61 research outputs found

    The characteristic polynomial of the Adams operators on graded connected Hopf algebras

    Get PDF
    The Adams operators Ψn\Psi_n on a Hopf algebra HH are the convolution powers of the identity of HH. We study the Adams operators when HH is graded connected. They are also called Hopf powers or Sweedler powers. The main result is a complete description of the characteristic polynomial (both eigenvalues and their multiplicities) for the action of the operator Ψn\Psi_n on each homogeneous component of HH. The eigenvalues are powers of nn. The multiplicities are independent of nn, and in fact only depend on the dimension sequence of HH. These results apply in particular to the antipode of HH (the case n=−1n=-1). We obtain closed forms for the generating function of the sequence of traces of the Adams operators. In the case of the antipode, the generating function bears a particularly simple relationship to the one for the dimension sequence. In case H is cofree, we give an alternative description for the characteristic polynomial and the trace of the antipode in terms of certain palindromic words. We discuss parallel results that hold for Hopf monoids in species and qq-Hopf algebras.Comment: 36 pages; two appendice

    Sturmian morphisms, the braid group B_4, Christoffel words and bases of F_2

    Full text link
    We give a presentation by generators and relations of a certain monoid generating a subgroup of index two in the group Aut(F_2) of automorphisms of the rank two free group F_2 and show that it can be realized as a monoid in the group B_4 of braids on four strings. In the second part we use Christoffel words to construct an explicit basis of F_2 lifting any given basis of the free abelian group Z^2. We further give an algorithm allowing to decide whether two elements of F_2 form a basis or not. We also show that, under suitable conditions, a basis has a unique conjugate consisting of two palindromes.Comment: 25 pages, 4 figure

    Palindromic Length of Words with Many Periodic Palindromes

    Full text link
    The palindromic length PL(v)\text{PL}(v) of a finite word vv is the minimal number of palindromes whose concatenation is equal to vv. In 2013, Frid, Puzynina, and Zamboni conjectured that: If ww is an infinite word and kk is an integer such that PL(u)≤k\text{PL}(u)\leq k for every factor uu of ww then ww is ultimately periodic. Suppose that ww is an infinite word and kk is an integer such PL(u)≤k\text{PL}(u)\leq k for every factor uu of ww. Let Ω(w,k)\Omega(w,k) be the set of all factors uu of ww that have more than k−1∣u∣k\sqrt[k]{k^{-1}\vert u\vert} palindromic prefixes. We show that Ω(w,k)\Omega(w,k) is an infinite set and we show that for each positive integer jj there are palindromes a,ba,b and a word u∈Ω(w,k)u\in \Omega(w,k) such that (ab)j(ab)^j is a factor of uu and bb is nonempty. Note that (ab)j(ab)^j is a periodic word and (ab)ia(ab)^ia is a palindrome for each i≤ji\leq j. These results justify the following question: What is the palindromic length of a concatenation of a suffix of bb and a periodic word (ab)j(ab)^j with "many" periodic palindromes? It is known that ∣PL(uv)−PL(u)∣≤PL(v)\lvert\text{PL}(uv)-\text{PL}(u)\rvert\leq \text{PL}(v), where uu and vv are nonempty words. The main result of our article shows that if a,ba,b are palindromes, bb is nonempty, uu is a nonempty suffix of bb, ∣ab∣\vert ab\vert is the minimal period of abaaba, and jj is a positive integer with j≥3PL(u)j\geq3\text{PL}(u) then PL(u(ab)j)−PL(u)≥0\text{PL}(u(ab)^j)-\text{PL}(u)\geq 0

    Sturmian numeration systems and decompositions to palindromes

    Full text link
    We extend the classical Ostrowski numeration systems, closely related to Sturmian words, by allowing a wider range of coefficients, so that possible representations of a number nn better reflect the structure of the associated Sturmian word. In particular, this extended numeration system helps to catch occurrences of palindromes in a characteristic Sturmian word and thus to prove for Sturmian words the following conjecture stated in 2013 by Puzynina, Zamboni and the author: If a word is not periodic, then for every Q>0Q>0 it has a prefix which cannot be decomposed to a concatenation of at most QQ palindromes.Comment: Submitted to European Journal of Combinatoric

    On the almost-palindromic width of free groups

    Full text link
    We answer a question of Bardakov (Kourovka Notebook, Problem 19.8) which asks for the existence of a pair of natural numbers (c,m)(c, m) with the property that every element in the free group on the two-element set {a,b}\{a, b\} can be represented as a concatenation of cc, or fewer, mm-almost-palindromes in letters a±1,b±1a^{\pm 1}, b^{\pm 1}. Here, an mm-almost-palindrome is a word which can be obtained from a palindrome by changing at most mm letters. We show that no such pair (c,m)(c, m) exists. In fact, we show that the analogous result holds for all non-abelian free groups.Comment: 5 pages, no figure

    Constructions of words rich in palindromes and pseudopalindromes

    Full text link
    A narrow connection between infinite binary words rich in classical palindromes and infinite binary words rich simultaneously in palindromes and pseudopalindromes (the so-called HH-rich words) is demonstrated. The correspondence between rich and HH-rich words is based on the operation SS acting over words over the alphabet {0,1}\{0,1\} and defined by S(u0u1u2…)=v1v2v3…S(u_0u_1u_2\ldots) = v_1v_2v_3\ldots, where vi=ui−1+uimod  2v_i= u_{i-1} + u_i \mod 2. The operation SS enables us to construct a new class of rich words and a new class of HH-rich words. Finally, the operation SS is considered on the multiliteral alphabet Zm\mathbb{Z}_m as well and applied to the generalized Thue--Morse words. As a byproduct, new binary rich and HH-rich words are obtained by application of SS on the generalized Thue--Morse words over the alphabet Z4\mathbb{Z}_4.Comment: 26 page
    • …
    corecore