two fundamental set-theoretic algebraic operators on paraconsistent

relations:
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Definition 26. Let R and S be paraconsistent relations on scheme Σ. Then, the union of R

and S, denoted R ∪̇ S, is a paraconsistent relation on scheme Σ, given by (R ∪̇ S)+ = R+∪S+

and (R ∪̇ S)− = R−∩S−; and the complement of R, denoted −̇ R, is a paraconsistent relation

on scheme Σ, given by (−̇ R)+ = R− and (−̇ R)− = R+.

If Σ and ∆ are relation schemes such that Σ ⊆ ∆, then for any tuple t ∈ τ(Σ), we let t∆

denote the set {t′ ∈ τ(∆) | t′(A) = t(A), for all A ∈ Σ} of all extensions of t. We extend this

notion for any T ⊆ τ(Σ) by defining T∆ = ∪t∈T t∆. We now define some relation-theoretic

operators on paraconsistent relations.

Definition 27. Let R and S be paraconsistent relations on schemes Σ and ∆, respectively.

Then, the natural join (or just join) of R and S, denoted R .̇/ S, is a paraconsistent relation

on scheme Σ ∪∆, given by (R .̇/ S)+ = R+ ./ S+, and (R .̇/ S)− = (R−)Σ∪∆ ∪ (S−)Σ∪∆,

where ./ is the usual natural join among ordinary relations.

Definition 28. Let R be a paraconsistent relation on scheme Σ, and ∆ be any scheme.

Then, the projection of R onto ∆, denoted π̇∆(R), is a paraconsistent relation on ∆, given

by π̇∆(R)+ = π∆((R+)Σ∪∆), and π̇∆(R)− = {t ∈ τ(∆) | tΣ∪∆ ⊆ (R−)Σ∪∆}, where π∆ is the

usual projection over ∆ of ordinary relations.

Definition 29. Let R be a paraconsistent relation on scheme Σ, and let F be any logic

formula involving attribute names in Σ, constant symbols (denoting values in the attribute

domains), equality symbol =, negation symbol ¬, and connectives ∨ and ∧. Then, the

selection of R by F , denoted σ̇F (R), is a paraconsistent relation on scheme Σ, given by

σ̇F (R)+ = σF (R+), and σ̇F (R)− = R− ∪ σ¬F (τ(Σ)), where σF is the usual selection of tuples

satisfying F .
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4.4 Computing the Fitting Model Using Paraconsistent Relations

We now describe our method for computing the Fitting model for a given general deduc-

tive database P . In this model, partial relations are the semantic objects associated with

the predicate symbols occurring in P .

Our method involves two steps. The first step is to convert P into a set of partial relation

definitions for the predicate symbols occurring in P . These definitions are of the form

p = Dp,

where p is a predicate symbol of P , and Dp is an algebraic expression involving predicate

symbols of P and partial relation operators. The second step is to iteratively evaluate the

expressions in these definitions to incrementally construct the partial relations associated

with the predicate symbols.

In the remaining part of this section we describe our method to convert the given database

P into a set of definitions for the predicate symbols in P . Before presenting the actual

algorithm, let us look at an example. Consider the following program which contains only

clauses with the predicate symbol p in their heads:

p(X) ← r(X,Y), ¬p(Y)

p(Y) ← s(Y,a)

From these clauses the algebraic definition constructed for the symbol p is the following:

p = (π̇{X}(r(X, Y) ȯn −̇p(Y)))[X] ∪̇ (π̇{Y}(σ̇Z=a(s(Y, Z))))[Y] (4.1)

Such a conversion exploits the close connection between attribute names in relation schemes

and variables in clauses, as pointed out by Ullman (1988).
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The algebraic expression for the predicate symbol p is a union (∪̇) of the expressions

obtained from each clause containing the symbol p in its head. It therefore suffices to give

an algorithm for converting a clause into an expression.

Algorithm CONVERT

INPUT: A general deductive database clause l0 ← l1, . . . , lm. Let l0 be an atom of the form

p0(A01, . . . , A0k0), and each li, 1 ≤ i ≤ m, be a literal either of the form pi(Ai1, . . . , Aiki
),

or of the form ¬pi(Ai1, . . . , Aiki
). For any i, 0 ≤ i ≤ m, let Vi be the set of all variables

occurring in li.

OUTPUT: An algebraic expression involving partial relations.

METHOD: The expression is constructed by the following steps:

1. For each argument Aij of literal li, construct argument Bij and condition Cij as follows:

(a) If Aij is a constant a, then Bij is any brand new variable and Cij is Bij = a.

(b) If Aij is a variable, such that for each k, 1 ≤ k < j, Aik 6= Aij, then Bij is Aij

and Cij is true.

(c) If Aij is a variable, such that for some k, 1 ≤ k < j, Aik = Aij, then Bij is a

brand new variable and Cij is Aij = Bij.

2. Let l̂i be the atom pi(Bi1, . . . , Biki
), and Fi be the conjunction Ci1 ∧ · · · ∧ Ciki

. If li is

a positive literal, then let Qi be the expression π̇Vi
(σ̇Fi

(l̂i)). Otherwise, let Qi be the

expression −̇π̇Vi
(σ̇Fi

(l̂i)).

As a syntactic optimization, if all conjuncts of Fi are true (i.e. all arguments of li

are distinct variables), then both σ̇Fi
and π̇Vi

are reduced to identity operations, and

are henced dropped from the expression. For example, if li = ¬p(X,Y), then Qi =

−̇p(X,Y).

3. Let E be the natural join (ȯn) of the Qi’s thus obtained, 1 ≤ i ≤ m. The output

expression is (σ̇F0(π̇V (E)))[B01, . . . , B0k0 ], where V is the set of variables occurring in

l̂0.
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As in step 2, if all conjuncts in F0 are true, then σ̇F0 is dropped from the output

expression. However, π̇V is never dropped, as the clause body may contain variables

not in V . �

From the algebraic expressions obtained by Algorithm CONVERT for clauses in the

given general deductive database, we construct a system of equations defining partial rela-

tions as follows.

Definition 30. For any general deductive database P , EQN(P ) is a set of all equations

of the form p = Dp, where p is a predicate symbol of P , and Dp is the union (∪̇) of all

expressions obtained by Algorithm CONVERT for clauses in P with symbol p in their head.

The algebraic expression Dp is also called a definition of p. �

Proposition 4.4.1. (Termination) The above procedure for constructing EQN(P ) termi-

nates for any general deductive database P .

Proof. Immediate from the fact that P has only finite number of clauses, each clause contains

a finite number of literals, and each literal has a finite number of arguments. �

The second and final step in our model computation process is to incrementally construct

the partial relations defined by the given database. For any general deductive database P , we

let PE and PI denote its extensional and intensional portions, respectively. PE is essentially

the set of clauses of P with empty bodies, and PI is the set of all other clauses of P . Without

loss of generality, we assume that no predicate symbol occurs both in PE and in PI . Let us

recall that P ?
E is the set of all ground instances of clauses in PE.

The overall computation algorithm is rather straightforward. It treats the predicate

symbols in a given database as imperative “variable names” that may contain a partial

relation as value. Thus, any variable p has two set-valued fields, namely p+ and p−.

Algorithm COMPUTE

INPUT: A general deductive database P .

OUTPUT: Partial relation values for the predicate symbols of P .
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METHOD: The values are computed by the following steps:

1. (Initialization)

(a) Compute EQN(PI) using Algorithm CONVERT for each clause in PI .

(b) For each predicate symbol p in PE, set

p+ = {〈a1, . . . , ak〉 | p(a1, . . . , ak)← ∈ P ?
E}, and

p− = {〈b1, . . . , bk〉 | k is the arity of p, and p(b1, . . . , bk)← 6∈ P ?
E}.

(c) For each predicate symbol p in PI , set p+ = ∅, and p− = ∅.

2. For each equation of the form p = Dp in EQN(PI), compute the expression Dp and

set p to the resulting partial relation.

3. If step 2 involved a change in the value of some p, goto 2.

4. Output the final values of all predicate symbols in PE and PI . �

It is instructive to execute Algorithm COMPUTE on the database of Example 2.2.4, which

we reproduce here.

r(a,c)

r(b,b)

s(a,a)

p(X) ← r(X,Y), ¬p(Y)

p(Y) ← s(Y,a)
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After step 1, the predicate variables have the following values:

r+ = {〈a, c〉, 〈b, b〉},

r− = {〈a, a〉, 〈a, b〉, 〈b, a〉, 〈b, c〉, 〈c, a〉, 〈c, b〉, 〈c, c〉},

s+ = {〈a, a〉},

s− = {〈a, b〉, 〈a, c〉, 〈b, a〉, 〈b, b〉, 〈b, c〉, 〈c, a〉, 〈c, b〉, 〈c, c〉},

p+ = ∅,

p− = ∅.

Step 1 can be seen to mimic the production of T FP ↑ 1. Each iteration of step 2 uses only

equation (4.1), reproduced below.

p = (π̇{X}(r(X, Y) ȯn −̇p(Y)))[X] ∪̇ (π̇{Y}(σ̇Z=a(s(Y, Z))))[Y] (4.1)

By applying the operator definitions introduced earlier, (π̇{X}(r(X, Y) ȯn −̇p(Y)))[X] can be

seen to be the partial relation

〈∅, {〈c〉}〉,

and (π̇{Y}(σ̇Z=a(s(Y, Z))))[Y] the partial relation

〈{〈a〉}, {〈b〉, 〈c〉}〉.

Their union is thus the partial relation

〈{〈a〉}, {〈c〉}〉

assigned by step 2 to the variable p. Further iterations of step 2 do not change the value of

p. Step 2 can be seen to mimic an application of the T FP function.
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Part II

Incompleteness in Relational
Databases
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CHAPTER 5.

REPRESENTING DEGREES OF EXCLUSIVITY IN
DISJUNCTIVE DATABASES

Consider the example of a database which maintains the time it takes (in hours) to travel

between two cities by road. Let us assume that there is some uncertainty in the information

stored in this database. For example, there might be uncertainty in the amount of time

required to travel between any two cities as collected from various sources or there might be

uncertainty concerning the source and destination cities itself. Traditional methods of rep-

resenting uncertainty are broadly classified into two categories - probabilities are associated

with tuples to represent the degree to which the tuple is believed to be in the relation, or, at

the attribute level, a set of values is used to represent the uncertain value. Disjunctive infor-

mation has been studied in [41, 17, 78, 58, 18, 72, 48, 82, 24, 66, 51]. This paper addresses

the latter method of uncertainty representation. Figure 1 is an instance of such a relation,

TRAVEL.

TRAVEL

Src Dest Time

C1 C2 4

C2 C3 {3,4}
{C1,C3} C4 2

Figure 5.1. An uncertain relation, TRAVEL

Here the uncertainty is represented as a set of values, one or more of which are true,

depending on whether the disjunctions are to be interpreted inclusively or exclusively. The

second row in the above figure represents the information that the time of travel between

cities C1 and C2 is either 3 or 4 hours. It is obvious from the context that this disjunction is

to be interpreted exclusively. Similarly, the third row indicates that either the time of travel
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between C1 and C4 or C3 and C4 is 2 hours. Such a disjunction is not necessarily exclusive.

It may be the case that the time of travel is 2 hours for both pairs. The approach that we

adopt allows to explicitly represent whether the disjunction is to be interpreted inclusively

or exclusively. We allow conjunctions to also appear in the disjunctions thus representing

conjunctions that are possibly true. The instance in Figure 1 would be represented as shown

in Figure 2 in our model. The data structure we introduce, called an oa-table , is shown

in Figure 2. An oa-table consists of sets of disjunctions. Each disjunction corresponds

to an oa-tuple. Each disjunct of a disjunction is itself a conjunction of a set of tuples.

Informally, an oa-table is a conjunction of disjunctions of conjuncts. For any predicate

symbol R, an oa-tuple is of the form η1 ∨ η2∨, . . . ,∨ηm. Here ηi is a conjunction of tuples

ti1 ∧ ti2∧, . . . ,∧tiki
. Thus the disjunction η1 ∨ η2∨, . . . ,∨ηm is to be viewed as the indefinite

statement (R(t11) ∧ . . . ∧ R(t1k1)) ∨ . . . ∨ (R(tm1) ∧ . . . ∧ R(tmkm)). The disjunctions are

interpreted as possibilities in the sense that exactly one of the disjuncts is assumed to be the

actual real world truth. We adopt the following convention in the figures of oa-tables. Solid

double lines are used to separate the schema from the data. Solid lines are used to separate

oa-tuples and dashed lines are used to separate the disjuncts within an oa-tuple. An oa-table

reduces to an ordinary relation when for each oa-tuple m = 1 and for each ηi, ki = 1. Let

w1, w2 and w3 be the three oa-tuples in the oa-table representation of TRAV EL shown in

Figure 2. Thus the instance of the relation TRAV EL represents the formula:

TRAVEL(Src,Dest,Time)

(C1,C2,4)

(C2,C3,3)

(C2,C3,4)

(C1,C4,2)

(C3,C4,2)

(C1,C4,2)

(C3,C4,2)

Figure 5.2. oa-table representation of TRAVEL
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F1 ∧ F2 ∧ F3 where,

F1 = TRAV EL(C1, C2, 4) corresponding to w1

F2 = (TRAV EL(C2, C3, 3) ∨ TRAV EL(C2, C3, 4)) ∧ (¬TRAV EL(C2, C3, 3) ∨

¬TRAV EL(C2, C3, 4)) corresponding to w2 and

F3 = TRAV EL(C1, C4, 2) ∨ TRAV EL(C3, C4, 2) corresponding to w3

The oa-tuple w1 consists of a single definite tuple. w2 is a disjunction of two tuples and

since a set of both tuples is not present as one of the disjuncts, the disjunction is interpreted

exclusively and this is represented by the negative clause in F2. w3 is a disjunction of two

tuples and since a set of both tuples is present as one of the disjuncts, this represents an

inclusive disjunction given by F3.

The rest of this paper is organized as follows: Section 2 gives a formal definition of oa-

tables and its information content and defines a notion of inconsistency in oa-tables. Section

3 compares the oa-table model to other data models for disjunctive databases. Section 4

defines the operators of the extended relational algebra for oa-tables. Section 5 gives an

example of query evaluation in the oa-table model. Section 6 discusses the semantics of

disjunctions in oa-tables and compares it with other known techniques for inferring negative

information in disjunctive databases. Section 7 concludes the paper and discusses some

avenues for future work.

5.1 oa-tables

In this section we present a formal definition of an oa-table and its information content

and discuss the notions of compactness and consistency in an oa-table .

5.1.1 Formal definition

We now formalize the notion of an oa-table . A domain is a finite set of values. The

cartesian product of domains D1, D2, . . . , Dn is denoted by D1 × D2×, . . . ,×Dn and is the
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set of all tuples < a1, . . . , an > such that for any i ∈ {1, . . . , n}, ai ∈ Di. An oa-table scheme

is an ordered list of attribute names R =< A1, . . . , An >. Associated with each attribute

name, Ai, is a domain Di. Then, T is an oa-table over the scheme R where,

T ⊆ 22D1×D2×,...,×Dn

An oa-table is a non-empty set of oa-tuples. An oa-tuple w = {η1, η2, . . . , ηm} ∈ 22D1×D2×,...,×Dn
,m ≥

1 represents the formula η1∨η2∨ . . .∨ηm where ηi = {ti1, ti2, . . . , tin} ∈ 2D1×D2×,...,×Dn , n ≥ 0

represents the formula ti1 ∧ ti2 ∧ . . . ∧ tin.

