135 research outputs found

    The fundamentals of unimodal palmprint authentication based on a biometric system: A review

    Get PDF
    Biometric system can be defined as the automated method of identifying or authenticating the identity of a living person based on physiological or behavioral traits. Palmprint biometric-based authentication has gained considerable attention in recent years. Globally, enterprises have been exploring biometric authorization for some time, for the purpose of security, payment processing, law enforcement CCTV systems, and even access to offices, buildings, and gyms via the entry doors. Palmprint biometric system can be divided into unimodal and multimodal. This paper will investigate the biometric system and provide a detailed overview of the palmprint technology with existing recognition approaches. Finally, we introduce a review of previous works based on a unimodal palmprint system using different databases

    Palmprint Recognition in Uncontrolled and Uncooperative Environment

    Full text link
    Online palmprint recognition and latent palmprint identification are two branches of palmprint studies. The former uses middle-resolution images collected by a digital camera in a well-controlled or contact-based environment with user cooperation for commercial applications and the latter uses high-resolution latent palmprints collected in crime scenes for forensic investigation. However, these two branches do not cover some palmprint images which have the potential for forensic investigation. Due to the prevalence of smartphone and consumer camera, more evidence is in the form of digital images taken in uncontrolled and uncooperative environment, e.g., child pornographic images and terrorist images, where the criminals commonly hide or cover their face. However, their palms can be observable. To study palmprint identification on images collected in uncontrolled and uncooperative environment, a new palmprint database is established and an end-to-end deep learning algorithm is proposed. The new database named NTU Palmprints from the Internet (NTU-PI-v1) contains 7881 images from 2035 palms collected from the Internet. The proposed algorithm consists of an alignment network and a feature extraction network and is end-to-end trainable. The proposed algorithm is compared with the state-of-the-art online palmprint recognition methods and evaluated on three public contactless palmprint databases, IITD, CASIA, and PolyU and two new databases, NTU-PI-v1 and NTU contactless palmprint database. The experimental results showed that the proposed algorithm outperforms the existing palmprint recognition methods.Comment: Accepted in the IEEE Transactions on Information Forensics and Securit

    On the Feasibility of Interoperable Schemes in Hand Biometrics

    Get PDF
    Personal recognition through hand-based biometrics has attracted the interest of many researchers in the last twenty years. A significant number of proposals based on different procedures and acquisition devices have been published in the literature. However, comparisons between devices and their interoperability have not been thoroughly studied. This paper tries to fill this gap by proposing procedures to improve the interoperability among different hand biometric schemes. The experiments were conducted on a database made up of 8,320 hand images acquired from six different hand biometric schemes, including a flat scanner, webcams at different wavelengths, high quality cameras, and contactless devices. Acquisitions on both sides of the hand were included. Our experiment includes four feature extraction methods which determine the best performance among the different scenarios for two of the most popular hand biometrics: hand shape and palm print. We propose smoothing techniques at the image and feature levels to reduce interdevice variability. Results suggest that comparative hand shape offers better performance in terms of interoperability than palm prints, but palm prints can be more effective when using similar sensors

    Deep learning approach for Touchless Palmprint Recognition based on Alexnet and Fuzzy Support Vector Machine

    Get PDF
    Due to stable and discriminative features, palmprint-based biometrics has been gaining popularity in recent years. Most of the traditional palmprint recognition systems are designed with a group of hand-crafted features that ignores some additional features. For tackling the problem described above, a Convolution Neural Network (CNN) model inspired by Alex-net that learns the features from the ROI images and classifies using a fuzzy support vector machine is proposed. The output of the CNN is fed as input to the fuzzy Support vector machine. The CNN\u27s receptive field aids in extracting the most discriminative features from the palmprint images, and Fuzzy SVM results in a robust classification. The experiments are conducted on popular contactless datasets such as IITD, POLYU2, Tongji, and CASIA databases. Results demonstrate our approach outperformers several state-of-art techniques for palmprint recognition. Using this approach, we obtain 99.98% testing accuracy for the Tongji dataset and 99.76 % for the POLYU-II datasets
    • …
    corecore