132 research outputs found

    Palmprint verification using consistent orientation coding

    Full text link

    Palmprint identification using an ensemble of sparse representations

    Get PDF
    Among various palmprint identification methods proposed in the literature, sparse representation for classification (SRC) is very attractive offering high accuracy. Although SRC has good discriminative ability, its performance strongly depends on the quality of the training data. In particular, SRC suffers from two major problems: lack of training samples per class and large intra-class variations. In fact, palmprint images not only contain identity information but they also have other information, such as illumination and geometrical distortions due to the unconstrained conditions and the movement of the hand. In this case, the sparse representation assumption may not hold well in the original space since samples from different classes may be considered from the same class. This paper aims to enhance palmprint identification performance through SRC by proposing a simple yet efficient method based on an ensemble of sparse representations through an ensemble of discriminative dictionaries satisfying SRC assumption. The ensemble learning has the advantage to reduce the sensitivity due to the limited size of the training data and is performed based on random subspace sampling over 2D-PCA space while keeping the image inherent structure and information. In order to obtain discriminative dictionaries satisfying SRC assumption, a new space is learned by minimizing and maximizing the intra-class and inter-class variations using 2D-LDA. Extensive experiments are conducted on two publicly available palmprint data sets: multispectral and PolyU. Obtained results showed very promising results compared with both state-of-the-art holistic and coding methods. Besides these findings, we provide an empirical analysis of the parameters involved in the proposed technique to guide the neophyte. 2018 IEEE.This work was supported by the National Priority Research Program from the Qatar National Research Fund under Grant 6-249-1-053. The contents of this publication are solely the responsibility of the authors and do not necessarily represent the official views of the Qatar National Research Fund or Qatar University.Scopu

    Deep learning approach for Touchless Palmprint Recognition based on Alexnet and Fuzzy Support Vector Machine

    Get PDF
    Due to stable and discriminative features, palmprint-based biometrics has been gaining popularity in recent years. Most of the traditional palmprint recognition systems are designed with a group of hand-crafted features that ignores some additional features. For tackling the problem described above, a Convolution Neural Network (CNN) model inspired by Alex-net that learns the features from the ROI images and classifies using a fuzzy support vector machine is proposed. The output of the CNN is fed as input to the fuzzy Support vector machine. The CNN\u27s receptive field aids in extracting the most discriminative features from the palmprint images, and Fuzzy SVM results in a robust classification. The experiments are conducted on popular contactless datasets such as IITD, POLYU2, Tongji, and CASIA databases. Results demonstrate our approach outperformers several state-of-art techniques for palmprint recognition. Using this approach, we obtain 99.98% testing accuracy for the Tongji dataset and 99.76 % for the POLYU-II datasets

    RPG-Palm: Realistic Pseudo-data Generation for Palmprint Recognition

    Full text link
    Palmprint recently shows great potential in recognition applications as it is a privacy-friendly and stable biometric. However, the lack of large-scale public palmprint datasets limits further research and development of palmprint recognition. In this paper, we propose a novel realistic pseudo-palmprint generation (RPG) model to synthesize palmprints with massive identities. We first introduce a conditional modulation generator to improve the intra-class diversity. Then an identity-aware loss is proposed to ensure identity consistency against unpaired training. We further improve the B\'ezier palm creases generation strategy to guarantee identity independence. Extensive experimental results demonstrate that synthetic pretraining significantly boosts the recognition model performance. For example, our model improves the state-of-the-art B\'ezierPalm by more than 5%5\% and 14%14\% in terms of TAR@FAR=1e-6 under the 1:11:1 and 1:31:3 Open-set protocol. When accessing only 10%10\% of the real training data, our method still outperforms ArcFace with 100%100\% real training data, indicating that we are closer to real-data-free palmprint recognition.Comment: 12 pages,8 figure
    corecore