5.1.2 Information content of an oa-table

Given a scheme R, we define ΓR and ΣR as follows:

ΓR = {T | T is an oa-table over R}

and

ΣR = {U | U is a set of relations over R}

We denote tuples by t1, t2, . . . , tk and relations are represented by r1, r2, . . . , rn. The symbols

η1, η2, . . . , ηm represents sets of tuples and w1, w2, . . . , wn represent oa-tuples. Let T =

{w1, w2, . . . , wn} be an oa-table . The information content of an oa-table is given by a

mapping REP : ΓR → ΣR, which is a composition of two other mappings, REDUCE and

M , defined as follows:

M(T ) : ΓR → ΣR is a mapping such that

M(T ) = {{η1, η2, . . . , ηn} | (∀i, j)[(1 ≤ i, j,≤ n)(ηi ∈ wi) ∧ (ηj ∈ wj)]→ (¬∃)η′i ∈

wi∧(¬∃)η′j ∈ wj∧(ηi∩η′j 6= φ)∧(ηj∩η′i 6= φ)∨(∃η′i ∈ wi)∧(∃η′j)∧(ηi∪ηj) ⊆ η′i∨(ηi∪ηj) ⊆ η′j}

Examples of M(T ) are shown in figure 5.3. The mapping REDUCE is used to eliminate

redundant information from an oa-table . The following redundancies may be present in an
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T1

a

b

b

c

M(T1) =

{
a

c
, b

}

T2

a

b

a

b

b

c

M(T2) =

{
a

b
,

a

c
, b

}

Figure 5.3. T,M(T )

oa-table :

1. w ∈ T and w′ ∈ T and w ⊂ w′ and ¬∃η′ ∈ w′ − w and η ⊂ η′ and η ∈ w. This

redundancy is eliminated by removing w′ from T .

2. w ∈ T and w′ ∈ T and w ⊂ w′ and ∃η′ ∈ w′−w and η ⊂ η′ and η ∈ w. This redundancy

is eliminated by removing w from T and setting w′ = w′−η′′ where (∃η ∈ w)η∩η′′ = φ.

Let T be an oa-table . Then, REDUCE(T ) : Γ(R) → Γ(R) is a mapping such that

REDUCE(T ) = T 0 where T 0 is defined as follows:

T 0 = {w = {η1, η2, . . . , ηn} | (w ∈ T ) ∧ ¬(∃w′ ∈ T ) ∧ w′ ⊃ w ∧ (∀η′ ∈ w′ − w)(¬∃η ∈

w)η ∩ η′ 6= φ ∧ ¬(∃w′′ ∈ T ) ∧ w′′ ⊂ w}

Figure 6.3 shows an example of REP and REDUCE.
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T REDUCE(T ) REP (T )

a

a

b

c

a

d

a

e

a

a

e

{
a ,

a

e

}

Figure 5.4. T,REDUCE(T ), REP (T )

5.1.3 Compacting information in oa-tables

We define an operator COMPACT , that takes an oa-table as input and returns a com-

pact version of the oa-table. A set of tuples may appear in every disjunct of a disjunction.

Let wi = η1 ∨ η2 ∨ . . . ∨ ηm. Then, (∀i)(1 ≤ i ≤ n → {t1, t2, . . . , tk} ⊂ ηi). This can be

eliminated by the following update:

T = T ∪ {{t1, t2, . . . , tk}}

and

(∀i)(1 ≤ i ≤ m→ ηi = ηi − {t1, t2, . . . , tk})

COMPACT (T ) = {w = {η1 ∨ η2 ∨ . . . ∨ ηm} |

(∀i)(1 ≤ i ≤ m)→

¬∃{t1, t2, . . . , tk} | k ≥ 1∧

{t1, t2, . . . , tk} ⊂ ηi}

5.1.4 Inconsistency in oa-tables

In this section, we define a notion of consistency in oa tables. The semantics of dis-

junctions in an oa-table , as defined in section 5.1, introduces inconsistencies. Consider the
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T1 T2

a

b

a

b

a

b

c

a

b

d

e

f

Figure 5.5. Inconsistent oa-tables

oa-tables shown in Figure 5.5. Here, in T1, while tuples a and b are in every instance of

the relation, the third oa-tuple suggests that only one of a or b can be true. This represents

inconsistent information. Similarly, in T2, the first oa-tuple says that exactly one of a, b, c

is true. The second oa-tuple says that either a, b and d or both e and f are true. T2 is

inconsistent since the first oa-tuple prevents the possibility of a and b both being true. We

formally define an inconsistent oa-table as follows:

Let T be an oa-table and let {w,w′, w1, . . . , wn} ⊆ T . Let w = {η1, η2, . . . , ηm} and

s = ∪iηi. We denote by P(s), the powerset of s. Then, T is said to be inconsistent if

{t1, t2, . . . , tk} ⊆ η′ ∈ (P(s)− w) ∈ w′ or w1 = {{t1}}, w2 = {{t2}}, . . . , wn = {{tn}}.

Even though inconsistency is possible in oa-tables, the main emphasis of this paper is

on disjunctions and not on the inconsistency aspect. Therefore, all definitions that follow

assume consistent oa-tables, unless stated otherwise.

5.2 Related Work

In this section, we explore a few other disjunctive database models and compare them

with oa-tables.

The oa-table model is an extension of the I-tables introduced in [48]. I-tables, while capable

of representing indefinite and maybe information, fail to represent certain kinds of incomplete



57

information. Consider, for example, the following instances of an indefinite database:

I1 : [C1,C2,3]

I2 : [C1,C2,3]

[C2,C3,4]

[C3,C4,1]

This set of instances does not have a corresponding I-table representation. The oa-table

representation for the above instances is shown in Figure 5.6. We restate here the definitions

(C1,C2,3)

(C2,C3,4)

(C3,C4,1)

φ

Figure 5.6. oa-table representation of I1,I2

of data models and completeness from [24].

A data model (or simply model) defines a method for representing an uncertain relation R.

A data model M is said to be complete if any finite set of relation instances corresponding

to a given schema can be modelled by an uncertain relation represented in M .

Theorem 5.2.1. The oa-table model is complete.

Proof. Any indefinite database D is a set of instances {I1, I2, . . . , In} exactly one of which is

the real world truth. Since each instance of a database is a set of tuples, the oa-table with

the single oa-tuple {I1, I2, . . . , In} would represent D.

We also note here that the oa-table model is closed under all relational operations which

are defined in Section 7.3.

A model M is said to be closed if the result of applying an operation on an uncertain relation

is also representable in M .

Since the result of applying a relational operation on a finite set of relations is also a finite

set of relations and the oa-table model is complete, it is also closed.
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Another extension of the I-tables is the E-tables discussed by Zhang and Liu in [82]. This

model deals with exclusively disjunctive information. Apart from the tuples inD1, D2, . . . , Dn,

a set of dummy values ε1, ε2, . . . , εn may also be present as tuples in a relation and they are

defined as {εi} = φ. Also, εi 6= εj where i 6= j. An E-table is a set composed of sets

of tuples sets and exactly one element (tuple set) is true in a set of tuple sets making the

disjunctions exclusive. This allows the representation of various forms of exclusive disjunc-

tions in E-tables as shown in Figure 5.7. Here, T1 consists of a single tuple set denoting the

fact that either T1(a) or T1(b) is true (but not both). E-table T2 contains dummy values ε1

and ε2 which denote dummy ‘empty’ tuples and this allows the four possible combinations

shown in REP (T2). T3 contains two tuple sets both of which contain the same dummy value

ε. Choosing ε from the first tuple set forces choosing ε from the second one too since the

disjunctions in tuple sets are exclusive. This allows only two possible real world scenarios

as shown in REP (T3). Since the E-tables were defined to represent exclusive disjunctions,

T1 REP (T1)

a

b

{
a , b

}
T2 REP (T2)

a

ε1

b

ε2

{
φ , a , b ,

a

b

}

T3 REP (T3)

a

ε

b

ε

{
φ ,

a

b

}

Figure 5.7. E-table representations

the case where the disjunction might be inclusive is not representable in E-tables. i.e., the

instance does not have a corresponding E-table representation. oa-tables, on the other hand,
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{
a , b ,

a

b

}

Figure 5.8. An inclusive disjunction

can be used to represent any of the above four degrees of exclusivity as shown in Figure 5.9.

a

b
,

a

b

a

b

,

a

φ

b

φ

,

a

b

φ

Figure 5.9. Degrees of exclusivity in oa-tables

A third related formalism is the one discussed by Sarma et al. in [24]. That system

uses a two-layer approach in which the incomplete model at the top layer has an underlying

complete model. Our interest is limited to the complete model described there since the

incomplete models are obtained by simply putting restrictions on the complete model. The

complete model is a multiset of tuples where or-sets are used to describe uncertain infor-

mation and existence constraints on the tuples are specified using boolean formulas on the

tuples themselves. This approach, although more intuitive than the c-tables in [41], still

introduces boolean formulas and variables. oa-tables, on the other hand, are variable-free

and complete.

5.3 Relational Algebra

In this section, we define the operators of the extended relational algebra on ΓR. We place

a dot above the symbol for the operators in order to differentiate them from the standard

relational operators.



60

5.3.1 Selection

Let T ′ be a consistent oa-table and F be a formula involving operands that are constants

or attribute names, arithmetic comparison operators:<,=, >,≤,≥, 6= and logical operators

∧,∨,¬. Then σ̇F (T ′) = REDUCE(T ) where,

T = {w = {η1, η2, . . . , ηm} | w′ ∈ T ′ ∧ (∀i, j)

((η′i ∈ w′ ∧ tij ∈ η′i)→

(ηi = ∪jtij | F (tij)))}

T σ̇1=‘a1′(T )

a1 b1

a1 b2

a1 b3

a1 b4

a2 b5

a2 b3

a2 b4

a1 b1

a1 b2

a1 b3

a1 b4

φ

REP (T )
a1 b1

a1 b2

a1 b3

a2 b3

,

a1 b1

a1 b2

a1 b3

a2 b4

,

a1 b1

a1 b4

a2 b5

a2 b3

,

a1 b1

a1 b4

a2 b5

a2 b4


REP (σ̇1=‘a1′(T ))

a1 b1

a1 b2

a1 b3

,
a1 b1

a1 b4


Figure 5.10. Selection
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5.3.2 Projection

Projection on oa-tables is defined as a mapping π̇A : ΓR → ΓA as follows:

Let T ′ be a consistent oa-table and A ⊆ R. Then, π̇A(T ′) = REDUCE(T ) where,

T = {w = {η1, η2, . . . , ηm} | w′ ∈ T ′ ∧ (∀i, j)

((η′i ∈ w′ ∧ tij ∈ η′i)→

(ηi = ∪jtij[A]))}

T π̇1(T )

a1 b1

a1 b2

a1 b3

a1 b4

a2 b5

a2 b3

a2 b4

a1

a1

a1

a2

a2

REP (T )
a1 b1

a1 b2

a1 b3

a2 b3

,

a1 b1

a1 b2

a1 b3

a2 b4

,

a1 b1

a1 b4

a2 b5

a2 b3

,

a1 b1

a1 b4

a2 b5

a2 b4


REP (π̇1(T )){

a1

a2

}

Figure 5.11. Projection

5.3.3 Cartesian product

Let T1 and T2 be consistent oa-tables on schemes R1 and R2 respectively. Then, the

cartesian product of T1 and T2, T1×̇T2 = REDUCE(T ) where,

T = {w = {η11, η12, . . . , ηmn} | (∀w1 ∈ T1)(∀w2 ∈ T2)

((∃ηi ∈ w1 ∧ ∃ηj ∈ w2)

→ (ηij = (∪ηi × ∪ηj)))}
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5.3.4 Union

Let T1 and T2 be consistent oa-tables on scheme R. Then, T1∪̇T2 = REDUCE(T ) where,

T = {w | w ∈ T1 ∨ w ∈ T2}

5.3.5 Intersection

Let T1 and T2 be two domain compatible consistent oa-tables. Then, T1∩̇T2 = REDUCE(T )

where,

T = {w = {η11, η12, . . . , ηmn} | (∀w1 ∈ T1)(∀w2 ∈ T2)

((∃ηi ∈ w1 ∧ ∃ηj ∈ w2)

→ (ηij = (∪ηi ∩ ∪ηj)))}

5.4 Query Example

In this section we present an example of query evaluation in the oa-table model. Consider

the database shown in Figure 5.13. This is an instance of a hospital database with two

relations Patient(pname,symptom) and Disease(dname,symptom) which records patient

and disease names and their corresponding symptoms. Consider the following query to the

database:

Which patients suffer ONLY from Alzheimer’s disease and nothing else?

The expression for this query in relational algebra is:

Q = π̇<pname>(σ̇<2=“Alzheimer′s′′>(Patient.̇/Disease)− σ̇<26=“Alzheimer′s′′>(Patient.̇/Disease))

The result of evaluating this query is shown in Figure 5.14.
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T1 T2 T1×̇T2

a1

a2

a3

a4

b1

b2

b3

a1 b1

a1 b2

a2 b1

a2 b2

a3 b1

a3 b2

a1 b1

a1 b3

a2 b1

a2 b3

a3 b1

a3 b3

a1 b1

a1 b2

a4 b1

a4 b2

a1 b1

a1 b3

a4 b1

a4 b3

REP (T1) REP (T2)
a1

a2

a3

,
a1

a4


{

b1

b2
,

b1

b3

}

Figure 5.12. Cartesian product
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Patient

pname symptom

Tom Forgetfulness

Ann Forgetfulness

Ann Fever

Jack Nausea

Jill Forgetfulness

φ

Disease

dname symptom

Cold Headache

Cold Sneezing

Cold Headache

Alzheimer’s Forgetfulness

Jaundice Fever

Jaundice Nausea

Jaundice Fatigue

Figure 5.13. An instance of a hospital database

σ̇<2=“Alzheimer′s′′>(Patient.̇/Disease)

pname disease symptom

Tom Alzheimer’s Forgetfulness

Ann Alzheimer’s Forgetfulness

Jill Alzheimer’s Forgetfulness

Ann Alzheimer’s Forgetfulness

Jill Alzheimer’s Forgetfulness

σ̇<2 6=“Alzheimer′s′′>(Patient.̇/Disease)

pname disease symptom

Jack Jaundice Nausea

Ann Jaundice Fever

Jack Jaundice Nausea

φ

Q

pname

Tom

Ann

Jill

Ann

Jill

φ

Figure 5.14. Answer to query Q



65

CHAPTER 6.

D-RELATIONS

Incomplete information is usually present in a database in the form of null values. Several

other forms of incompleteness such as fuzzy information, partial values and disjunctive in-

formation have been studied extensively. Most of the research on indefinite information has

been carried out under the Closed World Assumption(CWA). In this chapter, we present a

data structure that supports the opposite view, the Open World Assumption(OWA), where

negative information is explicitly represented in a relation. We allow disjunctions at the tu-

ple level to appear in two forms: A∨B and ¬A∨¬B, thus obtaining a gain in expressivity.

We define a generalization of the relational algebra that handles this kind of information.

Several types of incomplete information have been extensively studied in the past such

as null values [21, 34, 41, 52], probabilistic values [23, 30, 45], partial values [53], fuzzy and

uncertain values [12, 61], and disjunctive information [35, 47, 48, 49, 75]. In this paper, we

present a generalization of the relational model. Our model allows explicit representation

of both positive and negative information which may be definite or indefinite. The data

structure we introduce, called d-relations is a generalization of the paraconsistent relations

described in [6] and [7]. A d-relation consists of a positive component and a negative com-

ponent. The positive component consists of tuple sets where each tuple set represents a

positive disjunction and one of the tuples is true in the relation. Similarly, the tuple sets

in the negative component represent negative disjunctions and one of the tuples does not

belong to the relation.

We extend the ideas of [6] and [48] in d-relations to include definite and indefinite in-

formation in both the positive and negative components. There is an interesting interplay

between definite and indefinite information. Definite information reduces the uncertainty

introduced by disjunctive information: ((P ∨ Q ∨ R) ∧ ¬P ) ≡ (Q ∨ R) ∧ ¬P and similarly,

(¬P ∨ ¬Q ∨ ¬R) ∧ P ≡ (¬Q ∨ ¬R) ∧ P .
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Foundational work on disjunctive databases was done by Minker in [54]. Here, given

P ∧ (P ∨ Q), we say that P subsumes P ∨ Q and we conclude P . The truth value of Q is

unknown. This was extended in [48] and [49] to treat Q as maybe information. An extension

of the relational model where negative information is explicitly represented was presented

in [6]. Here, each relation consisted of two components, a positive component containing

tuples known to be in the relation and a negative component containing tuples known not

to be in the relation. This was extended in [76] to include indefinite information in the

form of disjunctions. However, a drawback of this paper was that indefinite information was

allowed to appear only in the positive component. The negative component contained only

definite information. In this work, we allow negative information - definite and indefinite

- to be explicitly stated and show that this increases the expressivity. For instance, if we

included the negative clause ¬P ∨ ¬Q to the above example, we could infer P ∧ ¬Q from

the equivalences above.

6.1 Formal Definition of d-relations

In this section, we formally define the data model called a d-relation. We identify

several types of inconsistencies and redundancies that may be present in d-relations and

present operators to remove them.

Definition 31. A d-relation R, over a scheme Σ, consists of two components, < R+, R− >

where R+ ⊆ 2τ(Σ) and R− ⊆ 2τ(Σ). R+, the positive component, is a set of tuple sets. Each

tuple set represents a disjunctive positive fact. In the case where the tuple set is singleton,

we have a definite positive fact. Similarly, R−, the negative component, is also a set of tuple

sets. Each tuple set in R− represents a disjunctive negative fact. In the case where the tuple

set is singleton, we have a definite negative fact. Let D(Σ) denote the set of all d-relations

over scheme Σ.
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Also, we differentiate between the definite and indefinite parts of the positive and negative

components. We denote by R+
d and R−d , the definite positive and negative components of

R+ and R−, repectively.

R+
d = {t | w ∈ R+ ∧ t ∈ w ∧ |w| = 1}

R−d = {t | w ∈ R− ∧ t ∈ w ∧ |w| = 1}

We identify conditions under which a d-relation may be inconsistent. A d-relation is said

to be inconsistent when every member of a tuple set in the positive(negative) component

is present as singleton tuple sets in the negative(positive) component. We deal with this

inconsistency by removing the tuple set from the positive(negative) component and the

corresponding singleton tuple sets from the negative(positive) component. This is done by

the norm operator as follows:

Definition 32. Let R be a d-relation. Then,

norm(R)+ = {w | w ∈ R+ ∧ w 6⊆ R−d }−

{{t} | (∃w)(w ∈ R− ∧ w ⊆ R+
d ∧ t ∈ w)}

norm(R)− = {w | w ∈ R− ∧ w 6⊆ R+
d }−

{{t} | (∃w)(w ∈ R+ ∧ w ⊆ R−d ∧ t ∈ w)}

A d-relation is called normalized if it does not contain any inconsistencies. Let N (Σ)

denote the set of all normalized d-relations on scheme Σ. Fig. 6.1 shows an example of norm.

We adopt the following convention when representing d-relations: Tuple sets are enclosed

within {} and tuples within (). When the d-relation has only one attribute, we drop the ()

for the tuples. For instance the tuple set {(a)} would be written as {a}. Also, solid lines

separate tuple sets and solid double lines separate the positive and negative component.

A normalized d-relation may also contain some redundancies. We identify two types of

redundancies that may be present in a d-relation R.
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R

{a, b}
{c, d}
{f}
{g}
{a}
{f, g}
{b}
{e}

norm(R)

{c, d}
{e}

Figure 6.1. An example of norm

1. (a) w ∈ R+, w′ ∈ R+ and w ⊂ w′. In this case, w subsumes w′. To eliminate this

redundancy, remove w′ from R+.

(b) w ∈ R−, w′ ∈ R− and w ⊂ w′. In this case, w subsumes w′. To eliminate this

redundancy, remove w′ from R−.

2. (a) w ∈ R+, v ⊆ R−d , v ⊂ w. This redundancy is eliminated by removing the tuple

set w from R+ and adding the tuple set w − v to R+.

(b) w ∈ R−, v ⊆ R+
d , v ⊂ w. This redundancy is eliminated by removing the tuple

set w from R− and adding the tuple set w − v to R−.

Since we are dealing with normalized d-relations, in both cases w−v cannot be empty.

We introduce an operator called reduce to take care of redundancies.

Definition 33. Let R be a normalized d-relation. Then, reduce(R) is defined as follows:

reduce(R) = subs(simplfp(R)) where,

simp(R) =< simp(R)+, simp(R)− > where,

simp(R)+ = {w′ | (∃w)(w ∈ R+ ∧ w′ = w −R−d }

simp(R)− = {w′ | (∃w)(w ∈ R− ∧ w′ = w −R+
d }
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and,

subs(R) =< subs(R)+, subs(R)− > where,

subs(R)+ = {w | w ∈ R+ ∧ ¬(∃w1)(w1 ∈ R+ ∧ w1 ⊂ w)}

subs(R)− = {w | w ∈ R− ∧ ¬(∃w1)(w1 ∈ R− ∧ w1 ⊂ w)}

The subs operator takes care of the first type of redundancy where one tuple set is a

subset of another tuple set. The simp operator takes care of the second type of redundancy.

It takes a d-relation as input and produces another d-relation. simplfp in the definition of

reduce denotes the least fixpoint of the operator simp. simp(R) denotes one application

of the operator and simp2(R) = simp(simp(R)) and so on. simplfp(R) is the d-relation

R satisfying simpn(R) = R for the least integer n.

Consider the single attribute d-relation R shown in Fig. 6.2. The tuple set {a, b} subsumes

R

{a, b}
{c, d}
{a, b, e}
{c}
{b, d}

reduce(R)

{a}
{d}
{c}
{b}

Figure 6.2. An example of reduce

{a, b, e} in the positive component. Hence the tuple set {a, b, e} is deleted. The tuple set {c}

in the negative component causes c to be removed from the tuple set {c, d} in the positive

component. Now {d} in the positive component causes d to be removed from {b, d} in the

negative component and the {b} in the negative component causes b to be removed from

{a, b} in the positive component leaving us with the definite d-relation reduce(R).

A d-relation is a collection of paraconsistent relations. The information content of a

d-relation is defined as the set of paraconsistent relations represented by the d-relation. The
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different paraconsistent relations represent by a d-relation R can be obtained by choosing

one tuple from each tuple set. In doing so, the paraconsistent relations obtained may be

inconsistent or may contain redundant information. These would have to be removed from

in order to obtain the exact information content of a d-relation.

Definition 34. Let U ⊆ P(Σ). Then,

normrepΣ(U) = {R | R ∈ U ∧R+ ∩R− = ∅}

The normrep operator removes all inconsistent paraconsistent relations from its input.

Definition 35. Let U ⊆ P(Σ). Then,

reducerepΣ(U) = {R | R ∈ U ∧ ¬(∃S)(S ∈ U ∧R 6= S

∧S+ ⊆ R+ ∧ S− ⊆ R−)}

The reducerep operator keeps only the “minimal” paraconsistent relations and elimi-

nates any paraconsistent relation that is “subsumed” by others.

Definition 36. The information content of a d-relation is defined by the mapping repΣ :

N (Σ) → 2P(Σ). Let R be a normalized d-relation on scheme Σ with R+ = {w1, w2, . . . , wk}

and R− = {u1, u2, . . . um}. Let U = {< {t1, . . . , tk}, {s1, . . . , sm} >| (∀ki=1)(∀mj=1)(ti ∈ wi ∧

sj ∈ uj)}. Then,

repΣ(R) = reducerepΣ(normrepΣ(U))

Note that the information content is defined only for normalized d-relations. Fig. 6.3

shows how repΣ(R) is obtained from a d-relation R. The set of paraconsistent relations

denoted by U in the figure is obtained by the process of selecting tuples from each tuple set.

The normrepΣ operator removes the inconsistent paraconsistent relations from U. Finally,

the reducerepΣ operator removes the paraconsistent relations that are subsumed by other

paraconsistent relations in the set. The following important theorem states that information

is neither lost nor gained by removing the redundancies in a d-relation.

Theorem 6.1.1. Let R be a d-relation on scheme Σ. Then,

repΣ(reduce(R)) = repΣ(R)
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R U

{a, b}
{b, c}
{c, f}


a

b

c

,

a

b

f

,

a

c

c

,

a

c

f

,
b

c
,

b

f
,

b

c

c

,

b

c

f


normrepΣ(U) reducerepΣ(normrepΣ(U))

a

b

c

,

a

b

f

,

a

c

f

,
b

c
,

b

f
,

b

c

f




a

c

f

,
b

c
,

b

f


Figure 6.3. An example of repΣ

6.2 Generalized Relational Algebra

In this section, we first develop the notion of precise generalizations of algebraic oper-

ators. This is an important property that must be satisfied by any new operator defined

for d-relations. Then, we present several algebraic operators on d-relations that are precise

generalizations of their counterparts on paraconsistent relations.

Precise Generalizations of Operations

It is easily seen that d-relations are a generalisation of paraconsistent relations, in that

for each paraconsistent relation there is a d-relation with the same information content, but

not vice versa. It is thus natural to think of generalising the operations on paraconsistent

relations, such as union, join, projection etc., to d-relations. However, any such generalisation

should be intuitive with respect to the belief system model of d-relations. We now construct

a framework for operators on both kinds of relations and introduce the notion of the precise

generalisation relationship among their operators based on [41].

An n-ary operator on paraconsistent relations with signature 〈Σ1, . . . ,Σn+1〉 is a function

Θ : P(Σ1)×· · ·×P(Σn)→ P(Σn+1), where Σ1, . . . ,Σn+1 are any schemes. Similarly, an n-ary

operator on d-relations with signature 〈Σ1, . . . ,Σn+1〉 is a function Ψ : D(Σ1)×· · ·×D(Σn)→

D(Σn+1).
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We now need to extend operators on paraconsistent relations to sets of paraconsistent

relations. For any operator Θ : P(Σ1)×· · ·×P(Σn)→ P(Σn+1) on paraconsistent relations,

we let S(Θ) : 2P(Σ1) × · · · × 2P(Σn) → 2P(Σn+1) be a map on sets of paraconsistent relations

defined as follows. For any setsM1, . . . ,Mn of paraconsistent relations on schemes Σ1, . . . ,Σn,

respectively,

S(Θ)(M1, . . . ,Mn) = {Θ(R1, . . . , Rn) | Ri ∈Mi, 1 ≤ i ≤ n}.

In other words, S(Θ)(M1, . . . ,Mn) is the set of Θ-images of all tuples in the cartesian product

M1×· · ·×Mn. We are now ready to lead up to the notion of precise operator generalisation.

Definition 37. An operator Ψ on d-relations with signature 〈Σ1, . . . ,Σn+1〉 is consistency

preserving if for any normalized d-relations R1, . . . , Rn on schemes Σ1, . . . ,Σn, respectively,

Ψ(R1, . . . , Rn) is also normalized.

Definition 38. A consistency preserving operator Ψ on d-relations with signature 〈Σ1, . . . ,Σn+1〉

is a precise generalisation of an operator Θ on paraconsistent relations with the same signa-

ture, if for any normalized d-relations R1, . . . , Rn on schemes Σ1, . . . ,Σn, we have

repΣn+1
(Ψ(R1, . . . , Rn)) = S(Θ)(repΣ1

(R1), . . . , repΣn
(Rn)).

We now present precise generalisations for the usual relation operators, such as union,

join, projection. To reflect generalisation, a hat is placed over an ordinary relation operator

to obtain the corresponding d-relation operator. For example, ./ denotes the natural join

among ordinary relations, .̇/ denotes natural join on paraconsistent relations and .̂/ denotes

natural join on d-relations.

Definition 39. Let R and S be two normalized d-relations on scheme Σ. Then, R∪̂S is a

d-relation over scheme Σ given by R∪̂S = reduce(T ), where

T+ = R+ ∪ S+ and

T− = R− ∩ S−.
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and R∩̂S is a d-relation over scheme Σ given by R∩̂S = reduce(T ), where

T+ = R+ ∩ S+ and

T− = R− ∪ S−.

The positive component of the union is the usual union of the respective positive com-

ponents of the operands, whereas the negative component of the union is the intersection

of the respective negative components of the operands. In the case of intersection the roles

of union and intersection are reversed. The intuition behind this and subsequent definitions

are derived from the belief system basis for d-relations.

The following theorem establishes the precise generalization property for union and in-

tersection:

Theorem 6.2.1. Let R and S be two normalized d-relations on scheme Σ. Then,

1. repΣ(R∪̂S) = repΣ(R)S(∪̇)repΣ(S).

2. repΣ(R∩̂S) = repΣ(R)S(∩̇)repΣ(S).

Definition 40. Let R be a normalized d-relation on scheme Σ. Then −̂R is a d-relation

over scheme Σ given by −̂R+ = R− and −̂R− = R+

Definition 41. Let R be a normalized d-relation on scheme Σ, and let F be any logic formula

involving attribute names in Σ, constant symbols (denoting values in the attribute domains),

equality symbol =, negation symbol ¬, and connectives ∨ and ∧. Then, the selection of R by

F , denoted σ̂F (R), is a d-relation on scheme Σ, given by σ̂F (R) = reduce(T ), where

T+ = {w | w ∈ R+ ∧ (∀t)(t ∈ w → F (t))} and

T− = {{t} | t ∈ τ(Σ) ∧ ¬F (t)}∪

{w | w ∈ R− ∧ (∀t)(t ∈ w → F (t))}

where σF is the usual selection of tuples.
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A disjunctive tuple set is either selected as a whole or not at all. All the tuples within

the tuple set must satisfy the selection criteria for the tuple set to be selected.

Definition 42. Let R be a normalized d-relation on scheme Σ, and ∆ ⊆ Σ. Then, the

projection of R onto ∆, denoted π̂∆(R), is a disjunctive paraconsistent relation on scheme

∆, given by π̂∆(R) = reduce(T ), where

T+ = {π∆(w)|w ∈ R+} and

T− = {{w1, . . . , wk} |
(

k

∀
i=j=1

i, j

)
[(t ∈ wi → tΣ ∩R+

d = ∅)∧

(∀t ∈ wi)(∀t1, t2 ∈ tΣ)(∃w,w′ ∈ R−)

(t1 ∈ w ∧ t2 ∈ w′ ∧ w 6= w′)∧

(∀s, t)[(s ∈ wi ∧ t ∈ wj ∧ i 6= j)→

(∀s1, t1)(∃w,w′ ∈ R−)

(s1 ∈ sΣ ∧ t1 ∈ tΣ ∧ s1 ∈ w ∧ t1 ∈ w′∧

w 6= w′)]]}

where π∆ is the usual projection over ∆ of tuples.

The positive component of the projections consists of the projection of each of the tuple

sets onto ∆ and π̂∆(R)− consists of tuple sets where each extension of each tuple in each

tuple set appears in different tuple sets in R−.

Definition 43. Let R and S be normalized d-relations on schemes Σ and ∆, respectively

with R =< {u1, . . . , uk}, {v1, . . . , vl} > and S =< {w1, . . . , wm}, {x1, . . . , xn} >. Then, the

natural join of R and S, denoted R .̂/ S, is a d-relation on scheme Σ∪∆, given by R .̂/ S =

reduce(T ), where T is defined as follows. Let E = {< {p1, . . . , pk}, {q1, . . . , ql} > |(∀i)(1 ≤

i ≤ k → pi ∈ ui) ∧ (∀j)(1 ≤ j ≤ l → qj ∈ vj)} and F = {< {r1, . . . , rm}, {s1, . . . , sn} >

|(∀i)(1 ≤ i ≤ m → ri ∈ wi) ∧ (∀j)(1 ≤ j ≤ n → sj ∈ xj)} Let the elements of E be

E1, . . . , Ee and those of F be F1, . . . , Ff and let Aij = Ei.̇/Fj for 1 ≤ i ≤ e and 1 ≤ j ≤ f .

Let A1, . . . , Ag be the distinct Aijs. Then,
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T+ = {v| (∃s1) · · · (∃sg)(s1 ∈ A+
1 ∧ · · · ∧ sg ∈ A+

g ∧

v = {s1, . . . , sg})}

T− = {w| (∃t1) · · · (∃tg)(t1 ∈ A−1 ∧ · · · ∧ tg ∈ A−g ∧

w = {t1, . . . , tg})}

Theorem 6.2.2. Let R and S be two normalized disjunctive paraconsistent relations on

scheme Σ1 and Σ2. Also let F be a selection formula on scheme Σ1 and ∆ ⊆ Σ1. Then,

1. repΣ1
(σ̂F (R)) = S(σ̇F )(repΣ1

(R)).

2. repΣ1
(π̂∆(R)) = S(π̇∆)(repΣ1

(R)).

3. repΣ1∪Σ2
(R.̂/S) = repΣ1

(R)S(.̇/)repΣ2
(S).
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Part III

Negation and Nonmonotonic
Reasoning
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CHAPTER 7.

DEFAULT RELATIONS

In this chapter, we study the issue of incompleteness in an open world database. We

define an extension of the relational model which has two forms of negation - the explicit

negation, in which certain atoms are known to be false, and a default negation which is a

form of non-monotonic negation for unknown atoms in the relation. We define operators for

this extended relational model. We show that this model is a generalization of the relational

model in the sense that we obtain some intuitive answers in the negative component in

addition to the answers obtained in the relational model.

Relational databases normally adopt the CWA. The reason is that the number of negative

facts to be stored become prohibitively large and storing them explicitly is not feasible.

But this becomes necessary in certain domains of application and when the knowledge is

incomplete, a default form of negation must be used. Logical entailment by itself is limited

in application when the knowledge is incomplete. But in common sense reasoning, in practice,

we do reason about things that we are not completely aware of. A typical example of such a

form of reasoning is the statement “birds fly”.i.e., in general we tend to assume that all birds

fly unless we have strong enough reasons to believe otherwise. Consider a particular bird, say

Tweety. We would normally assume that Tweety flies as long as we have no reason to believe

otherwise. The pattern of reasoning followed here is “in the absence of information to the

contrary . . . ”. This form of reasoning is nonmonotonic because if we were to subsequently

acquire information to the contrary, then we would have to retract our original beliefs. For

example, if we were to discover at a later point in time that Tweety is in fact an ostrich,

then we would have to retract our earlier belief that Tweety flies. This problem has been

studied in detail from the logic programming and deductive database aspect in [33],[36],

[37] and [57]. However, this problem has not been studied extensively from the open world

relational database viewpoint. In an open world database, some atoms are explicitly defined
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and we can make some common sense assumptions about some others. The problem that

we address here is to decide about which atoms we can make assumptions within the realm

of some of the operators of the relational algebra. In this chapter we define an extension

to the relational model and an algebra where two forms of negation are used - an explicit

negation and a nonmonotonic form of negation. We show that this model is a generalization

of the relational model in the sense that we obtain some intuitive answers in the negative

component in addition to the answers obtained in the relational model.

7.1 Default Negation in a Relational Database

In relational databases that adopt the CWA, we store only the true facts and other facts

are implicitly assumed to be false. In an open world setting, a relation is a pair < R+, R− >,

where R+ is the positive component which stores facts that are known to be true of the

relation R, and R− is the negative component which stores facts that are known to be false

in R. Thus, unlike the CWA where we implicitly assume facts not stored to be false, we do

not make such an assumption in the open world setting. Facts that we believe to be false are

only the ones stored in R−. Such a model is described in [6],[7]. Bagai and Sunderraman in

[6] and [7] define an algebra for their paraconsistent relational data model which has these

two components. However, apart from the facts that are known to be false, we also want

to be able to make default assumptions about certain facts when the relation is incomplete.

The model described in [6] uses the four-valued logic of Belnap [10] and assigns the default

truth value of unknown to the missing facts in the relation. Some facts may also appear in

both R+ and R− thus making the relation R inconsistent. Such facts are assigned the fourth

truth value overdetermined.

Apart from the facts that are known to be true and those that are known to be false in

a relation R, we adopt a form of nonmonotonic negation so that some of the unknown facts

can be assumed to be false. Notice that this is a form of closed world reasoning in an open

world setting. It is necessary when the database is incomplete. The form of nonmonotonic
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reasoning that we will adopt here is closely related to the one described in [74]. The algebra

that we define with two kinds of negation is a generalization of the paraconsistent algebra of

[6] and [7]. Apart from the explicit positive and negative components of the answers obtained

in that model, we extend it to produce more intuitive negative answers that we conclude to

be false by default. The basic idea is that we define to be false by default certain atoms,

as yet unknown, whose addition to the corresponding relation would not have changed the

positive consequences of the result of applying a relational operation. It must be noted,

however that adding them to the R− component may change the negative consequences of

the relational operation.

7.2 Default Relations

In this section, we construct a set theoretic formulation of our model. In this model,

some tuples are known to hold a certain underlying predicate, some are known not to hold

the predicate and some others are not known to hold the predicate.

Definition 44. A default relation on scheme Σ is a triple < R+
e , R

−
e , R

−
d > where R+

e ,R−e

and R−d are any subsets of τ(Σ). We let D(Σ) denote the set of all default relations on Σ.

Here, the subscript e denotes explicit and the subscript d denotes default. The super-

scripts + and - denote true and false respectively. Hence the three components are explicitly

true, explicitly false and default false respectively.

Intuitively, R+
e may be considered as the set of tuples for which R is known to be true,

R−e is the set of tuples for which R is known to be false and R−d is the set of tuples for which

R is not known to be true and hence can be assumed to be false by default.

We denote by R̄ the set of tuples on scheme Σ that have not been assigned truth values.

Thus R̄ = τ(Σ)− (R+
e ∪R−e ∪R−d ). We say that a tuple t is unknown in R if t ∈ R̄.

Definition 45. A default relation R on scheme Σ is said to be complete if R+
e ∪ R−e = τ(Σ).

R is said to be a consistent default relation if R+
e ∩ R−e = ∅ and R+

e ∩ R−d = ∅. If R is both

consistent and complete, it is said to be total.
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It should be observed that the (positive parts of) total relations are essentially ordinary

relations. We make this relationship explicit by defining an operator λΣ(R) =R+
e where R

is a total relation on Σ.

Default relations are a generalization of ordinary relations in the sense that for each

ordinary relation there is a default relation with the same information content. We adopt

the notions of generalizations discussed in [6].

An n-ary operator on ordinary relations with signature < Σ1, . . . ,Σn+1 > is a function

Θ : O(Σ1) × . . . × O(Σn) → O(Σn+1) where Σ1, . . . ,Σn+1 are any schemes. Similarly,

an n-ary operator on default relations with signature < Σ1, . . . ,Σn+1 > is a function Ψ :

D(Σ1)× . . .×D(Σn)→ D(Σn+1).

Definition 46. An operator Ψ on default relations with signature < Σ1, . . . ,Σn+1 > is

totality preserving if for any total relations R1, . . . , Rn on schemes Σ1, . . . ,Σn respectively,

Ψ(R1, . . . , Rn) is also total.

We associate with a consistent default relation R the set of all relations obtainable from

R by throwing in the missing tuples. The completion of a consistent default relation R is

given by,

compsΣ(R) = {Q ∈ O(Σ) | R+
e ⊆ Q ⊆

τ(Σ)− (R−e ∪R−d )}
For any operator Θ : O(Σ1)× . . .×O(Σn) → O(Σn+1) on ordinary relations, we let Γ(Θ) :

2O(Σ1) × . . . × 2O(Σn) → 2O(Σn+1) be a map on sets of ordinary relations defined as follows:

For any sets M1, . . . ,Mn of ordinary relations on schemes Σ1, . . . ,Σn respectively,

Γ(Θ)(M1, . . . ,Mn) = {Θ(R1, . . . , Rn) | Ri ∈

Mi,∀i, 1 ≤ i ≤ n}.

Definition 47. An operator Ψ on default relations with signature < Σ1, . . . ,Σn+1 > is con-

sistency preserving if for any consistent default relations R1, . . . , Rn on schemes Σ1, . . . ,Σn

respectively, Ψ(R1, . . . , Rn) is also a consistent default relation.
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Definition 48. A consistency preserving operator Ψ on default relations with signature

< Σ1, . . . ,Σn+1 > is a strong generalization of an operator Θ on ordinary relations with the

same signature, if for any consistent relations R1, . . . , Rn on schemes Σ1, . . . ,Σn respectively,

we have

compsΣn+1(Ψ(R1, . . . , Rn)) = Γ(Θ)(compsΣ1(R1), . . . , compsΣn(Rn)).

7.3 Algebraic Operators on Default Relations

In this section, we present generalizations of each of the algebraic operators on ordinary

relations. To reflect generalization, a dot is placed over the ordinary relational operator to

obtain the corresponding default relation operator. The operators defined here are extensions

of the operators defined in the paraconsistent data model in [6] and [7]. We also state

theorems on strong generalization for each of the operators.

Definition 49. Let R and S be default relations on scheme Σ. The union of R and S,

denoted R∪̇S, is a default relation on scheme Σ, given by,

(R∪̇S)+
e = R+

e ∪ S+
e

(R∪̇S)−e = R−e ∩ S−e

(R∪̇S)−d = R−d ∩ S
−
d

The union operation may be understood as follows: The tuples in the union of R and S

are those that possess either the property R or the property S, which is simply the union of

the tuples in R+
e and S+

e . Similarly, the explicit negation of the union is the tuples which

have neither property. They are exactly the tuples in R−e ∩ S−e . The tuples not known to

possess property R or S are those that are not known to possess either - which is exactly

the set R−d ∩ S
−
d . Among the unknown tuples in R̄ and S̄, any of those, if added to either

of the original relations, would be present in the union as well. Hence none of them can be

negated by default.

Theorem 7.3.1. The operator ∪̇ on default relations is a strong generalization of the oper-

ator ∪ on ordinary relations.
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Definition 50. Let R and S be default relations on scheme Σ. The intersection of R and

S, denoted R∩̇S, is a default relation on scheme Σ, given by,

(R∩̇S)+
e = R+

e ∩ S+
e

(R∩̇S)−e = R−e ∪ S−e

(R∩̇S)−d = R−d ∪ S
−
d ∪ (R̄ ∩ S̄)

For the intersection operation, the positive component of the intersection will contain

exactly those tuples which possess both properties R and S. These are the tuples in R+
e ∩

S+
e . The tuples in the explicit negative component are those for which it is not the case that

they possess properties R and S. i.e. those tuples that either do not possess R or do not

possess S. These are the tuples in R−e ∪ S−e . The default negative tuples are those tuples

that are not known to possess R and S. They include the tuples in R−d ∪ S
−
d . Apart from

these, any tuple in R̄ which does not appear in S+
e will not appear in the intersection even

if it were added to R. It will appear in the explicit negative component of the intersection if

it was present in S−e . Thus we are interested only in tuples that appear in R̄ ∩ S̄ . Notice

that this holds only if these tuples were to be added separately in R or S. For if any tuple

in R̄ ∩ S̄ were to be added to both R and S simultaneously, this tuple would appear in the

intersection as well.

Theorem 7.3.2. The operator ∩̇ on default relations is a strong generalization of the oper-

ator ∩ on ordinary relations.

Definition 51. Let R and S be default relations on scheme Σ. The difference of R and S,

denoted R−̇S, is a default relation on scheme Σ, given by,

(R−̇S)+
e = R+

e ∩ S−e

(R−̇S)−e = R−e ∪ S+
e

(R−̇S)−d = R−d ∪ (R̄ ∩ S̄) ∪ (S̄ −R−e )

The tuples in the difference of R and S are those that are in R and not in S. i.e., in

R+
e ∩ S−e . The tuples that are known not to be present in the difference are exactly those
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that are not in R or in S - the tuples in R−e ∪ S+
e . Any tuple not known to be in R can be

assumed to not be in the difference - this is the set R−d . Any tuple in R̄ ∩ S̄ would not affect

the result of the difference if it were to be added to R or S. Hence they can be assumed to

be false by default. Also, the tuples in S̄ would not affect the difference even if they were to

be added to S. However, some of them already appear in the explicit negative component

because they are present in R−e . Thus the tuples from S̄ that can be assumed to false in

the difference are those in S̄ − R−e .

Theorem 7.3.3. The operator −̇ on default relations is a strong generalization of the oper-

ator − on ordinary relations.

If Σ and ∆ are relation schemes such that ∆ ⊆ Σ, then for any tuple t ∈ τ(∆) we let tΣ

denote the set {t′ ∈ τ(Σ) | t′(A) = t(A), for all A ∈ ∆} of all extensions of t. We extend

this notion for any T ⊆ τ(∆) by defining TΣ =
⋃
t∈T t

Σ.

Definition 52. Let R be a default relation on scheme Σ and let F be any formula involv-

ing attribute names in Σ, constant symbols (denoting values in the attribute domains), the

equality symbol =, the negation symbol ¬, and the connectives ∧ and ∨. Then, the selection

of F by R, denoted σ̇F (R), is a default relation on scheme Σ, given by

σ̇F (R)+
e = σF (R+

e )

σ̇F (R)−e = R−e ∪ σ¬F (τ(Σ))

σ̇F (R)−d = R−d

The positive component of the selection consists of exactly those tuples in R+
e that satisfy

F . i.e. the tuples that possess property R and satisfy the formula F . The explicitly negated

component of a selection includes the set of all tuples in R−e since they do not possess property

R. Also, tuples in τ(Σ) that do not satisfy F are also explicitly negated. The tuples in R−d

can be assumed to be false in the selection since they are not known to possess property R.

Theorem 7.3.4. The operator σ̇ on default relations is a strong generalization of the operator

σ on ordinary relations.
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Definition 53. Let R be a default relation on scheme Σ, and ∆ ⊆ Σ. Then, the projection

of R onto ∆, denoted π̇∆(R), is a default relation on ∆, given by

π̇∆(R)+
e = π∆(R+

e )

π̇∆(R)−e = {t ∈ τ(∆) | tΣ ⊆ R−e }

π̇∆(R)−d = {t ∈ τ(∆) | tΣ ⊆ (R−d ∪R−e )}

−π̇∆(R)−e

The positive component of the projection is the projection of tuples in R+
e . The explicitly

negated component of the projection is those tuples in ∆ all of whose extensions are explicitly

negated in R. Similarly, the tuples that are unknown in ∆ all of whose extensions are in R−d

can be assumed to be false in the projection. Apart from this, there may be tuples unknown

in ∆ some of whose extensions are in R−e and the others in R−d . These tuples can also be

assumed to be false by default.

Theorem 7.3.5. The operator π̇ on default relations is a strong generalization of the operator

π on ordinary relations.

Definition 54. Let R and S be default relations on scheme Σ and ∆ respectively. Then, the

natural join of R and S, denoted R.̇/S, is a default relation on scheme Σ ∪∆, given by

(R.̇/S)+
e = R+

e ./ S
+
e

(R.̇/S)−e = (R−e )Σ∪∆ ∪ (S−e )Σ∪∆

(R.̇/S)−d = (R−d )Σ∪∆ ∪ (S−d )Σ∪∆∪

{tΣ∪∆ | (t ∈ R̄ ∧ {t} ./ S+
e = ∅)∨

(t ∈ S̄ ∧R+
e ./ {t} = ∅)}

The positive component of the join is simply the natural join of the positive components

of the corresponding relations. The explicitly negated component of the join consists of all

extensions of the tuples in R−e and S−e since these are already not true in R and S respectively.

The default negative component consists of all extensions of R−d and S−d . This component
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will also contain extensions of tuples in R̄ that do not join with any tuple in S+
e . Similarly,

we can also add all tuples from S̄ that do not join with any tuple in R+
e .

Theorem 7.3.6. The operator .̇/ on default relations is a strong generalization of the oper-

ator ./ on ordinary relations.

7.4 Intuition

The aim of this section is to explain the intuition behind how the default conclusions

are made for each of the relational operators. Since the semantics of each of the relational

operators is clear, we know what kind of inferences can be made at least as far as the

positive conclusions are concerned. For example, we know that the union of two relations is

exactly those set of tuples that are known to have either property. In order to derive default

conclusions, we are motivated by two reasons - one, we want to minimize the extent of a

relation. This is the idea behind nonmonotonic reasoning methods like circumscription [53].

Thus we attempt to derive default negative conclusions in order to minimize the result of

an algebraic operation. The question that then arises is on what basis do we minimize? As

mentioned earlier, since the semantics of the relational operators are clear, an interesting

approach would be to treat this as the definite result of applying the particular relational

operator and try to minimize the relation as much as possible while maintaining consistency

without introducing any change in the definite answers.This is the second motivation for

deriving default conclusions. This approach leads to the obvious question - why not negate

every unknown fact as in the CWA? The reason that this approach is unsatisfactory is that we

want to differentiate between two kinds of negation in an open world database. The explicit

negation component is the set of tuples whose falsity has been constructively established.

The default negation component is the set of tuples whose falsity can be assumed. The need

for distinguishing between these two forms of negation has been studied extensively from

the logic programming perspective. In particular, PROLOG’s negation operator not is a

nonmonotonic form of negation based on the negation as failure rule due to Clark [20].
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Most default assumptions are made on the inference “in the absence of any information

to the contrary, assume . . . ”. Our attempt here is to find a formalization of this principle

in relational databases. For the relational operators, since our effort is to minimize the

resulting relation, we assume that a tuple is not in the result of a relational operation unless

we have good enough reasons to believe otherwise. Since both the explicit positive and

negative components of the result of a relational operation are defined as functions of the

corresponding components of the input relations, for each tuple that is unknown in the input

relations, we assume the tuple to be in the relation and then compute the result. If there is

no change in the result, then we conclude that the tuple can be negated by default in the

result. For the purpose of illustration, consider a default relation R and the selection of R

by a formula F . The positive component of the selection is defined in terms of R+
e . Among

the tuples that are unknown in R, there are some for which F holds and others for which it

does not. Consider the tuples for which F does not hold. Even if they were to be in R, the

result of selection would be the same since F does not hold for them. Hence these are the

only tuples in R̄ that can be negated by default. Notice here that this form of negation is

stronger than the CWA since the CWA dictates that all tuples for which R does not hold

are assumed to be false. Since we are dealing with the open world assumption we need a

stronger notion of negation.
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CHAPTER 8.

EXTENDED LOGIC PROGRAMS

The problem of assigning a semantics to logic programs with negation(called normal

logic programs in this chapter) has been heavily studied. Of the various semantics proposed,

two of the most popular semantics are the wellfounded semantics [81] and the stable model

semantics [32]. For programs not containing any negation, the Horn programs, there is a

consensus on the semantics. Even for restricted classes of logic programs with negation, the

stratified and locally stratified programs, there is an agreement on the semantics. Thus it

may be said that the various semantics for logic programs with negation differ primarily in

their treatment of the negation. Extended logic programs are logic programs with two types

of negation; the weak negation, of the kind seen in a normal logic program, and another kind

of negation, which we will call explicit negation in this chapter. The explicit negation may

be thought of as a rough counterpart of the classical negation of first order logic.

The weak negation of normal logic programs (not containing explicit negation) is similar

in spirit to the Closed World Assumption(CWA) of Reiter [64]. The CWA assumes the

negation of a statement when the statement cannot be proved. Hence there is no need to

state negative information explicitly. It can be seen that in extended logic programs we are

no longer in a closed world setting. However, most semantics for extended logic programs

treat the weak negation in an extended logic program in the same way that it is treated in

a normal logic program. We argue that when normal logic program semantics are used to

specify the semantics of an extended logic program, the weak negation should be treated

differently. Surely, when we are trying to establish the “failure to prove” a proposition, we

must pay attention to “proving the negation of the proposition”. When a user specifies an

extended logic program containing weak negation, the weak negation of a literal may either

mean that the literal is false (which may be stated through explicit negation) or that we

may apply the CWA for the literal. The aim of this chapter is to attempt to formalize the
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meaning of the weak negation through a translation to normal logic programs so that normal

logic program semantics may be applied to the extended logic program.

8.1 Preliminary Definitions and Motivation

We first recall basic definitions for logic programs. A term is a constant, a variable or a

complex term of the form f(t1, . . . , tn) where t1, . . . , tn are terms and f is a function symbol

with finite arity n ≥ 0. An atom is a formula of the language of the form p(t1, . . . , tn) where

p is a predicate symbol of finite arity n ≥ 0 and t1, . . . , tn are terms. A literal is either an

atom or its negation, denoted by p(t1, . . . , tn). An atom A and its negation ¬A are said to

be complements of each other. In general, if B is a literal, ¬B denotes the complement of

B.

A normal logic program is a set of rules of the form

A← B1, . . . Bn,∼ C1, . . . ,∼ Cm (8.1)

where A,B1, . . . Bn, C1, . . . Cm are atoms and ∼ denotes weak negation. Here A is called the

head of the rule and the conjunction B1 ∧ . . . ∧Bn ∧C1 ∧ . . . ∧Cm is called the body of the

rule. When m = 0, we call the rule a “strict” rule, and a “defeasible” rule otherwise.

An extended logic program is a set of rules of the form (8.1) but here A,B1, . . . Bn,

C1, . . . , Cm are literals, i.e., they are of the form P or ¬P . An extended logic program thus

contains two types of negation - the “weak negation” ∼ of the kind seen in a normal logic

program and an “explicit negation” ¬.

Given a logic program P , the Herbrand universe of P , denoted UP , is the set of all possible

ground terms constructed recursively using the constants and function symbols occuring in

P . The Herbrand base of P , denoted HBP , is the set of all possible ground atoms whose

predicate symbols occur in P and whose arguments are elements of UP . A term, atom,

literal, rule or program is ground if it is free of variables. A ground instance of a rule is
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obtained by replacing the variables in a program with elements from UP in every possible

way. A ground program is the union of the ground instances of the rules in the program. In

this chapter, we assume programs to be ground unless stated otherwise.

Motivation. Consider the normal logic program a←∼ b. The atom a is a consequence

in this program under any semantics. The weak negation in this rule is interpreted as negation

as failure to prove [20]. This rule essentially says: “conclude a if it is not possible to prove b

from the program”. Since there is no rule in the program with b in the head, we can never

derive b from this program and hence we can conclude a to be true. The negation as failure

rule is very close in spirit to the Closed World Assumption (CWA) used in database systems

[64]. In a database system, the facts stored in the database are true and the other facts

are assumed to be false. We assume that our knowledge about the world is complete. Thus

there is no need to explicitly state that a fact is false. This appears to be appropriate : the

number of false facts usually tends to be very large and it is not feasible to store these facts.

It is easy to see that extended logic programs do not adopt this view. In an extended logic

program, a (classically) negated literal may appear in the head of a rule and we may thus

derive a negative fact from the rules of the program. Since negative information is stated

explicitly, it is possible for information to be neither true nor false. Such facts are unknown.

This is known as the Open World Assumption(OWA). Here we admit that our knowledge

of the world is incomplete. As a result, it is possible for an extended logic program to be

contradictory i.e. it is possible to derive both a literal and its negation from the program.

Consider for example the following program:

a← .

¬a← .

It is easy to see that this program is contradictory. The body of the rules in an extended

program may also contain ∼. Most of the semantics proposed for extended logic programs

treat ∼ in the same way as it is treated in a normal logic program. Consider the following
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program in which the first four rules are from [33] and the last two rules are added for

illustrative purposes.

Eligible(X) ← HighGPA(X).

Eligible(X) ← Minority(X), FairGPA(X).

¬Eligible(X) ← ¬FairGPA(X).

Interview(X) ← ∼ Eligible(X),∼ ¬Eligible(X).

Scholarship(X) ← ∼ ¬Eligible(X).

¬Scholarship(X) ← ∼ Eligible(X).

These are a set of rules used by a college to determine whether a student should be given a

scholarship or not. The first three rules are used to determine eligibility and the fourth rule

says that the student should be interviewed in the event that eligibility cannot be determined

using the first three rules. Assume that we have the following facts available to us about

two students Tom and Ann: {FairGPA(Ann),¬FairGPA(Tom)}. We can conclude from

this program that Tom is not eligible for a scholarship since he does not have a fair GPA.

However, it is not possible to decide eligibility for Ann since she does not have a high GPA

and we do not know whether she belongs to a minority or not. We use the fourth rule to

conclude that Ann should be interviewed. But now we may use the last two rules to conclude

both Scholarship(Ann) and ¬Scholarship(Ann) and the program with the two facts now

becomes contradictory.

It appears that the conclusions Scholarship(Ann) and ¬Scholarship(Ann) should have

been blocked by making the last two rules inapplicable. Without these two conclusions, the

program appears to have a very reasonable semantics in which Tom is found ineligible for

the scholarship and Ann is interviewed. It should be noted here that the complementary

pair of literals are derived from defeasible rules in the program. This problem arises due

to the treatment of ∼ as the weak negation in a (closed world) normal logic program. In
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an open world setting, we adopt a three-valued logic in which atoms can be true, false or

unknown. For an atom p, when p holds the atom is true, it is false when ¬p holds, and

it is unknown otherwise. In the closed world setting, since there is no notion of ¬p, we

assume that p is false when we cannot derive p. For the above program, it is clear that

the truth value of the atom Eligible(Ann) (and ¬Eligible(Ann)) is unknown because we

have not been able to establish Eligible(Ann) or ¬Eligible(Ann). So essentially, we have

derived contradictory information using unknown values. If on the other hand, we were

able to establish ¬Eligible(Ann) through some other rule then we might have been able

to use the sixth rule to determine that Ann should not be given the scholarship (the atom

Eligible(Ann) is then false and weak negation may be applied). This is the principle of

coherence formulated in [60].

Consider a much simpler program P0

¬a ← .

a ← ∼ b.

This program has a contradictory semantics but it is clear that in the open world setting

the truth value of the atom b is unknown (since we have both ∼ b and ∼ ¬b). We have

thus derived contradictory information from an unknown atom by applying closed world

reasoning in an open world setting. On the other hand, if the above program were to consist

only of the second rule, we should derive a from the program since then it is still a normal

logic program. But when we add the fact ¬a, we are now in an open world setting. In that

scenario, it does not appear reasonable to use the failure to prove b(when essentially we have

that b is unknown since we have failed to prove ¬b as well) to derive the atom a when we

have explicit information that a is false.



92

8.2 Related Work

A large amount of research has gone into semantics for extended logic programs [33, 60,

44, 5, 42]. One of the earliest works in this area was the extension of the stable model

semantics for normal logic programs to extended logic programs by Gelfond and Lifschitz in

[33]. The stable model semantics was first introduced in [32]. We briefly describe here the

answer set semantics for extended logic programs.

Answer set semantics. Let Π be an extended program without variables that does not

contain ∼, and let Lit be the set of ground literals in the language of Π. The answer set of

Π is the smallest subset S of Lit such that

1. for any rule A← B1, . . . Bn from Π, if B1, . . . Bn ∈ S, then A ∈ S;

2. if S contains a pair of complementary literals, then S = Lit.

Now let Π be any extended program. For any set S ∈ Lit, let ΠS be the extended program

obtained from Π by deleting

1. each rule that has a formula ∼ L in its body with L ∈ S, and

2. all formulas of the form ∼ L from the bodies of the remaining rules.

Clearly, ΠS does not contain ∼, so that its answer set is already defined. If this answer

set coincides with S, then we say that S is an answer set of Π. An extended program is

considered contradictory if it has an inconsistent answer set (an answer set containing a pair

of complementary literals).

It can be seen that the answer set semantics amounts to replacing every occurence of

a classically negated literal in the program with its primed version(every ¬p is replaced

with p′) and then applying the stable model semantics to the normal logic program thus

obtained. The idea of the transformation of the program by replacing occurences of ¬p with

p′ appears to be inadequate. Once such a transformation is made, we have essentially lost

the connection between a literal and its complement. Also, since we now have a normal
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logic program, the weak negation ∼ operates in the same way as it does in a normal logic

program. We argue that in an open world setting, the meaning of ∼ should be “stronger”

in some sense. In what sense will be made explicit by the transformation that we will define

later.

Another related work is [55]. Here the authors transform an extended (disjunctive) logic

program into a normal logic program by a transformation somewhat similar to the one defined

by Gelfond and Lifschitz in [33]. The transformation, called a prime-⊥-transformation,

transforms every negated literal ¬p to p′ and adds rules of the form ⊥ ← p, p′ for every

literal p in the Herbrand base of the program. The new symbol ⊥ denotes inconsistency

and is not present anywhere in the program. The purpose of the new rules is to to be

able to “detect” inconsistency in the program. Following the prime-⊥-transformation, any

semantics may be applied to the normal logic program and the transformations are reversed

to obtain the semantics of the extended logic program. However, since the transformation

is similar to the one in [33], the programs found to be inconsistent are the same as the ones

in the answer set semantics.

It is known that the wellfounded semantics of normal logic programs [81] is an approx-

imation of the stable model semantics. The wellfounded model of a normal logic program

may be defined in terms of the Gelfond-Lifschitz operator, henceforth called Γ [32]. Since Γ

is anti-monotonic, Γ2 is monotonic and the wellfounded model may be obtained by iterating

Γ2 from below until it reaches its least fixpoint. Brewka in [14] defines the wellfounded

semantics of an extended logic program in terms of this operator with a slight modification.

Applying Γ on a set of (extended) literals may result in inconsistency. If the requirement of

logical closedness is removed, then we may avoid inconsistency due to the presence of comple-

mentary literals. Thus Brewka defines the wellfounded model of an extended logic program

as the least fixpoint of ΓΓ′ iterated from below where Γ′ is Γ without the requirement of

logical closedness.
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The work of Alferes and Perreira in [60] defines a well-founded semantics for extended

logic programs. Here the authors introduce the so-called coherence requirement. The co-

herence requirement essentially states that if an atom p is false(¬p is a consequence of the

program), then ∼ p must hold as well. This appears to be reasonable: if a literal is explicitly

false, then surely it should be false by default as well. Although the coherence requirement

does relate the two forms of negation in an extended logic program, the weak negation ∼

still holds the same meaning under their semantics. The work in [2] studies extended logic

programs in an abductive framework and proposes a series of semantics that vary in their

degree of skepticism.

One of the works in extended logic programs aimed at avoiding inconsistencies is [44].

Here rules with negative literals in the head are referred to as “exceptions” i.e. a literal p

may be derived from a rule in an extended logic program unless an exception to it has been

generated through the derivation of ¬p. The authors propose a simple reformulation of the

stable model semantics to handle exceptions.

Arieli in [5] proposes a fixpoint semantics for extended logic programs. He defines an

operator that transforms an extended logic program into a normal logic program. Since this

work is in the paraconsistent setting, the definition of ∼ is given in a four-valued logic. The

possible truth values are {t, f,⊥,>} and ∼ t = f , ∼ f = t, ∼ > = f and ∼ ⊥ = ⊥. The

semantics proposed handles inconsistent information.

8.3 Program Transformation

In this section, we show how an extended logic program should be transformed to a

normal logic program. We argue that the transformations such as the ones defined in [33]

and [55] do not reflect the intended meaning of the program in the open world setting.

It has been shown in [33] that the CWA for a predicate can be captured in an extended

logic program. For instance, in order to state that a predicate p adopts the CWA, we use

the following rule:
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¬p←∼ p

This rule states that we can derive ¬p if we fail to prove p. We use this in order to define

transformations for rules containing ∼.

For a rule r in an extended logic program P , we denote by T (r), the transformed version of

the rule r. Then, the transformation for P is given by

T (P ) =
⋃
r∈P

T (r)

We call the prime transformation of r, denoted prime(r), the process of replacing every

negative literal ¬A in r by its primed version A′.

Consider an arbitrary rule r of the form

A← B1, . . . Bn,∼ C1, . . . ,∼ Cm

There are three separate cases to consider for the transformation of r.

Case 1: When (m = 0) or (m = 2 and C1 = ¬C2).

T (r) = prime(r) .

When m = 0, since there is no use of ∼, there is only one interpretation of the rule

regardless of whether we are operating under the CWA or the OWA. When m = 2 and

C1 = ¬C2, the intention of the programmer is to state that C1 is unknown under the OWA

i.e. neither C1 nor ¬C1 can be established. Such rules are treated as rules in which the

programmer had the OWA in mind and hence we only perform the prime transformation for

these rules.
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Case 2: When m ≥ 1 and {C1, . . . , Cm} does not contain a pair of complementary literals.

T (r) is given by a pair of rules prime(r1) and prime(r2) where

r1 : A ← B1, . . . , Bn,¬C1, . . . ,¬Cm

r2 : A ← B1, . . . , Bn,∼ C1, . . . ,∼ Cm,∼ ¬A

Case 3: When m > 2 and {C1, . . . , Cm} contains atleast a pair of complementary literals,

say Ci, i.e. {Ci,¬Ci} ⊂ {C1, . . . , Cm}.

T (r) is given by a pair of rules prime(r′1) and prime(r2) where

r′1 : A ← B1, . . . , Bn,¬C1, . . . ,∼ Ci,∼ ¬Ci, . . . ,¬Cm

and r2 is the same as in Case 2.

It is easy to see that Case 3 is simply a special case of 2 when there is a pair of com-

plementary literals in the body of the rule. The idea is that in such a case, that part of

the body does not require any transformation other than the prime transformation(already

explained in Case 1). We give here a brief justification for Case 2.

The intuition behind r1(and r1′) is that if C1, . . . , Cm are to be assumed false by weak

negation, then in the open world setting it must be the case that they are false by explicit

negation. This the coherence requirement of [60]. Thus A may be derived from the original

rule if B1 ∧ . . . ∧Bn ∧ ¬C1 ∧ . . . ∧ ¬Cm holds.

Simply using this transformation alone appears to be too strong in the sense that for

simple programs such as ¬a ←∼ b we fail to derive ¬a because we cannot prove b to be

false(¬b cannot be proved). Thus r1 alone is what might be called a “strictly open world”

transformation. With such a transformation, any program gets reduced into a simple Horn

program and the meaning of the weak negation ∼ is simply the same as the explicit negation
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¬. We want to be able to identify a “middle ground” so that ¬a, for instance, in the above

program is derived. Looking at the rule, it is clear that the programmer intended to say

“derive ¬a if we fail to prove b”. But since we are operating under the OWA, what the

programmer intended to say should be taken as “failure to prove b may be used to derive ¬a

provided we use closed world reasoning for a”. This assumption can be included in the rule by

adding ∼ a to the body of the rule. This is achieved by r2 in the transformation.Essentially,

we are saying that when an extended logic program is specified, if it is to be evaluated under

any of the semantics for normal logic programs, the intended meaning of the program under

the CWA is given by the transformation above.

This simple transformation enjoys a number of desirable properties.

• For definite logic programs, which are programs with rules of the form A← B1, . . . , Bn

where A,B1, . . . , Bn are atoms, the transformation has no effect and we have the same

program.

• For normal logic programs too, the transformation has no effect on the semantics of

the program, i.e., Then SEM(P ) = SEM(T (P )), where SEM is any semantics for

normal logic programs and SEM(P ) is the set of literals entailed by program P under

the semantics. In other words, the transformed program is semantically equivalent to

the original normal logic program. This is easily observed. First of all, we consider only

Case 2 since there is no occurence of complementary literals in a normal logic program.

The first transformed rule r1 contains classically negated literals in the body. These

literals have no rules with them in the head since the original program is a normal

logic program. Hence the bodies of these rules will never be satisfied and these rules

may be deleted. The second rule r2 contains ∼ ¬A in its body. Again since there are

no rules with ¬A in the head, we may delete it from the bodies of the rules. We are

then left with the original normal logic program.
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• The transformation results in programs that are not contradictory by most of the

semantics for normal logic programs.

• If an extended logic program P is not contradictory by a semantics, say SEM , then

T (P ) is not contradictory by SEM either.

We illustrate this with a few examples.

Example 8.3.1

Consider the extended logic program

a←∼ b

¬a←∼ b

The transformed program is

a ← b′

a ← ∼ b,∼ a′

a′ ← b′

a′ ← ∼ b,∼ a

The original program is contradictory under the answer set semantics. However, the

transformed program has two stable models {a} and {a′}.

Example 8.3.2

Consider the extended logic program

¬a ←

a ← ∼ b
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The transformed program is

a′ ←

a ← b′

a ← ∼ b,∼ a′

This program is again contradictory under the answer set semantics but the only stable

model of the transformed program is {a′}. Notice however that if we were to add the fact ¬b

to the original program, then the program would indeed be contradictory under the answer

set semantics. This is as expected: although we need to negation as failure of b in order to

derive a, since we have ¬b, it appears reasonable that a is a consequence in this program.

Example 8.3.3

Consider again the simple program

a ← ∼ b

This program is written in the closed world setting since ¬ does not occur in the program.

Consider the case where the programmer intended to specify the same rule in the open

world setting, i.e. the programmer wants to state that a is true if there is no evidence of

b. Clearly, this would have been done differently. In the view of these authors, this could

have been stated either as a ← ¬b, where failure to prove is stated in terms of proving the

complementary literal, or as a ←∼ b,∼ ¬b, where ∼ b∧ ∼ ¬b indicates no evidence of b in

the open world setting. Notice that the latter rule falls under Case 1 in the transformation.

The transformation has no effect so that the meaning of “no evidence of b” is preserved.

Thus “a is true if there is no evidence of b” should have been stated either as a← ¬b or as

a←∼ b,∼ ¬b in the open world setting.
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Given such a rule in the open world setting, it is really not clear whether the programmer

intended the negation of b, which should have been stated as ¬b, or, the failure to prove b,

as in the CWA. The transformation we define tries to account for both cases. For our

transformation, this program would have been translated to the two rules a ← ¬b and

a ←∼ b,∼ ¬a. The latter transformation reflects our intuition that failure to prove b may

be used to derive a if a follows by adopting the closed world assumption for a. This is

specified in the open world setting by adding ∼ ¬a to the body of the rule.

Example 8.3.4

Consider the extended logic program

a ←

c ← a

¬b ←

¬c ← ∼ b

The transformed program is

a ←

c ← a

b′ ←

c′ ← b′

c′ ← ∼ b,∼ c

This program is contradictory by any semantics. Since ¬b is a fact, by the coherence require-

ment we have ∼ b and this can be used to derive ¬c, thus deriving both c and ¬c. Though

¬c can only be derived through a defeasible rule in the original program, since ¬b can be

derived, the rule is not defeasible anymore.
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It can be seen that the transformation has “strengthened” the weak negation ∼ of nor-

mal logic programs. A defeasible rule may be applied to derive a literal only under two

circumstances. One, the rule is not defeasible because the weak negation being applied on a

literal p is actually the result of the literal being proven to be false through the derivation of

¬p. The other way in which weak negation may be used to derive a literal A is by applying

CWA on the literal which is achieved by adding ∼ ¬A to the body of the rule.
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Part IV

Inconsistent Databases
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CHAPTER 9.

SP-RELATIONS

In this chapter, we present an approach to query processing for paraconsistent databases

in the presence of integrity constraints. Paraconsistent databases are capable of representing

positive as well as negative facts and typically operate under the open world assumption.

It is easily observed that integrity constraints are usually statements about negative facts

and as a result paraconsistent databases are suitable as a representation mechanism for such

information. We use set-valued attributes to code large number of regular tuples into one

extended tuple (with set-valued components). We define an extended relational model and

algebra capable of representing and querying paraconsistent databases in the presence of

integrity constraints. The extended algebra is used as the basis for query processing in such

databases.

Relations that contain relations as tuple components are called non-first normal form

relations [31, 59, 67]. In this paper, we restrict our attention to relations that allow only sets

as tuple components and thus is a special case of non-first normal form relations [31, 59].

If the domain of an attribute is a subset of the powerset of the atomic-valued domain, we

call it a set-valued attribute. The extended relational model requires that the domain of

attributes be set-valued. Atomic values are represented as singleton sets. Every row in such

an extended relation shall henceforth be called an s-tuple to differentiate it from the term

tuple that we normally associate with regular relations and the relations will themselves

be called s-relations. Since tuple components in s-relations are set-valued, we extend the

notation to allow the “complement” operation from set theory. It will be shown that this

notation, apart from increasing the clarity and simplicity of representation, also increases

the power of the algebra, specifically when applied to paraconsistent relations. Thus tuple

components can also contain {a} which represents a set containing all elements in the domain

of the attribute except a, and φ, the empty set. Null values in s-relations are thus represented
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as φ. φ̄ will now represent the entire domain. We will also make the assumption that all

attributes have the same domain φ̄, without any loss of generality.

Consider student(ssn,name,phone), a simple predicate, which describes students. In

our set-valued paraconsistent relational model, we will be able to express facts such as

”Student John has ssn 1234 and has two phones 1111 and 1112” using the s-tuple nota-

tion < 1234, John, {1111, 1112} > to denote a positive fact. The functional dependency

constraint ssn → name would allow us to infer negative facts in the form of the s-tuple

< 1234, {John}, φ >.

We now formally define set-valued extensions to the relational model. s-tuple.An s-tuple

on Σ is any map t : Σ→ ∪A∈Σdom(A), such that t(A) ⊆ dom(A) for each A ∈ Σ. Let τ(Σ)

denote the set of all s-tuples on Σ. Then, τ(Σ) =< φ̄, φ̄, . . . , φ̄ >.

s-relation. An s-relation on scheme Σ is a set of s-tuples on Σ.

Figure 1 shows an s-relation in which each s-tuple has set-valued components. The φ in

STUDENT

SSN Name Ph

{111} {Tom} {4046514633, 4046654321}
{888} {Jennifer} φ

Figure 9.1. An s-relation, STUDENT

the last s-tuple indicates that there is no value (NULL) under the column Ph for that s-tuple.

Given an s-relation e which contains k s-tuples where the ith tuple is denoted by< ti1, . . . , tin >

where all tij, 1 ≤ i ≤ k, 1 ≤ j ≤ n, are set-valued, there is a one-to-one correspondence be-

tween the s-relation e and the ordinary relation corresponding to e. We denote by eord the

ordinary relation corresponding to the s-relation e defined as follows:

eord = ∪ki=1ti1 × . . .× tin

We introduce two new operators REDUCE and COMPACT, which will be used in all

operations in the model.
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9.1 The Operator REDUCE

We define an operator, REDUCE, which takes an s-relation e on scheme Σ as input

and returns another s-relation on scheme Σ after eliminating redundant s-tuples. Below is a

formal description of REDUCE.

REDUCE(e) = {t1 ∈ e|¬(∃(t2 ∈ e)) ∧ ∀x∈Σ(t2[x] ⊃ t1[x])}

e

A B C

{1,2,3} φ̄ {1}
{3} {6,7} {1,3}
{6} {8} {7,9}

REDUCE(e)

A B C

{1,2,3} φ̄ {1}
{6} {8} {7,9}

Figure 9.2. Example of REDUCE

9.2 The Operator COMPACT

We introduce a new operator COMPACT that takes an s-relation e as input, and pro-

duces another s-relation e′.The new s-relation e′ will have atmost the number of s-tuples in e

or fewer. The algorithm below will take as input an s-relation e and the associated functional

dependencies and produce another s-relation e′ as output.

Algorithm COMPACT (e, R, F )

Input:An s-relation e under the scheme R and a set of associated functional dependencies

F .

Output:A compacted s-relation e′.

Method:The s-relation e′ is obtained as follows:

1. Let C = {k1, k2, .., kn} be the candidate keys computed from F .

2. if(∃i, j|(ki ∩ kj = φ) ∨ ((|C| = 1) ∧ (|k1| 6= 1)))

return e

else{
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if(∃kc ∈ C|(|kc| = 1) ∨ (∀i,j(ki ∩ kj = kc) ∧

(|kc| = 1))

for every set of tuples T for which π<R−kc>(T )

is singleton,

replace them with a new s-tuple t such that

t[R− kc] = π<R−kc>(T ) and t[kc] = ∪πkc(T )

return the new compacted relation e′

}

The intuition behind the COMPACT algorithm is that the column picked to be set-valued

would be one that belongs to all keys of the s-relation. When the keys of the s-relation are

computed, a number of scenarios can occur:

Case 1: The s-relation has only one key attribute.

Case 2: The s-relation has only one key but the key consists of more than one attribute.

Case 3: The s-relation has multiple keys and all of them have exactly one attribute in

common.

Case 4: The s-relation has multiple keys and NOT all of them have exactly one attribute in

common.

Let us consider the operation of COMPACT on the s-relation e below. Let A be the only

key attribute of the s-relation. In both cases 2 and 4 the algorithm just returns the original

e

A B C

{1} {6,7} {9}
{2} {3} {8}
{3} {6,7} {9}

COMPACT (e)

A B C

{1,3} {6,7} {9}
{2} {3} {8}

Figure 9.3. An example of COMPACT

s-relation and does not attempt to COMPACT the s-relation e any further. This is because

the time complexity of COMPACT is exponential for more than one attribute.
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Let us now examine cases 1 and 3 which ARE candidates for COMPACT . The simplest

is Case 1 where the s-relation has just one key attribute. Since that attribute is the ONLY

key of the s-relation, it very likely that we will have two or more tuples that have identical

values under all other attributes (it should be noted here that this would not have been

possible if there WAS another key for the s-relation). These tuples can then be combined

into a single s-tuple with the key attribute set-valued.

Case 3 is where there are multiple keys in the s-relation and all have exactly one attribute

in common. Since we are looking for exactly one attribute to perform COMPACT , an

attribute that appears in all keys of the s-relation seems an ideal candidate going by the

intuition that COMPACT was based on.

9.3 Algebraic Operators on s-relations

Here we define the algebraic operators for s-relations. We also define an operator REP {}

which takes an ordinary relation under any scheme Σ as input and produces an s-relation

under the same scheme as follows:

REP {}(R) = {s|(∀t ∈ R)(∀A ∈ Σ)s[A] = {t[A]}}

This operator REP {} is used in the definition of the difference operator. Union. The

union of s-relations e1 and e2, under scheme Σ and with functional dependencies F1 and F2

repectively, denoted by ∪s, is defined as follows:

e1 ∪s e2 = COMPACT (REDUCE({t|t ∈ e1 or t ∈ e2}),Σ, F1 ∪ F2)

Difference. The difference between two s-relations, e1 and e2, under scheme Σ and with

functional dependencies F1 and F2 repectively, denoted by −s, is defined as follows:

e1 −s e2 = COMPACT (REDUCE(REP {}(e1ord) ∪ e2)− e2,Σ, F1)

Intersection. We use the identity e1 ∩s e2 = e1 −s (e1 −s e2) with the algorithm above to

compute ∩s on s-relations e1 and e2. Selection. The selection of e by F , where e is an

s-relation on scheme Σ, denoted by σsF (e) where e is an s-relation on scheme Σ as follows:

Let θ = {<,≤,=, >,≥, 6=}. Let c, c1, c2 be constants and X, Y ∈ Σ The formula F can be
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classified into one of four cases:

Case 1: c1θc2

Case 2: Xθc

Case 3: cθY

Case 4: XθY .

Case 1 is trivial and returns either TRUE or FALSE and hence the query returns either e or

the empty relation.

Case 2: Without loss of generality, assume X is the first column in the s-relation e. Let

t =< u1, u2 . . . un > be any s-tuple in e and let u1 = {a1, a2 . . . am}. Then, u′1 = {ai|1 ≤ i ≤

m and aiθc is true }. If ui′ = φ, then drop t. Else return t′ =< u′1, u2 . . . un >

Case 3 is similar to Case 2.

Case 4: Without loss of generality, let X be the first column and Y be the 2nd column in

s-relation e. Let t =< u1, u2 . . . un > be any s-tuple in e and let u1 = {a1, a2 . . . am} and

u2 = {b1, b2 . . . bm}. Let c = b1 and repeat Case 2 to generate t′1. Let c = b2, c = b3 and so

on to generate a new s-tuple t′i for each bi. Thus atmost n new s-tuples are generated for

each bi, 1 ≤ i ≤ n. This can be reduced to min(m,n) s-tuples by choosing Y θ′X instead of

XθY where θ′ is the complementary operation to θ.

Projection. The projection of e onto ∆, denoted by πs∆(e) where e is an s-relation on

scheme Σ, and ∆ ⊆ Σ and F is the set of functional dependencies, is defined as follows:

πs∆ = COMPACT (REDUCE({t[∆]|t ∈ e}),∆, F ). Cartesian product. Let e1 and e2 be

two s-relations on schemes Σ and ∆ respectively. Then, the cartesian product, denoted by

e1 ×s e2 is an s-relation on scheme Σ ◦∆ defined as

e1 ×s e2 = REDUCE({t1 ◦ t2|t1 ∈ e1 and t2 ∈ e2}) where ◦ denotes the concatenation

operation.
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9.4 Set-valued Paraconsistent Relations

Unlike normal relations where we only retain information that is believed to be true

of a particular predicate, the paraconsistent relational model is a step towards completing

the database. In a paraconsistent relation, we also retain what is believed to be false of a

particular predicate [6, 7].

We define paraconsistent relations formally as follows:

Paraconsistent relations. A paraconsistent relation on a scheme Σ is a pair < R+, R− >

where R+ and R− are ordinary relations on Σ.

Thus R+ represents the set of tuples believed to be true of R and R− represents the set of

tuples believed to be false.

We allow the paraconsistent relations to be set-valued and introduce the notion of sp-

relations.

sp-relation. An sp-relation on a scheme Σ is a pair < R+, R− > where R+ and R− are

s-relations on Σ. Also,

COMPACT (R) =< COMPACT (R+), COMPACT (R−) >

REDUCE(R) =< REDUCE(R+), REDUCE(R−) >

Figure 9.4 is a instance of a set-valued paraconsistent employee database.

Employee

SSN Name Age

{111} {Navin} {24}
{222} {James} {23}
{333} {Jennifer} {25}

{555} φ̄ φ̄

{666} φ̄ φ̄

Supervisor

SSN SuperSSN

{111} {333}
{222} {111}

{111} {333}
{333} φ̄

Figure 9.4. A set-valued paraconsistent employee database

The database has a relation Employee =< Employee+, Employee− > which represents

the employee entity and the relation Supervisor =< Supervisor+, Supervisor− > which
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represents their supervisors(who are themselves employees). The tuples < {555}, φ̄, φ̄ >

and < {666}, φ̄, φ̄ > in Employee− indicate that there are no employees with SSN=‘555’ or

SSN=‘666’.

9.5 Algebraic Operators on sp-relations

Here we define the algebraic operators for sp-relations. Let R and S be two sp-relations

on scheme Σ.

Union. The union of R and S, denoted R ∪sp S, is an sp-relation on scheme Σ, given by

(R ∪sp S)+ = R+ ∪s S+, (R ∪sp S)− = R− ∩s S−,

where ∪s denotes union over s-relations and ∩s denotes intersection over s-relations.

Complement. The complement of sp-relation R, denoted by −spR is an sp-relation on

scheme Σ,given by

(−spR)+ = R−, (−spR)− = R+

Intersection. The intersection of sp-relations R and S, denoted by R∩spS, is an sp-relation

on scheme Σ, given by,

(R ∩sp S)+ = R+ ∩s S+, (R ∩sp S)− = R− ∪s S−

Difference. The difference of sp-relations R and S, denoted by R −sp S, is an sp-relation

on scheme Σ, given by

(R−sp S)+ = R+ ∩s S−, (R−sp S)− = R− ∪s S+

Selection. Let R be an s-relation under scheme Σ and let F be a formula of the form XθY

where θ = {<,>,=, <=, >=, 6=}. Then, the selection of R by F , denoted by σspF (R) is a

sp-relation on Σ, given by

σspF (R)+ = σsF (R+), σspF (R)− = R− ∪s σs¬F (τ(Σ))

where σs is the selection operation on s-relations.

The negative component, R−∪σs¬F (τ(Σ)), is computed as follows. Since τ(Σ) represents the

set of all tuples on Σ, it can be represented as the single |Σ|-tuple < φ̄, φ̄, ...., φ̄ >. Selecting

s-tuples that satisfy ¬F from τ(Σ) will thus mean removing from each component φ̄ in τ(Σ),



111

those values that satisfy ¬¬F , or F . Notice that when F is of the form XθY , and either X

or Y is a constant, σs¬F (τ(Σ)) will always contain only one s-tuple.

Projection. Let R be an sp-relation on scheme Σ and let ∆ ⊆ Σ. Then, the projection of

R onto ∆, denoted by πsp∆ (R), is an sp-relation on ∆, given by,

πsp∆ (R)+ = πs∆(R+), πsp∆ (R)− = {t ∈ τ(∆)|tΣ ⊆ (R−)Σ},

where πs∆ is the projection over ∆ of s-relations.

The negative component of the projection denotes the set of all tuples in scheme ∆, τ(∆)

such that all their extensions are present in (R−)Σ.

We define extensions of an s-tuple as follows:

If Σ and ∆ are relation schemes such that ∆ ⊆ Σ, then for any s-tuple t ∈ τ(∆), we let

tΣ denote the set of |Σ| -tuples {t′|t′(A) = t(A), for all A ∈ ∆ and t′(B) = φ̄, for all B ∈

Σ−∆}.

Join. Let R and S be sp-relations on schemes Σ and ∆ respectively. Then the natural join

of R and S, denoted by R ./sp S, is given by,

(R ./sp S)+ = R+ ./s S+, (R ./sp S)− = (R−)Σ∪∆ ∪s (S−)Σ∪∆

where ./s can be defined in terms of ×s and σs.

9.6 Representing Constraints in sp-relations

A functional dependency of the form A → B in a relation R introduces a constraint

that for any two tuples t1, t2 ∈ R, if t1[A] = t2[A] then t1[B] = t2[B]. This results in

an explosion in the information content when the relation is paraconsistent. Whenever a

functional dependency is present in a relation, the constraint thus introduced implies that

we can infer a number of facts to be false in R, or, in other words, we can conclude that

those facts will belong to R−. Let R =< R+, R− > be a paraconsistent relation under the

scheme Σ. Assume that there is a tuple t ∈ R+ with t[A] = a and t[B] = b and a functional

dependency A→ B for some attributes A,B ∈ Σ. This implies that any tuple with t[A] = a
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and t[B] 6= b will be in R−. Thus R− will contain tuples of the form

{t | (t[A] = a) ∧ (t[B] = x) ∧ (x 6= b)∧ (t[Σ− {A,B}] ∈ τ(Σ− {A,B}))} for every FD A→ B.

With sp-relations, it is much easier to represent the functional dependencies in the neg-

ative component. The notations that were introduced in Section 1 now simplify the process

and it involves introducing just one s-tuple of the form < a, {b}, φ̄, φ̄... > in R−.

Similarly, a referential integrity constraint on a database requires that each value in the

foreign key in a relation matches the value in the primary key. In paraconsistent relations,

when a value is stored as false in the primary key of a relation i.e. in the negative com-

ponent in all possible combinations, then all foreign keys matching that primary key value

will also become false. For example, in the employee database, the employee relation with

primary key SSN has values ’555’ and ’666’ stored in the negative component in all possible

combinations. This implies that no employee exists with either SSN ’555’ or ’666’. The

supervisor relation has SSN as a foreign key. Since SSN values ’555’ and ’666’ are false

in the employee relation, all extensions of these values can be introduced in the negative

component of the supervisor relations as < 555, φ̄ > and < 666, φ̄ >. The database instance

of Figure 9.4 modified to include the FD SSN → Name,Age and the attribute references

SSN and SuperSSN in Supervisor to SSN in Employee is shown in Figure 9.5.

Employee

SSN Name Age

{111} {Navin} {24}
{222} {James} {23}
{333} {Jennifer} {25}

{555} φ̄ φ̄

{666} φ̄ φ̄

{111} {Navin} {24}
{222} {James} {23}
{333} {Jennifer} {25}

Supervisor

SSN SuperSSN

{111} {333}
{222} {111}

{111} {333}
{333,555,666} φ̄

φ̄ {555,666}

Figure 9.5. The employee database instance after coding constraints
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CHAPTER 10.

SOURCE-AWARE REPAIRS FOR INCONSISTENT
DATABASES

Logic programming has been used earlier in order to obtain the repairs of the database in

[4, 38, 40]. The basic idea is to construct a program, called the repair program such that the

answer sets [33] of the repair program correspond to the repairs of the database. The repair

program is a disjunctive logic program with two kinds of negation, explicit negation and de-

fault negation. The problem of finding “preferred repairs”, however, is relatively unexplored

[16, 39, 40]. The situation where the database is both inconsistent and incomplete is com-

mon in practice. Repairing such databases has not been studied much. To our knowledge,

the only known work which addresses the problem of inconsistent databases containing null

values is [13]. It has already been shown that there can be an exponential number of repairs

for an inconsistent database [26]. In this situation, it appears reasonable that we look only

for a subset of the possible repairs of the database. Preference for one repair over another

may be based on a number of criteria. Greco et al [39] use a function that returns a real

number as the “quality” of the repair. Such a method is more appropriate in a setting where

minimal number of insertions and deletions denotes a “good” repair. However, the method

is general and the function can be used to express different criteria. In this chapter, we

explore the specific case where along with each tuple in the database is attached information

regarding which sources confirm the tuple and which sources do not. Such a data model

is the IST model of Sadri [69]. The IST model was targeted towards modeling incomplete

information. We propose a framework under which repairs may be computed based on a

preference for a subset of the sources which we consider “reliable” thus proposing a solution

to the problem of computing preferred repairs for databases that are both inconsistent and

incomplete.



114

10.1 Motivation

Let us revisit the example database shown in Figure 5.5. Assume that we also have

attached to each tuple in the database, a set of sources confirming the information provided

by the tuple. Let us assume, for instance, that sources s1 and s2 confirm that the first tuple

(c1, p1) in the first table is correct and that sources s1 and s3 confirm that the first tuple

(c1, p2) in the second table is correct. Assume that similar source information is available

for every tuple in the database. The repairs of the inconsistent database are shown in Figure

6.3. One contains the tuple (c1, p1) and the other contains the tuple (c1, p2). The other

tuples appear in both repairs. If we were to assume that the information from source s2 is

more reliable than the information from source s3, then we would prefer the first repair to

the second one.

In the event of having inconsistent information, the most useful information in order to

resolve the inconsistency is perhaps the source of the conflicting information. Several other

criteria for resolving inconsistencies have been studied. One of the criteria in [40] is preference

for certain updates over others. The criteria used in [38] is minimal updates. Resolving

conflicts based on the reliability of the source of the information has not been studied much

from a logic programming perspective. [46] provides a framework for incorporating source

information in a deductive database and gives a semantics for such databases. Our aim

in this chapter is to incorporate source information into the repair program [4] so that the

answer sets of the repair program is a subset of the set of all repairs. This subset will be

selected based on a preference for information coming from one source over another. The

approach that we adopt in order to store source information is the IST method of Sadri

[69, 70, 71].

10.2 Information Source Tracking Method

In this section, we briefly describe the information source tracking method of Sadri [69].

The reader is referred to [69] for a more detailed description. The IST method is an extension
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to the relational model that permits the user to record the contributing information sources

along with the data. This allows the system to calculate the probability of the validity of

the tuple for each tuple that appears in the answer to a query.

The IST method uses an extended relational model. An extended relational scheme R is

a set of attributes {A1, . . . , An, I} where A1, . . . , An are regular attributes and I is a special

attribute, called the source attribute. Each attribute Ai has a domain of values Di, 1 ≤ i ≤ n.

The domain of the source attribute I, denoted by DI , is the set of vectors of length k with

-1,0,1 elements, that is, DI = {< a1, . . . , ak >| ai ∈ {−1, 0, 1}, i = 1, . . . , k} where k is the

number of information sources. An element of DI is called an source vector.

A tuple on the extended scheme R = {A1, . . . , An, I} is an element of D1×, . . . ,×Dn×DI .

A relation instance r on the scheme R is a set of tuples on R. A source vector u for a tuple

t identifies sources that contribute to t. Intuitively, t is valid if all sources having a +1 entry

in u are correct, and all those having a -1 entry in u are incorrect. Usually, base relations

consist only of tuples with either 0 or +1 in the source vector for the tuple. Source vectors

containing -1 are obtained when the extended algebra operations are applied on the base

relations. Here, since we are concerned with only the source vectors for tuples, the operations

of the relational algebra are not defined. The reader is referred to [69] for details.

10.3 The Repair Program

We now describe how this source information can be incorporated into the repair program

for the inconsistent database. Incorporating source information into a deductive database

has already been studied in [46]. The intention there was to model uncertain information in

a deductive database. Here we incorporate source information in a repair program in order

to express preferences for some repairs over others.

The repair program is an extended disjunctive logic program. An extended logic program

is one which has two forms of negation, a default negation not and an explicit negation ¬

[33]. An extended disjunctive logic program is a set of rules of the form
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A1 ∨ . . . ∨ Al ← B1, . . . , Bm, not C1, . . . , not Cn

where A1, . . . , Al, B1, . . . , Bm, C1, . . . , Cn are literals of the form P or ¬P .

The repair program we construct here is similar to the one described in [4]. We consider

constraints of the form described in [4], the binary integrity constraints or BIC’s. The

constraints take one of the following three forms:

p1(x̄1) ∨ p2(x̄2) ∨ ϕ

p1(x̄1) ∨ ¬q1(ȳ2) ∨ ϕ

¬q1(ȳ1) ∨ ¬q2(ȳ2) ∨ ϕ

where pi(x̄i) and qj(ȳj) are database atoms and ϕ is a first order formula consisting only of

built-in predicates and free variables appearing in the pi’s and qj’s .

Before constructing the repair program, we state the assumptions we make: The database

has a finite domain D, the set of constraints on the database IC, are formulas of the form

defined above and the data obtained from each source is consistent with IC.

The repair program for the inconsistent database consists of two sets of rules. One set

of rules is called the change program, the part of the repair program that is responsible for

the insertions and deletions in order to restore consistency. The other set of rules are the

default rules or persistence rules, which enforce the fact that tuples in the database remain

intact unless they violate constraints. The source information is incorporated into the logic

program only in the set of default rules. For every predicate p in the database, its “primed

version” p′ is the new repaired version of the predicate p. The original predicate p itself

remains untouched.

10.3.1 The change program

The change program is left untouched and is exactly as in [4]. We reproduce here the

change program.



117

Definition 55. Given a set of BIC’s IC and a database instance r, the change program

consists of the following rules:

1. (a) For every ground database atom p(ā) ∈ r, the fact p(ā).

(b) For every a ∈ D, the fact dom(a).

2. For the integrity constraints of the forms in (1), the triggering rules

p′1(X̄1) ∨ p′2(X̄2) ← dom(X̄1, X̄2), not p1(X̄1),

notp2(X̄2),¬ϕ.

p′1(X̄1) ∨ ¬q′1(Ȳ1) ← dom(X̄1), not p1(X̄1),

q1(Ȳ1),¬ϕ.

¬q′1(Ȳ1) ∨ ¬q′2(Ȳ2) ← q1(Ȳ1), q2(Ȳ2),¬ϕ.

3. For an IC of the form p1(x̄1) ∨ p2(x̄2) ∨ ϕ, the pair of stabilizing rules

p′1(X̄1) ← dom(X̄1),¬p′2(X̄2),¬ϕ.

p′2(X̄2) ← dom(X̄2),¬p′1(X̄1),¬ϕ.

For an IC of the form p1(x̄1) ∨ ¬q1(ȳ2) ∨ ϕ, the pair of stabilizing rules

p′1(X̄1) ← dom(X̄1), q′1(Ȳ1),¬ϕ.

¬q′1(Ȳ1) ← dom(Ȳ1),¬p′1(X̄1),¬ϕ.

For an IC of the form ¬q1(ȳ1) ∨ ¬q2(ȳ2) ∨ ϕ, the pair of stabilizing rules

¬q′1(Ȳ1) ← dom(Ȳ1), q′2(Ȳ2),¬ϕ.

¬q′2(Ȳ2) ← dom(Ȳ2), q′1(Ȳ1),¬ϕ.
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10.3.2 The persistence rules

The persistence rules are the set of rules that enforce that the ground facts remain in

the database unless they violate constraints. The persistence rules are divided into three

sets of rules: the s-rules, which incorporate source information into the repair program, the

persistence defaults, which state that data persists unless it violates constraints, and the

starter rules for the source-aware answer sets of the repair program.

In this section, we show how source information is used in the repair program. First we

illustrate how a table in the IST method of Section 10.2 looks. Figure 10.1 is an example of

Teaches

Class Professor I

c1 p1 1 1 0

c1 p2 1 0 0

Figure 10.1. An example of a table in the IST method

a table where we have the source vectors stored along with each tuple. Let us assume that

the data has been collected from three sources s1, s2 and s3. The source vectors indicate that

sources s1 and s2 confirm the tuple (c1, p1). In Section 10.2, we associated with each source

si a Boolean variable fi which indicated whether the source was correct or not. In the logic

program, however, we will include a propositional constant of the same name as the source

which indicates whether or not we believe in the source. For instance, the propositional

constants s1 and ¬s2 indicate that we believe in the source s1 and do not believe in the

source s2. We will call these literals s-literals. For instance, the set of s-literals for the table

in Figure 10.1 are {s1, s2, s3,¬s1,¬s2,¬s3}.

We first introduce what we call the set of s-rules in the logic program. We associate an

s-rule with every fact in the database. For every predicate p in the database, the s-rule for

each fact in the table for p will be stored with a suffix s, that is, ps. However, the s-rules

differ from the normal ground facts in the database in that they are conditional facts, i.e.,
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they are true if certain conditions hold. A similar idea has been explored in [75]. There,

conditional facts were introduced in order to simulate disjunctions through a normal logic

program. Here, we introduce conditional facts to reflect our beliefs in data sources. For

instance, the s-rule for the first tuple in the Teaches table shown in Figure 10.1 is as follows:

Teachess(c1, p1) ← s1, s2.

The bodies of s-rules consist only of s-literals. For instance, the first s-rule here says that

we must include Teachess(c1, p1) in every repair of the database if we believe in the sources

s1 and s2. Thus the heads of the s-rules are conditional in the sense that may or may not

appear in every repair of the database depending on a choice of sources to be believed. The

s-rules are stored in the logic program in addition to the regular rules to store the facts.

The persistence defaults enforce the fact that data persists unless it violates some con-

straints. The persistence defaults for every predicate p in the database are now written as

follows:

p′(X̄) ← ps(X̄).

p′(X̄) ← p(X̄), not ¬p′(X̄).

¬p′(X̄) ← dom(X̄), not p(X̄), not p′(X̄).

The first rule here is in effect the only addition to the repair program. This rule states that

every fact that becomes true through the s-rules must be included in every repair of the

database. The remaining rules are the same as those in the repair program of [4]. This is

done so that the source information must be used only in order to resolve inconsistencies and

repairs that do not contain facts generated using source information must still be produced

even in the presence of source information.
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For every source si, we introduce the pair of starter rules

si ← si. ¬si ← ¬si.

These rules are included simply to reproduce the s-literals chosen by the user in each answer

set.

10.4 Source-aware Answer Sets of the Repair Program

We now explain how the answer sets are constructed for the repair program. The stable

model semantics was introduced by Gelfond and Lifschitz in [32] and later extended to

extended logic programs and disjunctive logic programs in [33]. The stable model semantics

is arguably the most widely accepted semantics for logic programs. The stable models of

extended logic programs are called answer sets. In [4], a slight variation of the stable model

semantics was used in order to compute the repairs. There, the repair program was treated

as a disjunctive logic program with exceptions [44]. The idea is straightforward: We believe

in a ground fact p(a1, . . . , an) unless an exception to it has been generated by the presence

of ¬p(a1, . . . , an). The stable models of logic programs with exceptions are called e-answer

sets. It has been shown in [44] that there is a one-to-one correspondence between the answer

sets and the e-answer sets of a program. Hence, we can talk of them interchangeably. The

reader is referred to [44] for a detailed description of e-answer sets and to [4] for the e-answer

sets of the repair program. It has been shown in [4] that there is a one-to-one correspondence

between the e-answer sets of the repair program and the minimal repairs of the database.

The answer set semantics is based a certain transformation defined on interpretations.

We will not describe the semantics here. The reader is referred to [33] for details. We explain

the construction of the repairs of the program described in the last section. The idea here

is to obtain the repairs of the database based on a choice of s-literals by the user. From the

set of all possible repairs, we want to be able to ignore those repairs that contain tuples that
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are not confirmed by the sources that we believe in when such tuples are in conflict with

source confirmed tuples. In order to achieve this, we will propose a minor reformulation of

the answer set semantics for the s-rules alone.

The answer set reformulation is as follows: Let Π be the repair program and let HB(Π)

denote the Herbrand base of Π. Let Sl be the set of s-literals of Π. Let S ⊂ HB(Π) and slits

is a non-empty subset of Sl. Let Ssource = S ∪ slits. The set slits denotes the set of sources

we want to believe(disbelieve).

Definition 56. The transformation, ΠSsource of Π w.r.t Ssource is obtained by:

1. Deleting every rule with not L in the body with L ∈ Ssource and deleting every s-rule

that:

(a) has ¬s in the body with s ∈ slits OR

(b) does not have every literal from slits in its body

2. Deleting the negative literals from the bodies of the remaining rules and deleting every

literal from the bodies of the remaining s-rules

We now obtain a positive logic program ΠSsource. Ssource is a source-aware answer set of Π if

it is the least model of ΠSsource.

Observe that the set slits denoting our choice of sources to believe or disbelieve implicitly

denotes a conjunction of those literals. This transformation relies on the assumption that

sources by themselves are consistent. Hence it follows that a conjunction of the beliefs of a

set of sources is also consistent.

Let Bel(si) = {t | t is confirmed by the source si}

Let slits = {s1, . . . , sn}. This denotes the set of tuples

n
∩
i=1
Bel(si)
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which is the set of tuples confirmed by every one of s1, . . . , sn.

Notice that the user might also believe a tuple if it is confirmed by any of s1, . . . , sn. This

is the set

n
∪
i=1
Bel(si)

Notice that the latter formula may represent an inconsistent set of tuples. The repair program

discussed here does not support such a choice of s-literals by the user. However, this can

be accomplished by constructing n sets of repairs. For instance, if the user chose to believe

tuples confirmed either by the source s1 or the source s3, then we run the repair program once

with slits = {s1}. The answer sets of this program will correspond to all the repairs based

on a belief in s1. Next, we run the repair program again but this time we set slits = {s3}.

Now the set of repairs obtained is based a belief in the source s3. The union of these two

sets of repairs will correspond to the belief in source s1 or s3.

Theorem 10.4.1. 1. For every source-aware answer set Ssource of Π, there exists a repair

r′ of the database instance r w.r.t the integrity constraints IC such that r′ = {p(ā) |

p′(ā) ∈ Ssource}

2. For every repair r′ of the database instance r w.r.t the integrity constraints IC that

is consistent with the set of sources believed(disbelieved), there exists a source-aware

answer set Ssource such that r′ = {p(ā) | p′(ā) ∈ Ssource}

Proof. The proof of the theorem is straightforward and follows from Theorem 1 of [4]. Let

us denote the repair program of [4] as Πr and its answer sets (the repairs of the database)

as S. Let us denote the set of s-rules in our repair program Π as Ps. Then, it can be seen

that Π = Πr ∪ Ps (the other rules of the form si ← si are used to simply reproduce them

in the answer sets and have no effect on the repairs). Let us denote by S ′ the answer sets

of Π (which are simply the source-aware repairs). We have to show that the addition of the

s-rules to the original repair program simply has the effect of removing those repairs that

do not include the user-chosen s-rules (based on the chosen s-literals). If the subset of Ps
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chosen by the user appears in every repair of Πr then the addition of Ps to Πr has no effect

on the answer sets of the program by our reformulation of the answer set semantics and we

have S = S ′. Now let us assume that there exist some answer sets in S that do not contain

the user-chosen facts. This implies that these facts conflict with some other fact(s) from

the original persistence rules, i.e., the facts of the form p(X̄). (the conflict cannot be within

Ps since we assume that each source by itself is consistent). Since the user-chosen facts are

forced into every answer set by the new persistence rule p′(X̄) ← ps(X̄), the answer sets

of Πr that do not contain the user-chosen facts are no longer answer sets of Π. The other

answer sets of Πr are still answer sets of Π since the rest of the program is unchanged. Hence

we have that S ′ ⊆ S.

10.5 An Illustration

In this section, we illustrate the construction of the repairs of an inconsistent database

where the information is collected from 3 sources that are each consistent with the integrity

constraints by themselves. However, we obtain inconsistent information when the data

collected from the sources is combined. We consider here a relation p(X, Y ) collected from 3

independent sources s1, s2 and s3. The data is subjected to a functional dependency integrity

constraint IC : X → Y . The data coming from each source is shown in Figure 10.2. This

s1 s2 s3

P

X Y

a b

c d

P

X Y

a e

b c

P

X Y

b d

c d

Figure 10.2. Data collected from independent sources s1, s2 and s3

information from the three sources may be integrated in the IST model approach to obtain

the extended relation shown in Figure 10.3. The new attribute I in the table in Figure 10.3 is

used to store the source vector information for each tuple. Here, the tuple (a, b) is confirmed
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P

X Y I

a b 1 0 0

c d 1 0 0

a e 0 1 0

b c 0 1 0

b d 0 0 1

c d 0 0 1

Figure 10.3. The integrated database along with source information

by source s1 and hence the source vector associated with this tuple is < 1, 0, 0 >. Similarly,

the tuple (c, d) is confirmed by both sources s1 and s3 and hence it appears twice in the

extended relation, once with the source vector < 1, 0, 0 > and once with the source vector

< 0, 0, 1 >. Notice that the information is now inconsistent with the functional dependency

constraint.

The repair program for this database is as follows:

The change program:

Facts:

p(a, b)← . p(a, e)← . p(b, c)← .

p(b, d)← . p(c, d)← .

Triggering rule:

¬p′(X, Y ) ∨ ¬p′(X,Z)← p(X, Y ), p(X,Z), Y 6= Z.

Stabilizing rule:
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¬p′(X,Z)← p(X, Y ), ydom(Z), Y 6= Z.

We will assume that predicates xdom(X) and ydom(Y ) are available that define the active

domain of the database.

Persistence rules:

s-rules:

ps(a, b)← s1. ps(a, e)← s2. ps(b, c)← s2.

ps(b, d)← s3. ps(c, d)← s1, s3.

Persistence defaults:

p′(X, Y ) ← ps(X, Y ).

p′(X, Y ) ← p(X, Y ), not ¬p′(X, Y ).

¬p′(X, Y ) ← xdom(X), ydom(Y ), not p(X, Y ),

not p′(X, Y ).

Starter rules: For 1 ≤ i ≤ 3,

si ← si. ¬si ← ¬si.

The s-rules for the table in Figure 10.3 brings out a subtle point. Notice that the tuple (c, d)

is confirmed independently by the sources s1 and s3. However, in the s-rules, this is encoded

as the single rule ps(c, d)← s1, s3. This could have also been encoded as two separate rules
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ps(c, d)← s1 and ps(c, d)← s3. However, such an encoding will lead to incorrect results by

our reformulation of the answer sets. Consider, for example the second encoding (with two

rules) and let {s1, s3} be the beliefs of the user. Then, by our transformation both the rules

for the tuple (c, d) will be deleted. However, since (c, d) is confirmed by both s1 and s3 it

should appear in every repair for those beliefs. This is why it is combined into the single

rule ps(c, d) ← s1, s3. Now, we obtain correct answers when the sources believed are both

s1 and s3. Notice that if either one of the sources is chosen, then also the transformation

ensures that the tuple (c, d) appears in every repair.

Let us assume that the user wishes to believe in the source s1 since from experience he

finds this source reliable.

The set of repairs based on a belief in source s1 are shown in Figure 10.4. The set of all

P

X Y

a b

c d

b c

,

P

X Y

a b

c d

b d


Figure 10.4. The repairs of the database based on a belief in source s1

minimal repairs of the database are shown in Figure 10.5. Since the user chooses to believe

P

X Y

a b

c d

b c

,

P

X Y

a b

c d

b d

,

P

X Y

a e

c d

b d

,

P

X Y

a e

c d

b d


Figure 10.5. The set of all minimal repairs of the database

in the source s1, the conflict between the tuples (a, b) and (a, e) is resolved by choosing (a, b)

since this tuple is confirmed by the source s1 whereas (a, e) is confirmed by s2. The tuple
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(c, d) is not involved in any conflict and hence appears in every repair. The conflict between

tuples (b, c) and (b, d) leads to the two repairs, one containing (b, c) and the other containing

(b, d).

10.6 Further Extensions

In this section, we suggest two extensions of the model that we have proposed for incor-

porating source information while computing repairs.

The first extension is a generalization of the proposed method. Here, instead of having

slits ⊂ Sl, we have a partial ordering of the s-literals based on the priorities that we have

for the sources. For instance, we may have that s1 < ¬s3, s2 < s4 which indicates that we

prefer believing s1 over disbelieving s3 and we prefer believing s2 over s4 (si < sj means that

si is preferred to sj). Such an approach is a natural generalization of the method proposed

in this chapter. Such a partial ordering translates into a prioritized logic program where

the rules are prioritized based on the ordering. In our case, the ordering on the sources will

lead to a prioritization of the s-rules. The priorities among the s-rules will be used in order

to resolve conflicts in the database. Hence we will obtain a set of repairs in which some

repairs have higher priority than others because the facts in it were derived from rules with

higher priority. Prioritized logic programs have been widely studied. A notion of preferred

answer sets for prioritized logic programs is discussed in [15]. Prioritized updates have been

studied in [40]. Here, we assume that there are restrictions on what kind of updates may

be performed on the database. This is incorporated into the repair program through repair

constraints. Then, it is generalized to the case where there are priorities on the updates.

This translates naturally into priorities on repairs.

The second extension that we propose is based on the IST method. In [69], Sadri proposes

a reliability calculation based on the probability of the source being correct. Based on the

source vector information for each tuple and the probability of the source being correct, we

can calculate a reliability value for the tuple t, denoted by re(t). Let us assume that the
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reliability for every tuple in the table can be calculated. This allows us to define a notion of

repairs that can be relied upon to a certain degree. This degree is based on the reliabilities

of the tuples in the repair. Such a notion is very useful in order to attach a confidence value

to a repair and hence a confidence value to answers obtained for a particular query. Let

0 < k ≤ 1.

Definition 57. A repair r′ of a database instance r is called a k-consistent repair of the

database iff (∀t)(t ∈ r′ → re(t) ≥ k)

Definition 58. A tuple t is called a k-consistent answer to a query Q if it appears in every

k-consistent repair r′ of the database instance r, i.e., the answers to query Q is given by

Ans(Q) = {t | (∀r′)(r′ is a k-consistent repair of r →

t ∈ r′)}

If we assume all sources to be 100% reliable, we then obtain every repair as a k-consistent

repair. This turns out to be the special case where Definition 58 returns all consistent answers

to query Q.
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CHAPTER 11.

CONCLUSIONS AND FUTURE WORK

In this dissertation firstly we have presented data models that can handle incomplete

information under both the OWA and CWA. Both these data models have the property of

being strong representation systems in the sense that any set of instances can be represented

in the systems. The second part of this dissertation focused on negation and nonmonotonic

reasoning in databases and logic programs. In the first half of this part we have shown how

a nonmonotonic reasoning component can be added to a data model that operates under

the OWA. This makes a case for nonmonotonic reasoning under the OWA by demonstrating

that useful information may be derived through this component. The other half of this

part is a treatment of default negation in extended logic programs. Current semantics for

extended logic programs treat default negation just as it is treated in general logic programs.

As a result a number of extended logic programs are declared contradictory. We present an

alternative definition of default negation in extended logic programs which behaves differently

only when contradictory information may be derived. This is achieved through a translation

of the extended logic program to a normal logic program. The third part of this dissertation

is focused on inconsistent information in databases. First we present a data model under

the OWA that handles inconsistencies by representing the negative information derived from

the constraint in the database. We present an algebra for query processing with this model.

Finally, we investigate the problem of computing the repairs of an inconsistent database.

Extended logic programs with disjunctions have been used for computing repairs under

the stable model semantics. We present a method by which lineage information can be

incorporated into the repair logic program so that the number of repairs computed is reduced

to a large extent.

The repair problem for inconsistent databases is of prime importance. An interesting

area of future work would be to study the concept of repairs in a database that also contains
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incomplete information. Both inconsistency and incompleteness are commonly seen problems

when large amounts of data are integrated. This work involves two parts. First we must

provide a definition of what constitutes a repair of a set of database instances some of which

violate constraints. Secondly, efficient techniques for consistent query answering should be

developed either by a procedure that computes all the repairs or by query rewriting.

Another area of future work would be to investigate the use of OWA models for handling

inconsistencies in databases. Such models appear to be particularly useful in situations

where incompleteness is present in the form of disjunctive information.

Thirdly, it may be interesting to study how repairs may be represented using some of

the strong representation systems developed to handle incomplete information. Repairs

are closely related to incomplete databases since essentially both can be seen as sets of

instances. Leveraging some of the techniques developed for handling incomplete information

may improve the efficiency of consistent query answering.
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